CN111250721A - 一种生产Fe-Mn-Pt基医用3D打印金属材料的方法 - Google Patents

一种生产Fe-Mn-Pt基医用3D打印金属材料的方法 Download PDF

Info

Publication number
CN111250721A
CN111250721A CN202010156847.4A CN202010156847A CN111250721A CN 111250721 A CN111250721 A CN 111250721A CN 202010156847 A CN202010156847 A CN 202010156847A CN 111250721 A CN111250721 A CN 111250721A
Authority
CN
China
Prior art keywords
carbon dioxide
gas
powder
metal material
based medical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010156847.4A
Other languages
English (en)
Inventor
陈俊孚
吴苏州
李晓云
高莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jinglai New Material Technology Co ltd
Original Assignee
Shenzhen Jinglai New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jinglai New Material Technology Co ltd filed Critical Shenzhen Jinglai New Material Technology Co ltd
Priority to CN202010156847.4A priority Critical patent/CN111250721A/zh
Publication of CN111250721A publication Critical patent/CN111250721A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0876Cooling after atomisation by gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Fe‑Mn‑Pt基医用3D打印金属材料使用氮气雾化法进行制备,造成增氮,影响3D打印成形件强度和塑形。本专利提供一种使用加热后的二氧化碳气体生产Fe‑Mn‑Pt基医用3D打印金属粉末的方法,能够减少粉末增氮。该方法包括设备和工艺两方面,设备上包括气体加热装置的设计以及安装,工艺上包括生产Fe‑Mn‑Pt金属材料粉末的气体压力、雾化喷嘴压力以及气体温度。原料使用工业废气提纯产生的二氧化碳气体,雾化后的Fe‑Mn‑Pt基医用金属材料金属粉末颗粒,粒度小于20μm的粉末一次成品率≥50%,而且颗粒球形度≥95%,推动了我国Fe‑Mn‑Pt基医用金属材料3D打印金属粉末的发展。

Description

一种生产Fe-Mn-Pt基医用3D打印金属材料的方法
技术领域
本发明属于金属3D打印领域,具体涉及一种使用加热后的二氧化碳气体作为喷射气体来生产Fe-Mn-Pt基医用3D打印金属粉末的制备方法。
技术背景
心脏与心血管支架以及人体植入的可降解物作为3D打印和医学交叉领域研究的热点和难点,一直迫切需要获得大的突破。作为医学应用的金属支架或者金属移植材料,其主要研究重点在于生物功能性和生物相容性,生物功能性是使所制备的植入体完成某种功能的一系列性能,主要指力学性能。生物相容性是指植入物有效地和长期在体内或体表持续行使这种功能的能力,主要指金属对周围组织及细胞的影响,而抗腐蚀性能力涉及了生物功能性、生物相容性两方面。纯 Fe用作血管支架材料虽然具有较好的生物相容性,但是其在体内的降解速率太慢,不能满足临床应用的需求。此外,由于Fe具有铁磁性,会对一些成像检测,包括核磁共振成像(MRI)等产生影响。因此需要改变铁基材料的化学组成、显微组织结构来适应临床应用的需求。而Mn的加入显著提高了铁基材料的腐蚀降解速率。Mn作为一种奥氏体合金化元素加入到纯Fe中可以降低铁基合金的标准电极电势,且Mn的添加还能够使纯Fe由铁磁性转变为非铁磁性,因而 Fe-Mn-Pt合金具备良好的MRI显影性,体外细胞毒性结果证实Fe-Mn-Pt合金对小鼠胚胎成纤维细胞(NIH3T3)的细胞活性没有影响。
相比较传统的钛铝合金、镁合金以及316L不锈钢等医学金属材料,近年来开发的形变孪晶诱导高塑性Fe-Mn-Pt基医用金属材料,以超高强度、良好的塑性以及显著的加工硬化率和腐蚀降解速率,成为未来的医学领域用金属材料的首选,该材料与3D打印的结合是非生物3D打印在金属材料的一个突破,促进了非生物3D打印在人体金属支架或者金属移植材料的发展。主要组成成分以质量分数表示为锰(Mn):18-25%,铝(Al):0.5-4%,碳(0.6-1.2%),含有少量的Pt,其余为铁元素,代表性的化学成份为Fe-20%Mn-1.5%Al-0.8%C。
目前该材料采用的是氮气雾化法进行制备,相比氩气雾化法,具有成本低、操作简单的特点,但由于氮在高温下容易形成Fe4N析出,造成焊接热影响区脆化,影响3D打印成形件强度和塑形,因此研究新型雾化方法迫在眉睫。
发明内容
本发明所提供的是一种使用加热后的二氧化碳气体作为喷射气体生产Fe-Mn-Pt基医用金属材料3D打印粉末的方法,解决了目前 Fe-Mn-Pt基医用金属材料3D打印粉末使用氮气造成增氮,同时也能利用二氧化碳气体,起到节能减排的作用。
该种生产Fe-Mn-Pt基医用金属材料粉末的方法包括原料准备、气体加热、气体加压、转换头转换、喷射五部分:
1.选用方坯连铸机生产的棒状Fe-Mn-Pt基医用金属材料作为原料,要求主要组成成分以质量分数表示为锰(Mn):18-25%,铝(Al): 0.5-4%,碳(0.6-1.2%),含有少量的Pt,其余为铁元素,代表性的化学成份为Fe-20%Mn-1.5%Al-0.8%C。
2.所有原料使用前用砂轮打磨掉表面氧化物锈层,并切割成30~ 50cm的小段;
3.使用的二氧化碳气体为石灰石煅烧石灰回转窑的工业废气捕集提纯后的气体,纯度要求高于99%;
4.将二氧化碳气体通过装有电阻丝的加热罐中,电阻丝的温度控制在400℃,在此温度下,二氧化碳气体出口温度为100~400℃之间;
5.将加热后的二氧化碳气体通过加压泵,加压到4.5~6MPa;
6.将较大管径的气体管道通过转换头转换到与喷头相适合的尺寸;
7.通过喷头将加压后的热二氧化碳气体作为喷射气体冲击金属液滴。
附图说明
图1是表示本申请工作时的装置示意图:
图2是实施例1生产粉末微观结构图;
图3是实施例2生产粉末微观结构图;
图4是实施例3生产粉末微观结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例对本发明作进一步的详细说明,本发明的示意性实施方式及说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
1.选用方坯连铸机生产的如表1所示成分的棒状Fe-Mn-Pt基医用金属材料作为原料。原料使用打磨的方法去掉表面氧化物锈层,并切割成30~50cm的小段,放入真空雾化喷粉设备中,设置功率为20kw,加热,保证原料完全熔化。如图1的二氧化碳雾化法装置示意图所示。
表1.原料化学成分表
C Al Mn Pt S N
0.6 0.5 18 1 ≤0.01 70ppm
2.将外购的二氧化碳气体通入带有电阻丝的加热罐中。
3.加热后的气体通过气体增压泵加压到4.5MPa,通过喷头喷出,并将熔化滴落的Fe-Mn-Pt基医用金属材料金属液通过气体的冲击力制成球形颗粒。
4.雾化后的粉末进入充满氮气的雾化塔中冷却,然后进入分级设备中进行处理,得到所需粒度范围的Fe-Mn-Pt基医用金属材料3D打印金属粉末。实物如图2所示。
实施例2:
1.选用方坯连铸机生产的如表2所示成分的棒状Fe-Mn-Pt基医用金属材料作为原料。原料使用打磨的方法去掉表面氧化物锈层,并切割成30~50cm的小段,放入真空雾化喷粉设备中,设置功率为20kw,加热,保证原料完全熔化。
表2.原料化学成分表
C Al Mn Pt S N
1 3 20 1.5 ≤0.01 60ppm
2.将外购的液态二氧化碳气体通入带有电阻丝的加热罐中。
3.加热后的二氧化碳气体通过气体增压泵加压到5MPa,通过喷头喷出,并将熔化滴落的Fe-Mn-Pt基医用金属材料金属液通过气体的冲击力制成球形颗粒。
4.雾化后的粉末进入充满二氧化碳气体的雾化塔中冷却,然后进入分级设备中进行处理,得到所需粒度范围的Fe-Mn-Pt基医用金属材料3D打印金属粉末。粉末形貌如图3所示。
实施例3:
1.选用方坯连铸机生产的如表3所示成分的棒状Fe-Mn-Pt基医用金属材料作为原料。原料使用打磨的方法去掉表面氧化物锈层,并切割成30~50cm的小段,放入真空雾化喷粉设备的感应熔炼炉内,将感应熔炼炉抽真空至200pa,设置功率为20kw,加热,保证原料完全熔化。
表3.原料化学成分表
C Al Mn Pt S N
1.5 1 19 1.2 ≤0.01 60ppm
2.将外购的液态二氧化碳气体通入带有电阻丝的加热罐中。
3.加热后的二氧化碳气体通过气体增压泵加压到5.5MPa,通过喷头喷出,并将熔化滴落的Fe-Mn-Pt基医用金属材料金属液通过气体的冲击力制成球形颗粒。
4.雾化后的粉末进入充满二氧化碳气体的雾化塔中冷却,然后进入分级设备中进行处理,得到所需粒度范围的Fe-Mn-Pt基医用金属材料3D打印用金属粉末。实物如图4所示。
三种条件下生产的Fe-Mn-Pt基医用金属粉末氮含量如表4所示:
表4.不同实施例Fe-Mn-Pt基医用金属粉末材料氮含量
实施例1 实施例2 实施例3
90ppm 75ppm 80ppm
从实施例看,使用加热后的二氧化碳气体生产Fe-Mn-Pt基医用金属粉末达到降低氮含量目的。

Claims (9)

1.本专利涉及一种二氧化碳热雾化法生产Fe-Mn-Pt金属材料粉末的方法。
2.权利要求1所涉及的方法是以Fe-Mn-Pt基医用金属材料作为原料,主要组成成分以质量分数表示为锰(Mn):18-25%,铝(Al):0.5-4%,碳(0.6-1.2%),含有少量的Pt,其余为铁元素,代表性的化学成份为Fe-20%Mn-1.5%Al-0.8%C。
3.权利要求1使用的二氧化碳气体来自石灰石煅烧回转窑中,回转窑中的尾气经过净化后得到纯度为99%以上的二氧化碳气体。
4.权利要求3中的二氧化碳气体被加热至100~400℃,作为雾化过程中的喷射气体。
5.根据权利要求4所述的二氧化碳气体,其特征在于是通过电加热器的方式进行加热,加热过程中电加热器固定在400℃。
6.根据权利4使用的二氧化碳气体,通过加热器后,在混气罐内进行均匀化,并提供稳定的压力,通过加压泵增压到4.5~6MPa。
7.根据权利要求6所述的加压后的混合气体通过转换头将管道内径缩减到与喷头匹配的尺寸。
8.根据权利要求7所获得的通过转换头的加压气体通过喷头喷出击碎Fe-Mn-Pt基医用金属材料金属液滴,得到金属粉末。
9.根据权利要求9所述的金属粉末通过收集,粒度小于20μm的粉末一次成品率≥50%,球形度≥95%。
CN202010156847.4A 2020-03-09 2020-03-09 一种生产Fe-Mn-Pt基医用3D打印金属材料的方法 Withdrawn CN111250721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010156847.4A CN111250721A (zh) 2020-03-09 2020-03-09 一种生产Fe-Mn-Pt基医用3D打印金属材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010156847.4A CN111250721A (zh) 2020-03-09 2020-03-09 一种生产Fe-Mn-Pt基医用3D打印金属材料的方法

Publications (1)

Publication Number Publication Date
CN111250721A true CN111250721A (zh) 2020-06-09

Family

ID=70944220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010156847.4A Withdrawn CN111250721A (zh) 2020-03-09 2020-03-09 一种生产Fe-Mn-Pt基医用3D打印金属材料的方法

Country Status (1)

Country Link
CN (1) CN111250721A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604749A (zh) * 2021-06-29 2021-11-05 中南大学 一种低磁高强Fe-Mn合金及其3D打印方法和应用
EP4019167A1 (en) * 2020-12-22 2022-06-29 Linde GmbH Atomisation of metallic melts using liquid co2

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201714685A (zh) * 2015-10-28 2017-05-01 Shenmao Tech Inc 圓球形金屬粉末及其製造方法及其製造設備
CN107245618A (zh) * 2017-04-28 2017-10-13 苏州轻金三维科技有限公司 一种用于3d打印医用镁合金材料的制备方法、材料及应用
CN108939152A (zh) * 2018-08-28 2018-12-07 深圳市晶莱新材料科技有限公司 一种具有血管结构的组织工程支架及其制备方法
CN109079149A (zh) * 2018-08-30 2018-12-25 深圳市晶莱新材料科技有限公司 一种生产Fe-Mn-Pt金属粉末的方法及设备
CN109550965A (zh) * 2018-12-07 2019-04-02 泸溪县金源粉体材料有限责任公司 铁硅铬合金软磁粉末的生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201714685A (zh) * 2015-10-28 2017-05-01 Shenmao Tech Inc 圓球形金屬粉末及其製造方法及其製造設備
CN107245618A (zh) * 2017-04-28 2017-10-13 苏州轻金三维科技有限公司 一种用于3d打印医用镁合金材料的制备方法、材料及应用
CN108939152A (zh) * 2018-08-28 2018-12-07 深圳市晶莱新材料科技有限公司 一种具有血管结构的组织工程支架及其制备方法
CN109079149A (zh) * 2018-08-30 2018-12-25 深圳市晶莱新材料科技有限公司 一种生产Fe-Mn-Pt金属粉末的方法及设备
CN109550965A (zh) * 2018-12-07 2019-04-02 泸溪县金源粉体材料有限责任公司 铁硅铬合金软磁粉末的生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019167A1 (en) * 2020-12-22 2022-06-29 Linde GmbH Atomisation of metallic melts using liquid co2
CN113604749A (zh) * 2021-06-29 2021-11-05 中南大学 一种低磁高强Fe-Mn合金及其3D打印方法和应用
CN113604749B (zh) * 2021-06-29 2022-07-19 中南大学 一种低磁高强Fe-Mn合金及其3D打印方法和应用

Similar Documents

Publication Publication Date Title
CN101342591B (zh) 粉末冶金含氮不锈钢零件的制备方法
CN103706793B (zh) 一种节镍高氮奥氏体不锈钢制品的制备方法
CN103846447B (zh) 一种微细球形钛或钛合金粉末的气雾化制备方法
CN103752836B (zh) 一种制备细粒径球形铌钛基合金粉末的方法
CN104001924B (zh) 一种金属注射成形用铁基合金预混料
CN109014211A (zh) 一种高氮无磁高强不锈钢零件的低成本mim制造工艺
CN111500942B (zh) 一种高氮含量无磁不锈钢粉末及其制备方法
CN106670484A (zh) 304不锈钢球形粉末的制备方法
CN111250721A (zh) 一种生产Fe-Mn-Pt基医用3D打印金属材料的方法
CN102528016B (zh) 金属注射成形用合金钢粉及其制备方法
CN112981231B (zh) 一种高锰氮奥氏体不锈钢粉末及其制备方法
CN113136531B (zh) 一种粉末冶金不锈钢
KR101776111B1 (ko) 지르코늄 분말 또는 지르코늄합금 분말의 제조방법 및 그에 따른 지르코늄 분말 또는 지르코늄합금 분말
CN112662929B (zh) 难熔高熵合金及其制备方法
CN109759598A (zh) 一种3d打印用gh4169镍基高温合金粉末的制备方法
CN112404420B (zh) 一种用于3d打印的高强度钢粉末、其制备方法、3d打印方法及制得的高强度钢
CN104694848B (zh) 一种生物可降解四元铁基合金材料及其制备方法
CN109943746A (zh) 一种超细晶铜铬触头的制备方法
CN113061830A (zh) 一种核用结构材料表面高熵合金涂层的制备方法及核用耐辐照结构材料
CN110273097B (zh) 一种vc/v10粉末高速钢复合材料及其制备方法
CN109609864A (zh) 一种高氮无镍不锈钢粉末及其制备方法
CN114734044A (zh) 高氮无镍不锈钢粉末及其制备方法和应用
CN113414397B (zh) 一种铁基金属粉末的真空气雾化连续制备方法
CN110344046A (zh) 一种原位合成低压冷喷涂铝青铜涂层的制备方法
CN106041105A (zh) 高强度钴钽钼合金医用3d打印金属粉末及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200609

WW01 Invention patent application withdrawn after publication