CN111254422B - 圆环型表面复合强化方法 - Google Patents

圆环型表面复合强化方法 Download PDF

Info

Publication number
CN111254422B
CN111254422B CN202010272252.5A CN202010272252A CN111254422B CN 111254422 B CN111254422 B CN 111254422B CN 202010272252 A CN202010272252 A CN 202010272252A CN 111254422 B CN111254422 B CN 111254422B
Authority
CN
China
Prior art keywords
bar
circular ring
vibration
ring type
strengthening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010272252.5A
Other languages
English (en)
Other versions
CN111254422A (zh
Inventor
沈学会
师亚龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Publication of CN111254422A publication Critical patent/CN111254422A/zh
Application granted granted Critical
Publication of CN111254422B publication Critical patent/CN111254422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P9/00Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
    • B23P9/02Treating or finishing by applying pressure, e.g. knurling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1806Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by mechanical pretreatment, e.g. grinding, sanding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种圆环型表面复合强化方法,属于金属材料表面加工领域。所述表面复合强化方法包括:S1.棒料旋转的同时对棒料的圆环形端面进行轴向振动车削,在加工表面形成变密度微米级微锥坑造型;S2.表面涂覆。与现有技术相比,本发明的圆环型表面复合强化方法能够大幅度提高基材和涂覆层结合界面的结合强度,同时提高最终成形表面的硬度,疲劳强度和耐磨耐腐性,具有很好的推广应用价值。

Description

圆环型表面复合强化方法
技术领域
本发明涉及金属材料表面加工领域,具体提供一种圆环型表面复合强化方法。
背景技术
为了改善零件的摩擦学性能,提高其防腐蚀性能,或者改进其施工工艺性,对零件进行表面处理已成为常规处理手段,其中表面涂层是最通用的方法之一,常用的涂层方法如电镀、化学镀、激光熔覆、离子辅助涂覆、冷喷涂、热喷涂、化学气相喷涂、物理气相喷涂、物理气相沉积等。
化学镀技术是在无外加电流的情况下借助合适的还原剂,使镀液中金属离子还原成金属,并沉积到零件表面的一种镀覆方法。与电镀相比,化学镀技术具有镀层均匀、针孔小、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点。
化学镀技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。与其它表面熔覆技术相比,化学镀技术具有镀层均匀、针孔小、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点。另外,由于化学镀技术废液排放少,对环境污染小以及成本较低,在许多领域已逐步取代电镀,成为一种环保型的表面处理工艺。目前,化学镀技术已在电子、阀门制造、机械、石油化工、汽车、航空航天等工业中得到广泛的应用。
然而,化学镀技术仍然存在如下缺点:一是膜/基结合力弱,膜层容易出现脱落而导致构件失效;二是涂层后表面粗糙度高,且表面存在残余拉应力,从而导致构件机械性能差、服役寿命短。因此,需要提供一种综合有效的表面处理方法,以克服上述现有技术的不足。
发明内容
本发明是针对上述现有技术的不足,提供一种圆环型表面复合强化方法。该方法能够大幅度提高基材和涂覆层结合界面的结合强度,同时提高最终成形表面的硬度,疲劳强度和耐磨耐腐性。
本发明解决其技术问题所采用的技术方案是:圆环型表面复合强化方法,包括:
S1.变密度微造型端面加工
棒料旋转的同时对棒料的圆环形端面进行轴向振动车削,在加工表面形成变密度微米级微锥坑造型;
S2.表面涂覆。
为了进一步加强膜/基强度及表面性能,本发明方法还包括:
S3.超声滚压表面强化
采用超声滚压加工工艺对涂覆表面进行机械强化处理。
步骤S1中棒料旋转的同时,振动车刀一方面垂直于棒料轴线方向做进给运动,同时沿着棒料轴向做固定频率的微小幅度往复振动。振动幅度优选为2-10微米,最佳为2-5微米。振动频率大于20kHz,优选为20-30kHz。
所述变密度微米级微锥坑造型中,锥坑的锥口长度、宽度、深度均通过选择车刀类型以及振动幅度进行参数化控制;锥坑的径向排列间距、周向排列间距通过调整径向进给速度、棒料转速和振动频率进行参数化控制。
所述径向进给速度和主轴转速(棒料转速)通过机床进行调整,振动幅度/频率通过振动设备(一般包括超声电源、换能器和变幅杆)来调整,调整方法均为现有技术常规方法。
作为优选,所述表面涂覆优选采用化学镀工艺,并且要求涂层厚度大于锥坑深度。特别是当涂层厚度为锥坑深度的1.2-1.5倍时效果最佳。
作为优选,超声滚压刀具一方面沿加工方向做进给运动,同时垂直加工方向做超声频率的微小幅度往复振动,所述加工方向与棒料的圆环形端面平行。振动幅度优选为2-10微米,最佳为2-5微米。振动频率大于20kHz,优选为20-30kHz。
特别是,本发明复合强化方法还可以在超声滚压表面强化前,先将棒料加热至一定温度并保温,然后在该温度下进行超声热滚压表面强化,滚压完成后在该温度下继续保温20-40分钟。所述一定温度优选在棒料的应变失效温度范围内。
一般的碳钢材料,其应变失效温度为300-500,具体温度可利用现有技术实验确定。
棒料加热方式根据零件尺寸,优选采用卤素灯照射或电流加热方式;保温时间根据材料不同,优选为15分钟-30分钟。
本发明的圆环型表面复合强化方法在棒料端面车削加工过程中,由于刀具在垂直于棒料轴线方向上具有高频振动,刀尖对材料表面产生高频率的间歇性振动冲击,在表面形成大量刀尖形貌的微米级锥孔。另外,在棒料旋转角速度一定的条件下,由于在棒料端面外圆到圆心的径向方向上,车刀刀尖所在圆周半径不同,因此实际切削的切削线速度不同。在振动频率不变的情况下,越靠近棒料圆心,切削线速度越小,切削表面上单位面积上振动次数越多,由振动冲击产生的微坑密度越大,从而形成从端面外圆到圆心微坑结构密度逐渐增大的变密度微造型表面。与现有技术相比具有以下突出的有益效果:
(一)表面微坑结构的存在,一方面使得化学镀层与基材接触面积增大,另外界面的楔形接触方式同时使镀层难以与基材发生相对移动,可以有效增加镀层和基材的结合力;
(二)与均匀微坑结构表面相比,变密度微坑结构表面镀层在受到外力后,由于镀层平均厚度阶梯增大,沿着密度改变方向可以产生内部制约变形应力(使每个楔形界面移动的力的作用方向不同),进一步增强镀层的移动难度,实现更大的镀层和基材界面结合力;
(三)通过控制和匹配超声振动滚压工艺参数(主轴回转速度、进给速度、静压力、振动频率、振动幅度、滚压道次)可以方便的控制最终成形表面的硬度和残余应力,以适应不同的摩擦构件应用场合,尤其适用于航空航天、汽车、列车等对构件性能要求高的工程领域;
(四)在中温下进行滚压强化可解决涂层在滚压中容易出现的滑动和裂纹问题;
(五)工艺简单,可很方便的安装于普通车床、数控车床和各类数控加工中心,成本低,不需要额外的润滑和保护气体,环境友好。
附图说明
附图1是实施例中径向振动车削原理示意图。
附图2是实施例中变密度微米级微锥坑造型示意图;
附图3是实施例中变密度微米级微锥坑实际加工形貌(一);
附图4是实施例中变密度微米级微锥坑实际加工形貌(二);
附图5是实施例中超声热滚压表面强化原理示意图;
附图6是实施例中不同表面镀层结构示意图;
附图7是不同工艺处理表面的界面结合强度对比图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但不作为对本发明的限定。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是指参考附图所示的上、下、左、右;“内、外”是指相对于各部件本身的轮廓的内、外。
各实施例、对比例的加工对象均为同尺寸中碳钢材质棒料。
【实施例一】
本实施例圆环型表面复合强化方法的步骤:
S1.变密度微造型端面加工
加工开始前,将截面为圆环形的棒料1装夹于车床三爪卡盘,振动车削装置(装置中心线与棒料轴线平行安装于车床刀架,车刀2安装于振动车削装置一端。
如图1所示,加工时棒料1旋转,车刀2沿着垂直于棒料1轴线的方向进给,同时沿着平行于轴线方向往复振动,形成从端面外圆到圆心微坑结构密度逐渐增大的变密度微锥坑造型表面(如附图2、图3、图4所示)。
工艺参数:
Figure BDA0002443526050000041
微锥坑的锥口长度a=80μm、宽度b=50μm、深度h=4μm,径向排列间距=90μm,最大周向排列间距=150μm。
S2.表面涂覆
以化学镀处理工艺对端面加工后的棒料1进行表面涂覆处理,涂层厚度为锥坑深度h的1.5倍,镀层结构如图6c所示。
【实施例二】
本实施例圆环型表面复合强化方法与实施例一的步骤S1、S2相同,区别在于增加了以下步骤S3。
S3.超声温滚压表面强化
以中温超声滚压加工工艺对涂覆处理后外表面进行强化加工。
如图5所示,将棒料1装夹于车床三爪卡盘2上,通过温控装置3加热至350℃(该工件的应变失效温度),并保温,超声滚压刀具4一方面沿平行棒料端面的方向做进给运动,同时在垂直棒料端面方向做超声频率的微小幅度往复振动,滚压完成后在该温度下继续保温30分钟。
工艺参数如下:
进给速度:0.27mm/r;
静压力:50N;
振动频率:28KHz;
振动幅度:4μm;
滚压道次:2。
【实施例三】
与实施例二强化方法的步骤相同,区别在于对棒料进行端面加工和表面涂覆后,步骤S3在常温下完成超声滚压表面强化工艺。
【对比例一】
S1.采用常规车削工序对棒料端面进行精车处理;
S2.以实施例一步骤S2的方法,利用化学镀对精车后的棒料进行表面涂覆处理,镀层结构如图6a所示。
【对比例二】
S1.采用常规车削工序在棒料外圆面加工等密度微锥坑;
S2.以实施例一步骤S2的方法,利用化学镀对棒料进行表面涂覆处理,镀层结构如图6b所示。
【实验例】
通过划痕实验,对实施例一、二、三及对比例一、二得到的复合表面进行界面结合强度测定,可以得到界面结合强度对比图(见图7)。可以看出,以实施例一、二、三强化方法得到的复合表面的界面结合强度,明显优于各对比例,具有很好的推广应用价值。
以上所述的实施例,只是本发明较优选的具体实施方式的,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

Claims (6)

1.圆环型表面复合强化方法,其特征在于包括:
S1.变密度微造型端面加工
棒料旋转的同时,振动车刀一方面垂直于棒料轴线方向做进给运动,同时沿着棒料轴向做固定频率的微小幅度往复振动,在加工表面形成变密度微米级微锥坑造型;
S2.表面涂覆
S3.超声滚压表面强化
将棒料加热至棒料的应变失效温度范围内并保温,然后在该温度下进行超声热滚压表面强化,滚压完成后在该温度下继续保温20-40分钟,对涂覆表面进行机械强化处理。
2.根据权利要求1所述的圆环型表面复合强化方法,其特征在于,轴向振动车削的振动频率大于20kHz。
3.根据权利要求1所述的圆环型表面复合强化方法,其特征在于,所述变密度微米级微锥坑造型中,锥坑的锥口长度、宽度、深度均通过选择车刀类型以及振动幅度进行参数化控制;锥坑的径向排列间距、最大周向排列间距通过调整径向进给速度、棒料转速和振动频率进行参数化控制。
4.根据权利要求1或2所述的圆环型表面复合强化方法,其特征在于,所述表面涂覆采用化学镀工艺。
5.根据权利要求1所述的圆环型表面复合强化方法,其特征在于,涂层厚度大于锥坑深度。
6.根据权利要求1所述的圆环型表面复合强化方法,其特征在于,超声滚压表面强化时,超声滚压刀具一方面沿加工方向做进给运动,同时垂直加工方向做超声频率的微小幅度往复振动,所述加工方向与棒料的圆环形端面平行。
CN202010272252.5A 2019-07-11 2020-04-09 圆环型表面复合强化方法 Active CN111254422B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019106247053 2019-07-11
CN201910624705.3A CN110273147A (zh) 2019-07-11 2019-07-11 圆环型表面复合强化方法

Publications (2)

Publication Number Publication Date
CN111254422A CN111254422A (zh) 2020-06-09
CN111254422B true CN111254422B (zh) 2022-04-26

Family

ID=67964247

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910624705.3A Pending CN110273147A (zh) 2019-07-11 2019-07-11 圆环型表面复合强化方法
CN202010272252.5A Active CN111254422B (zh) 2019-07-11 2020-04-09 圆环型表面复合强化方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910624705.3A Pending CN110273147A (zh) 2019-07-11 2019-07-11 圆环型表面复合强化方法

Country Status (1)

Country Link
CN (2) CN110273147A (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412020B2 (ja) * 2004-03-23 2010-02-10 日産自動車株式会社 溶射皮膜の形成方法及び溶射ガン装置
WO2007112370A1 (en) * 2006-03-26 2007-10-04 Lotus Applied Technology, Llc Atomic layer deposition system and method for coating flexible substrates
DE102010014689A1 (de) * 2010-04-12 2011-10-13 Nemak Dillingen Gmbh Verfahren zum Beschichten einer Oberfläche eines Werkstücks, Motorblock-Rohteil und Motorblock
CN103741090A (zh) * 2013-12-06 2014-04-23 马鞍山马钢表面工程技术有限公司 沉没辊和稳定辊表面涂层的喷涂方法
CN104017977A (zh) * 2014-06-11 2014-09-03 温州大学 一种内燃机曲轴的凸轮表面复合处理工艺
CN105331972A (zh) * 2015-09-24 2016-02-17 安庆市灵宝机械有限责任公司 一种耐磨煤截齿耐磨涂层的制备方法
CN106756721B (zh) * 2017-01-03 2018-12-07 安徽工业大学 一种基于激光加工技术制备涂层的方法及装置
CN106834637B (zh) * 2017-01-18 2018-09-14 中国铁道科学研究院金属及化学研究所 一种金属表面复合强化加工工艺及其在机车车轮加工和镟修中的应用
CN108105533A (zh) * 2017-11-15 2018-06-01 宁波市鄞州路通液压管件厂 一种套管的防锈工艺
CN108559991A (zh) * 2017-12-22 2018-09-21 北京机科国创轻量化科学研究院有限公司 一种修复抽油杆的方法
CN109338358A (zh) * 2018-12-07 2019-02-15 南昌大学 一种超声滚压强化轴类零件表面激光熔覆层的修复工艺
CN109333012A (zh) * 2018-12-10 2019-02-15 西安航天动力机械有限公司 一种ta1阴极辊外表面的加工方法
CN109913801A (zh) * 2019-04-24 2019-06-21 苏州大学 基体表面等离子体辅助激光织构化pvd涂层的制备方法

Also Published As

Publication number Publication date
CN110273147A (zh) 2019-09-24
CN111254422A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN110052779B (zh) 轴类零件高性能表面复合强化方法
CN108559996B (zh) 一种液压支架活柱外表面激光熔覆修复方法
CN110091129B (zh) 大面积平面涂层复合强化方法
US20200346313A1 (en) Ultrasonic Peening-Type Integrated Machining Method Of Cutting And Extrusion
CN110193700A (zh) 一种小直径异种金属回转体构件的焊接方法
CN103014249B (zh) 一种大幅度提高RuT300表面硬度的激光熔凝淬火工艺
CN111139465A (zh) 一种激光制造复合钢管的制造方法
WO2021073628A1 (zh) 一种应用于液压支架立柱的包覆焊方法
CN208147048U (zh) 旋转超声加工用转轴与变幅杆连接装置
CN115341212A (zh) 双光束超高速激光熔覆与激光冲击锻打的复合加工方法
CN111254422B (zh) 圆环型表面复合强化方法
US5759641A (en) Method of applying strengthening coatings to metallic or metal-containing surfaces
US5075968A (en) Method for production of an air jet nozzle
CN112474234A (zh) 一种热喷涂绝缘涂层及其制备方法
CN102019545B (zh) 一种轴承滚道面的超精整方法
CN201841270U (zh) 用于精整与凸度修型轴承滚道的数控精整装置
CN115213641B (zh) 变速器输入轴的加工方法
CN115261870A (zh) 基于豪克能技术的短流程复合超高速激光熔覆加工方法
CN108950540A (zh) 一种超高速激光熔覆与表面重熔的复合加工方法
CN105441651A (zh) 一种提高机车轮轴钢旋转弯曲疲劳性能的方法
CN109609743B (zh) 一种实现直管内表面结构性能优化的塑性变形方法
CN113736967A (zh) 一种超声辅助滚压进行管件内表面强化处理方法
CN107385432A (zh) 一种油缸部件表面制备钴基合金涂层的激光熔覆方法
CN105195975A (zh) Agc伺服缸的缸筒内表面的加工方法
CN107243717A (zh) 焊接式镀铬辊的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant