CN111258337A - 负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法 - Google Patents

负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法 Download PDF

Info

Publication number
CN111258337A
CN111258337A CN202010129275.0A CN202010129275A CN111258337A CN 111258337 A CN111258337 A CN 111258337A CN 202010129275 A CN202010129275 A CN 202010129275A CN 111258337 A CN111258337 A CN 111258337A
Authority
CN
China
Prior art keywords
eccentric
current
load
moment
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010129275.0A
Other languages
English (en)
Other versions
CN111258337B (zh
Inventor
刘军
刘鹏
张晶
李治国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN202010129275.0A priority Critical patent/CN111258337B/zh
Publication of CN111258337A publication Critical patent/CN111258337A/zh
Application granted granted Critical
Publication of CN111258337B publication Critical patent/CN111258337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Abstract

为了减小非线性干扰力矩对二维高精度转台精度的影响,本发明提供了一种负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法。本发明依据负载偏心产生的偏心重力力矩具有余弦特性,进行力矩补偿,达到消除偏心重力力矩,实现负载偏心二维转台俯仰运动的高精度高平稳控制。

Description

负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法
技术领域
本发明属于二维精密转台伺服运动控制领域,涉及一种负载偏心下二维转台高精度伺服运动控制问题,具体涉及一种负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法。
背景技术
在航空、平流层飞艇等飞行器上,由于安装空间受限,其上搭载的二维高精度转台常常出现俯仰轴上负载无法配平,有较大偏心的情况(如图5所示),需要设计相应的控制策略,减少偏心导致的非线性扰动力矩。
国内外对负载偏心下二维转台俯仰运动控制研究文献与专利较少,而多自由度机械臂的末端关节也无法进行配重,其抓举、搬运也会具有负载偏心的相似特点。但是多自由度机械臂与二维转台的控制系统上还是有所差异,多自由度机械臂可以利用自身运动来实现自身平衡,而二维转台无法采用此策略。
多自由度机械臂的末端关节控制与抓举等伺服控制策略,由于多关节联合协同运动,运动学与动力学均复杂,只能默认力矩变化为未知,需进行偏心力矩辨识后应用现代控制理论进行补偿。而二维转台的负载偏心位置不变,其控制策略可以进行简化。
本发明根据工程实践,设计了一种负载偏心下二维转台俯仰运动的高精度伺服控制系统与方法,不仅适用于地面无法配平的经纬仪,也适用于航空、航天类似负载偏心下二维转动机构的控制。
发明内容
为了减小非线性干扰力矩对二维高精度转台精度的影响,本发明提供了一种负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法。
本发明的技术方案是:
负载偏心下二维转台俯仰运动的高精度伺服控制系统,包括位置环控制器、速度环控制器、D/A转换器、电流环控制器、PWM逆变器、电机电流信息采集与处理单元、高精度角度传感器和角速度运算器;
其特殊之处在于:
还包括偏心力矩运算器和加法器;
偏心力矩运算器包括偏心重力力矩对应电流值计算单元、偏心重力力矩对应电流值正负判断单元和当量转换单元;
偏心重力力矩对应电流值计算单元用于接收来自所述高精度角度传感器的俯仰轴负载绕OX轴的实时转动角度θi,并依据公式mgρcos(θ0i)计算偏心负载引发的偏心重力力矩值,以及依据公式mgρcos(θ0i)/KT计算为了补偿偏心重力力矩值,对应俯仰轴电机所需输出电流值,即为偏心重力力矩对应电流值;
偏心重力力矩对应电流值正负判断单元用于接收来自所述高精度角度传感器的实时转动角度θi经角速度运算器处理输出的的实时转动角速度
Figure BDA0002395345590000022
并依据实时转动角速度
Figure BDA0002395345590000021
判断出所述偏心重力力矩对应电流值的±符号;
所述当量转换单元用于依据所述D/A转换器的单位数字量与所述俯仰轴电机输出力矩、俯仰轴电机电流的当量关系将带±符号的偏心重力力矩对应电流值转换为数字控制量Dt输出给所述加法器;
所述加法器用于将所述数字控制量Dt与所述速度环控制器输出的电流控制量Dk相加,将相加结果输出给所述D/A转换器。
本发明还提供了一种基于上述负载偏心下二维转台俯仰运动的高精度伺服控制系统的高精度伺服控制方法,其特殊之处在于,包括以下步骤:
1)数据准备
称重确认偏心负载的总质量m;根据俯仰轴电机出厂测试报告获取俯仰轴电机力矩系数KT;根据轴承及润滑情况,参照电机转子手册与转轴设计参数,估算力矩Td;力矩Td为轴系摩擦力矩与电机转子、转轴转动的驱动力矩的总和;
2)在俯仰轴上装配偏心负载;
3)求解偏心负载的偏心位置
3.1)向俯仰运动的伺服控制系统输入角度定位指令θ,θ为俯仰轴上负载绕OX轴的转动角度,是定值,则有ρcos(θ0+θ)=(KT*I-Td)/mg;
3.2)向3.1)中的公式输入两个以上不同的θ得到不同的俯仰轴电机电流I,联立为矛盾方程组,求解出偏心负载的偏心位置(ρ,θ0)的极小最小二乘解;
4)获取偏心重力力矩对应电流值的数字控制量Dt
4.1)将俯仰轴负载绕OX轴的实时转动角度θi与对实时转动角度θi处理得到的实时转动角速度
Figure BDA0002395345590000031
注入偏心力矩运算器;
4.2)根据公式mgρcos(θ0+θ)计算偏心负载引发的偏心重力力矩值,根据公式mgρcos(θ0+θ)/KT计算偏心重力力矩对应电流值;
4.3)根据实时转动角速度
Figure BDA0002395345590000032
判断出偏心重力力矩对应电流值的±符号;
4.4)当量转换
依据D/A转换器的单位数字量与俯仰轴电机输出力矩、俯仰轴电机电流的当量关系将带±符号的偏心重力力矩对应电流值转换为数字控制量Dt输出;
5)三闭环参数指标精度调试。
进一步地,所述步骤5)具体为:将步骤4)得到的数字控制量Dt与速度环控制器输出的电流控制量Dk相加,将相加结果最终输出给D/A转换器,D/A转换器将数字量转换为模拟电流控制量i输出;模拟电流控制量i与俯仰电机电流采集与处理单元输出的电流采集模拟量,相减输出给电流环控制器,构成电流闭环控制,最终构成三闭环系统,实现负载偏心下偏心力矩实时精确补偿的功能。
本发明的优点是:
1.本发明通过进行力矩补偿,达到消除偏心重力力矩,实现负载偏心下二维转台俯仰运动的高精度高平稳控制。
2.本发明为一些特殊场合,例如无法配平而又要求有高精度高平稳跟踪的场合,提供了简单易行的控制方法。
附图说明
图1是现有常用的位置环、速度环、电流环三闭环组成的伺服控制系统的原理示意图。
图2是本发明负载偏心下二维转台俯仰运动的高精度伺服控制系统的原理示意图。
图3是本发明中偏心力矩运算器的原理框图。
图4是本发明负载偏心下二维转台俯仰运动的高精度伺服控制方法的流程图。图5是俯仰轴上负载严重偏心的二维高精度转台的示意图。
具体实施方式
以下结合附图对本发明作进一步说明。
1.本发明的发明构思及原理
二维转台俯仰轴上负载偏心时,由于转台转动速度较低,可看作刚性负载,建立基座坐标系OXYZ(见附图5所示),俯仰轴上负荷绕OX轴旋转,俯仰轴上负载总质量m的质心位置在YOZ平面上(ρ,θ0)点,根据动量矩定理可得:
Figure BDA0002395345590000051
其中:
JX为偏心负载对俯仰轴OX的转动惯量,JX=J0+mρ2,J0为偏心负载对通过质心(ρ,θ0)点且平行于OX轴的转动惯量;
θ0为俯仰轴负载质心点在基座坐标系OXYZ下的偏心角度;
ρ为俯仰轴负载质心点在基座坐标系OXYZ下的偏心距,见附图5;
θ为俯仰轴负载绕OX轴的转动角度,规定向上为正;
Figure BDA0002395345590000052
为俯仰轴负载绕OX轴的转动角速度;
Figure BDA0002395345590000053
为俯仰轴负载绕OX轴的转动角加速度;
TE为俯仰轴电机电磁驱动力矩,TE=KT*I,其中,KT为俯仰轴电机力矩系数(单位Nm/A),I为俯仰轴电机电流(单位A);
Td为轴系摩擦力矩与电机转子、转轴转动的驱动力矩的总和。(高精度二维转台均采取分离式电机与空心轴结构,所以电机转子、转轴转动的驱动力矩非常小);
m为偏心负载的总质量;
g为重力加速度;从公式(1)可以看出,俯仰轴电机所受的干扰力矩除了Td(量级偏小,可近似为定值或随速度线性变化的小量),主要来自偏心负载产生的偏心重力力矩mgρcos(θ0+θ),其大小正比于偏心位置,与俯仰轴上负载绕OX轴的转动角度θ相关,呈现余弦特性,具有非线性,但具有规律性。
本发明就依据负载偏心产生的偏心重力力矩具有余弦特性,进行力矩补偿,达到消除偏心重力力矩,实现负载偏心下二维转台俯仰运动的高精度高平稳控制。
2.本发明高精度伺服控制系统的组成
如图1所示,为现有常用的主要由位置环、速度环、电流环三闭环组成的伺服控制系统,该伺服控制系统包括位置环控制器、速度环控制器、D/A转换器、电流环控制器、PWM逆变器、电机电流信息采集与处理单元、俯仰轴电机、偏心负载、高精度角度传感器和角速度运算器。
位置环控制器用于实现给定角度的快速、精确闭环响应;
速度环控制器用于实现给定速度信息的快速、精确闭环响应;
D/A转换器用于数字量向模拟量的转换;
电流环控制器用于实现给定电流信息的快速、精确闭环响应;
PWM逆变器用于实现俯仰轴电机的驱动控制;
俯仰轴电机用于提供偏心负载转动的动力;
电机电流信息采集与处理单元用于俯仰轴电机电流的采集、滤波、整形等信号处理;
高精度角度传感器与俯仰轴电机同轴设置,用于实时采集俯仰轴的角度信息;
角速度运算器用于从高精度角度传感器提供的角度信息中提取角速度信息,并进行滤波、整形等信号处理。
如图2所示,本发明所提供的负载偏心下二维转台俯仰运动的高精度伺服控制系统,采取在图1所示常用的位置环、速度环、电流环三闭环组成的伺服控制系统基础上,添加一个偏心力矩运算器和一个加法器,利用偏心力矩运算器计算随实时转动角度θi不断变化的偏心重力力矩的实时补偿量,实现负载偏心下二维转台俯仰运动的高精度控制。
如图2、3所示,偏心力矩运算器接收来自高精度角度传感器的俯仰轴上负载绕OX轴的实时转动角度θi与对来自高精度角度传感器角度信息处理后得到的实时转动角速度
Figure BDA0002395345590000071
根据实时转动角度θi,可以计算负载偏心引发的偏心重力力矩对应电流值;根据实时转动角速度
Figure BDA0002395345590000072
可以判断出偏心重力力矩对应电流值的±符号,依据D/A转换器的单位数字量与俯仰轴电机输出力矩、俯仰轴电机电流的当量关系将带±符号的偏心重力力矩对应电流值转换为数字控制量Dt输出给加法器;
加法器将所述数字控制量Dt与速度环控制器输出的电流控制量Dk相加,将相加结果输出给D/A转换器转换成模拟电流控制量i输出。模拟电流控制量i与俯仰电机电流采集与处理单元输出的电流采集模拟量,相减输出给电流环控制器,构成电流闭环控制。最终构成三闭环系统,实现负载偏心下偏心力矩实时精确补偿的功能。
3.本发明高精度伺服控制方法的流程
如图4所示,基于本发明搭建的如图2所示的伺服控制系统,对负载偏心下二维转台俯仰运动的高精度伺服控制方法的流程如下:
1)数据准备
装配偏心负载前,需称重确认偏心负载的总质量m;根据俯仰轴电机出厂测试报告确认俯仰轴电机力矩系数KT;根据轴承及润滑情况,参照电机转子手册与转轴设计参数,估算力矩Td
2)在俯仰轴上装配偏心负载
3)求解偏心负载的偏心位置
3.1)在俯仰轴上装配偏心负载后,向俯仰运动伺服控制系统输入角度定位指令θ:θ为俯仰轴负载绕OX轴的转动角度,是定值。则公式(1)中
Figure BDA0002395345590000081
则有:
ρcos(θ0+θ)=(KT*I-Td)/mg (2)
3.2)公式(2)中,可以通过输入两个以上不同的θ得到不同的俯仰轴电机电流I,联立为矛盾方程组,求解出偏心负载的偏心位置(ρ,θ0)的极小最小二乘解(最佳逼近解)。
4)获取偏心重力力矩对应电流值的数字控制量
4.1)将来自高精度角度传感器的俯仰轴负载绕OX轴的实时转动角度θi与对实时转动角度θi处理得到的实时转动角速度
Figure BDA0002395345590000082
注入偏心力矩运算器;
4.2)根据公式mgρcos(θ0+θ)计算偏心负载引发的偏心重力力矩值,根据公式mgρcos(θ0+θ)/KT计算为了补偿偏心重力力矩值,对应俯仰轴电机所需输出电流值,简称为偏心重力力矩对应电流值;
4.3)根据实时转动角速度
Figure BDA0002395345590000083
判断出偏心重力力矩对应电流值的±符号;
4.4)当量转换
依据D/A转换器的单位数字量与俯仰轴电机输出力矩、俯仰轴电机电流的当量关系将带±符号的偏心重力力矩对应电流值转换为数字控制量Dt输出;
5)三闭环参数指标精度调试
加法器将步骤4)得到的数字控制量Dt与速度环控制器输出的电流控制量Dk相加,将相加结果最终输出给D/A转换器,D/A转换器将数字量转换为模拟电流控制量i输出。模拟电流控制量i与俯仰电机电流采集与处理单元输出的电流采集模拟量,相减输出给电流环控制器,构成电流闭环控制。最终构成三闭环系统,实现负载偏心下偏心力矩实时精确补偿的功能。
按照运动控制系统三闭环:位置环、速度环、电流环的参数常规调试方法(如临界比例法、扩充临界比例法)调试,只到满足俯仰运动控制系统指标精度为止。

Claims (3)

1.负载偏心下二维转台俯仰运动的高精度伺服控制系统,包括位置环控制器、速度环控制器、D/A转换器、电流环控制器、PWM逆变器、电机电流信息采集与处理单元、高精度角度传感器和角速度运算器;
其特征在于:
还包括偏心力矩运算器和加法器;
偏心力矩运算器包括偏心重力力矩对应电流值计算单元、偏心重力力矩对应电流值正负判断单元和当量转换单元;
偏心重力力矩对应电流值计算单元用于接收来自所述高精度角度传感器的俯仰轴负载绕OX轴的实时转动角度θi,并依据公式mgρcos(θ0i)计算偏心负载引发的偏心重力力矩值,以及依据公式mgρcos(θ0i)/KT计算为了补偿偏心重力力矩值,对应俯仰轴电机所需输出电流值,即为偏心重力力矩对应电流值;
偏心重力力矩对应电流值正负判断单元用于接收来自所述高精度角度传感器的实时转动角度θi经角速度运算器处理输出的的实时转动角速度
Figure FDA0002395345580000011
并依据实时转动角速度
Figure FDA0002395345580000012
判断出所述偏心重力力矩对应电流值的±符号;
所述当量转换单元用于依据所述D/A转换器的单位数字量与所述俯仰轴电机输出力矩、俯仰轴电机电流的当量关系将带±符号的偏心重力力矩对应电流值转换为数字控制量Dt输出给所述加法器;
所述加法器用于将所述数字控制量Dt与所述速度环控制器输出的电流控制量Dk相加,将相加结果输出给所述D/A转换器。
2.基于权利要求1所述负载偏心下二维转台俯仰运动的高精度伺服控制系统的高精度伺服控制方法,其特征在于,包括以下步骤:
1)数据准备
称重确认偏心负载的总质量m;根据俯仰轴电机出厂测试报告获取俯仰轴电机力矩系数KT;根据轴承及润滑情况,参照电机转子手册与转轴设计参数,估算力矩Td;力矩Td为轴系摩擦力矩与电机转子、转轴转动的驱动力矩的总和;
2)在俯仰轴上装配偏心负载;
3)求解偏心负载的偏心位置
3.1)向俯仰运动的伺服控制系统输入角度定位指令θ,θ为俯仰轴上负载绕OX轴的转动角度,是定值,则有ρcos(θ0+θ)=(KT*I-Td)/mg;
3.2)向3.1)中的公式输入两个以上不同的θ得到不同的俯仰轴电机电流I,联立为矛盾方程组,求解出偏心负载的偏心位置(ρ,θ0)的极小最小二乘解;
4)获取偏心重力力矩对应电流值的数字控制量Dt
4.1)将俯仰轴负载绕OX轴的实时转动角度θi与对实时转动角度θi处理得到的实时转动角速度
Figure FDA0002395345580000021
注入偏心力矩运算器;
4.2)根据公式mgρcos(θ0+θ)计算偏心负载引发的偏心重力力矩值,根据公式mgρcos(θ0+θ)/KT计算偏心重力力矩对应电流值;
4.3)根据实时转动角速度
Figure FDA0002395345580000022
判断出偏心重力力矩对应电流值的±符号;
4.4)当量转换
依据D/A转换器的单位数字量与俯仰轴电机输出力矩、俯仰轴电机电流的当量关系将带±符号的偏心重力力矩对应电流值转换为数字控制量Dt输出;
5)三闭环参数指标精度调试。
3.根据权利要求2所述的高精度伺服控制方法,其特征在于:所述步骤5)具体为:将步骤4)得到的数字控制量Dt与速度环控制器输出的电流控制量Dk相加,将相加结果最终输出给D/A转换器,D/A转换器将数字量转换为模拟电流控制量i输出;模拟电流控制量i与俯仰电机电流采集与处理单元输出的电流采集模拟量,相减输出给电流环控制器,构成电流闭环控制,最终构成三闭环系统,实现负载偏心下偏心力矩实时精确补偿的功能。
CN202010129275.0A 2020-02-28 2020-02-28 负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法 Active CN111258337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010129275.0A CN111258337B (zh) 2020-02-28 2020-02-28 负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010129275.0A CN111258337B (zh) 2020-02-28 2020-02-28 负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法

Publications (2)

Publication Number Publication Date
CN111258337A true CN111258337A (zh) 2020-06-09
CN111258337B CN111258337B (zh) 2021-07-27

Family

ID=70944665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010129275.0A Active CN111258337B (zh) 2020-02-28 2020-02-28 负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法

Country Status (1)

Country Link
CN (1) CN111258337B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378558A (zh) * 2020-09-22 2021-02-19 河北汉光重工有限责任公司 一种测量伺服平台偏心力矩的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520735A (zh) * 2011-12-29 2012-06-27 中国科学院长春光学精密机械与物理研究所 一种抑制单杆跟踪零位漂移的有效方法
CN103759922A (zh) * 2014-01-22 2014-04-30 北京空间机电研究所 一种航天遥感器二维指向镜指向精度测量方法
CN104457688A (zh) * 2014-11-17 2015-03-25 北京卫星环境工程研究所 卫星上批量设备姿态角度矩阵的高精度自动化测量装置
CN105700561A (zh) * 2014-11-28 2016-06-22 刘海峰 三维转台伺服控制系统
CN105953771A (zh) * 2016-06-14 2016-09-21 西安中科光电精密工程有限公司 一种主动式经纬仪系统及测量方法
CN106053495A (zh) * 2015-04-17 2016-10-26 株式会社三丰 旋转台的控制方法和装置
CN106647826A (zh) * 2016-12-27 2017-05-10 中国科学院长春光学精密机械与物理研究所 二维光电跟踪转台驱动控制系统及其控制方法
CN208255724U (zh) * 2018-05-15 2018-12-18 成都职业技术学院 一种高精度二维转台控制系统
CN109375651A (zh) * 2018-10-14 2019-02-22 中国科学院光电技术研究所 一种运动平台地平式光电跟踪系统抗滚动轴扰动方法
CN109489588A (zh) * 2018-10-25 2019-03-19 北京航天计量测试技术研究所 一种动态自准直跟踪测量控制方法
CN209980102U (zh) * 2019-08-09 2020-01-21 成都零启自动化控制技术有限公司 一种用于光学负载的二维伺服平台电气系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520735A (zh) * 2011-12-29 2012-06-27 中国科学院长春光学精密机械与物理研究所 一种抑制单杆跟踪零位漂移的有效方法
CN103759922A (zh) * 2014-01-22 2014-04-30 北京空间机电研究所 一种航天遥感器二维指向镜指向精度测量方法
CN104457688A (zh) * 2014-11-17 2015-03-25 北京卫星环境工程研究所 卫星上批量设备姿态角度矩阵的高精度自动化测量装置
CN105700561A (zh) * 2014-11-28 2016-06-22 刘海峰 三维转台伺服控制系统
CN106053495A (zh) * 2015-04-17 2016-10-26 株式会社三丰 旋转台的控制方法和装置
CN105953771A (zh) * 2016-06-14 2016-09-21 西安中科光电精密工程有限公司 一种主动式经纬仪系统及测量方法
CN106647826A (zh) * 2016-12-27 2017-05-10 中国科学院长春光学精密机械与物理研究所 二维光电跟踪转台驱动控制系统及其控制方法
CN208255724U (zh) * 2018-05-15 2018-12-18 成都职业技术学院 一种高精度二维转台控制系统
CN109375651A (zh) * 2018-10-14 2019-02-22 中国科学院光电技术研究所 一种运动平台地平式光电跟踪系统抗滚动轴扰动方法
CN109489588A (zh) * 2018-10-25 2019-03-19 北京航天计量测试技术研究所 一种动态自准直跟踪测量控制方法
CN209980102U (zh) * 2019-08-09 2020-01-21 成都零启自动化控制技术有限公司 一种用于光学负载的二维伺服平台电气系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
代根学: "《基于DSP与FPGA的光电经纬仪伺服控制器设计》", 《万方学位论文》 *
李付军等: "《3 轴电动转台动力耦合分析及抑制策略》", 《上海交通大学学报》 *
李治国等: "《空间光电跟踪系统动量平衡设计与试验》", 《光学精密工程》 *
郑艳文等: "《基于DSP的二轴转台伺服控制系统设计》", 《机电工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378558A (zh) * 2020-09-22 2021-02-19 河北汉光重工有限责任公司 一种测量伺服平台偏心力矩的方法

Also Published As

Publication number Publication date
CN111258337B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN101709975B (zh) 一种航空遥感惯性稳定平台不平衡力矩估计与补偿方法
Russell et al. Wind tunnel and hover performance test results for multicopter UAS vehicles
Zhao et al. Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control
Theys et al. Wind tunnel testing of a VTOL MAV propeller in tilted operating mode
CN100391793C (zh) 一种精确补偿摩擦的磁悬浮控制力矩陀螺框架伺服控制系统
CN108333938B (zh) 一种多闭环复合陀螺稳定控制方法
CN108768232B (zh) 一种半潜船动力定位系统推进电机控制方法及系统
CN103344243A (zh) 一种航空遥感惯性稳定平台摩擦参数辨识方法
CN115649491B (zh) 适用于多源干扰下的低轨光学遥感卫星凝视成像控制方法
CN107505841B (zh) 一种基于干扰估计器的机械臂姿态鲁棒控制方法
CN111258337B (zh) 负载偏心下二维转台俯仰运动的高精度伺服控制系统及方法
CN107709766A (zh) 校准风力涡轮机的负载传感器的方法
CN110456630A (zh) 一种控制力矩陀螺框架伺服系统抗干扰控制方法
CN102323825B (zh) 一种航天器机动时dgmscmg系统的力矩补偿控制方法
CN109613928B (zh) 一种用于多矢量螺旋桨组合浮空器的复合控制系统及方法
CN112666960B (zh) 一种基于l1增广自适应的旋翼飞行器控制方法
CN113119076B (zh) 一种三自由度并联机构的姿态闭环反馈控制方法和系统
CN111555688B (zh) 一种高带宽电流环数字化控制方法及系统
CN116679548A (zh) 基于时变观测器的三自由度直升机鲁棒输出反馈控制方法
CN114942648B (zh) 一种复杂风场下的桥梁检测特种无人机自主稳定方法
CN110525692A (zh) 实现快速观测星载一体化共用驱动执行机构的反作用飞轮
CN101832834A (zh) 用于失重环境下攀爬训练的抓杆测力装置
CN113721644B (zh) 一种实现控制力矩陀螺框架倾角主动调节的装置
CN117705455A (zh) 空天发动机动力学特性天地一致性模拟试验方法及系统
CN201615806U (zh) 用于失重环境下攀爬训练的抓杆测力装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant