CN111250130A - 氮化物催化剂与其形成方法 - Google Patents
氮化物催化剂与其形成方法 Download PDFInfo
- Publication number
- CN111250130A CN111250130A CN201911198942.4A CN201911198942A CN111250130A CN 111250130 A CN111250130 A CN 111250130A CN 201911198942 A CN201911198942 A CN 201911198942A CN 111250130 A CN111250130 A CN 111250130A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- target
- nitrogen
- nitride
- nitride catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 145
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 150000002500 ions Chemical class 0.000 claims abstract description 6
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 238000004544 sputter deposition Methods 0.000 claims description 8
- 239000012159 carrier gas Substances 0.000 claims description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 50
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 37
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 23
- 230000000694 effects Effects 0.000 description 23
- 238000009792 diffusion process Methods 0.000 description 21
- 239000007788 liquid Substances 0.000 description 16
- 239000012528 membrane Substances 0.000 description 16
- 229910052697 platinum Inorganic materials 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 229910052786 argon Inorganic materials 0.000 description 14
- 229910021397 glassy carbon Inorganic materials 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 239000011148 porous material Substances 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000003011 anion exchange membrane Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229910052707 ruthenium Inorganic materials 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- -1 halogen ions Chemical class 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 238000005546 reactive sputtering Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(IV) oxide Inorganic materials O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
本发明公开一种氮化物催化剂与氮化物催化剂的形成方法,该形成方法包括:将Ru靶材与M靶材置于含氮气的氛围中,其中M为Ni、Co、Fe、Mn、Cr、V、Ti、Cu、或Zn;分别提供功率至Ru靶材与M靶材;提供离子撞击Ru靶材与M靶材,以溅镀沉积MxRuyN2于基材上,其中0<x<1.3,0.7<y<2,且x+y=2,其中MxRuyN2为立方晶系或非晶。
Description
技术领域
本发明是关于催化剂材料与其制备方法。
背景技术
在能源短缺的现今,寻求替代能源势在必行,而氢能为最佳的替代能源。由于环境保护的观念,使用氢气作为燃料符合环保期待,电解水是制造氢气与氧气的最简单方式。尽管利用电解水产氢具有相当多的优点,但是在大量产氢的过程却具有致命的缺点,即耗费相当多的能量导致不符成本。能量消耗多与过电位过大有关,而过电位与电极、电解液、及反应生成物有关。为提升电解水效率,电极扮演重要角色。降低活化能及增加反应的界面为电解水效率的重要因素。活化能降低是受电极表面催化的影响,其取决于电极材料本身催化特性。虽然贵金属Pt一直是最具催化效果的电极材料之一,但其价格相当昂贵。为减低成本,必须采用其他材料取代Pt。
综上所述,目前需要新的催化剂(catalyst)组成进一步提升产氢反应(HER)与产氧反应(OER)的活性,以兼顾催化剂活性与降低成本的目的。
发明内容
为达上述目的,本发明提供的氮化物催化剂,其化学结构为:MxRuyN2,其中M为Ni、Co、Fe、Mn、Cr、V、Ti、Cu、或Zn,0<x<1.3,0.7<y<2,且x+y=2,其中氮化物催化剂为立方晶系或非晶。
在一实施例中,M为Ni,0.069<x<1.086,例如:x为0.0692-0.1128、0.1128~0.1258、0.1258~0.2012、0.2012~0.318、0.318~0.4672、0.4672~0.6816、或0.6816~1.086,且0.914<y<1.931,例如:y为1.9308~1.8872、1.8872~1.8742、1.8742~1.7988、1.7988~1.682、1.682~1.5328、1.5328~1.3184、或1.3184~0.914。
在一实施例中,M为Mn,0.01<x<0.8,例如:x为0.0218~0.0394、0.0394~0.0684、0.0684~0.0794、0.0794~0.323、或0.323~0.7744,且1.2<y<1.99,例如:y为1.9782~1.9606、1.9606~1.9316、1.9316~1.9206、1.9206~1.677、或1.677~1.2256。
在一实施例中,氮化物催化剂的表面形貌为三角锥与四角锥。
本发明另提供的氮化物催化剂的形成方法,包括:将Ru靶材与M靶材置于含氮气的氛围中,其中M为Ni、Co、Fe、Mn、Cr、V、Ti、Cu、或Zn;分别提供功率至Ru靶材与M靶材;以及提供离子撞击Ru靶材与M靶材,以溅镀沉积MxRuyN2于基材上,其中0<x<1.3,0.7<y<2,且x+y=2,其中MxRuyN2为立方晶系或非晶。
在一实施例中,提供至Ru靶材的功率介于10W至200W之间,而提供至M靶材的功率介于10W至200W之间。
在一实施例中,含氮气的氛围压力介于1mTorr至30mTorr之间。
在一实施例中,含氮气的氛围包含载气,且氮气与载气的分压比例介于0.1至10之间。
在一实施例中,基材包括多孔导电层。
附图说明
图1为一实施例中,膜电极组的示意图;
图2为一实施例中,Ru催化剂与NixRuy催化剂的OER曲线图;
图3为一实施例中,Ru2N2催化剂NixRuyN2催化剂的OER曲线图;
图4为一实施例中,Ru催化剂与NixRuy催化剂的HER曲线图;
图5为一实施例中,Ru催化剂与NixRuyN2催化剂的HER曲线图;
图6为一实施例中,Ni2N2催化剂与MnxRuyN2催化剂的OER曲线图;
图7为一实施例中,Ni2N2催化剂与MnxRuyN2催化剂的HER曲线图;
图8、图9、与图11为实施例中,膜电极组的电流-电压曲线图;
图10为一实施例中,膜电极组长时间操作后的电流图。
符号说明
11 阳极;
11A、15A 气液扩散层;
11B、15B 催化剂层;
13 阴离子交换膜;
15 阴极;
100 膜电极组。
具体实施方式
本发明一实施例提供的氮化物催化剂,其化学结构为:MxRuyN2,其中M为Ni、Co、Fe、Mn、Cr、V、Ti、Cu、或Zn,0<x<1.3,0.7<y<2,且x+y=2,其中氮化物催化剂为立方晶系或非晶。若氮化物催化剂为其他晶系如六方晶系,其于HER的催化效果比市售的Pt催化剂还低。在一实施例中,M为Ni,0.069<x<1.086,且0.914<y<1.931。在一实施例中,M为Mn,0.01<x<0.8,且1.2<y<1.99。若x过小(即y过大),则活性与稳定性不佳。若x过大(即y过小),则活性与稳定性不佳。在一实施例中,氮化物催化剂的表面形貌为三角锥与四角锥。此表面形貌可能有助于氮化物催化剂抗氧化,即适于作为OER的阳极。
本发明一实施例提供的氮化物催化剂的形成方法,包括:将Ru靶材与M靶材置于含氮气的氛围中,其中M为Ni、Co、Fe、Mn、Cr、V、Ti、Cu、或Zn。分别提供功率至Ru靶材与M靶材;以及提供离子撞击Ru靶材与M靶材,以溅镀沉积MxRuyN2于基材上,其中0<x<1.3,0.7<y<2,且x+y=2,其中氮化物催化剂为立方晶系或非晶。在一实施例中,含氮气的氛围压力介于1mTorr至30mTorr之间。若含氮气的氛围压力过低,则无法进行有效氮化反应。若含氮气的氛围压力过高,则无法进行有效氮化反应。在一实施例中,含氮气的氛围包含载气如氦气、氩气、其他合适的钝气、或上述的组合,且氮气与载气的分压比例介于0.1至10之间。若氮气的分压比例过低,则无法进行有效氮化反应。若氮气的分压比例过高,则无法进行有效氮化反应。上述方法分别提供功率至Ru靶材与M靶材。举例来说,提供至Ru靶材的功率介于10W至200W之间。若提供至Ru靶材的功率过低,则氮化物催化剂中的Ru比例过低。若提供至Ru靶材的功率过高,则氮化物催化剂中的Ru比例过高。另一方面,提供至M靶材的功率介于10W至200W之间。若提供至M靶材的功率过低,则氮化物催化剂中的M比例过低。若提供至M靶材的功率过高,则氮化物催化剂中的M比例过高。上述功率可为直流电功率或射频功率。
上述方法也提供离子撞击Ru靶材与M靶材,以溅镀沉积MxRuyN2于基材上。举例来说,可等离子体激发氮气与载气以形成离子,并使离子撞击靶材。在一实施例中,基材包括多孔导电层,比如多孔的金属网(如不锈钢网、钛网、镍网、镍合金网、铌合金网、铜网、或铝网)或多孔碳材(如碳纸或碳布)。多孔导电层的孔径取决于MxRuyN2的用途。举例来说,若具有MxRuyN2于其上的多孔导电层作为电解碱性水溶液的阴极(用于HER),则多孔导电层的孔径介于0.5微米至80微米间。若具有MxRuyN2于其上的多孔导电层作为电解碱性水溶液的阳极(用于OER),则多孔导电层的孔径介于40微米至150微米之间。
在一实施例中,上述氮化物催化剂可用于电解产氢的膜电极组。如图1所示,膜电极组100包括阳极11、阴极15、与阴离子交换膜13,且阴离子交换膜13夹设于阳极11与阴极15之间。阳极11包括催化剂层11B于气液扩散层11A上,而阴极15包括催化剂层15B于气液扩散层15A上。此外。阴离子交换膜13,夹设于阳极11的催化剂层11B与阴极15的催化剂层15B之间。催化剂层11B、催化剂层15B、或上述两者的化学结构为MxRuyN2,而M、x、与y的定义同前述,在此不重复。
在一实施例中,阴离子交换膜13可为含卤素离子的咪唑高分子或其他合适材料。举例来说,阴离子交换膜13可为购自Fumatech的FAS或购自Dioxide materials的X37-50。由于膜电极组100用于电解碱性水溶液产氢,因此采用阴离子交换膜13而非其他离子交换膜。
在一实施例中,气液扩散层11A与气液扩散层15A各自包括多孔导电层,比如多孔的金属网(如不锈钢网、钛网、镍网、镍合金网、铌合金网、铜网、铝网)或多孔碳材(如碳纸或碳布)。在一实施例中,气液扩散层11A的孔径介于40微米至150微米之间。若气液扩散层11A的孔径过小,则增加质传阻抗。若气液扩散层11A的孔径过大,则丧失活性面积。在一实施例中,气液扩散层15A的孔径介于0.5微米至5微米之间。若气液扩散层15A的孔径过小,则增加质传阻抗。若气液扩散层15A的孔径过大,则丧失活性面积。在一些实施例中,气液扩散层11A可与气液扩散层15A具有相同的孔径,而催化剂层11B与催化剂层15B可具有相同元素比例的MxRuyN2。换言之,阳极11与阴极15可为相同电极(相同孔径的气液扩散层及相同元素比例的催化剂层),以节省加工程序。
在其他实施例中,阳极11的气液扩散层11A与阴极15的气液扩散层15A的孔径不同及/或组成不同,或者阳极11的催化剂层11B与阴极15的催化剂层的元素组成或元素比例不同,端视需求而定。举例来说,催化剂层11B的化学结构为MxRuyN2,催化剂层15B的化学结构为MxRuy,且MxRuy为立方晶系。在一实施例中,MxRuy的表面形貌为粒状。在其他实施例中,阳极11或阴极15可为市售电极(具有其他催化剂层),而另一者的催化剂层可为上述的氮化物催化剂MxRuyN2。
上述膜电极组可用于电解产氢。举例来说,可将膜电极组浸置于碱性水溶液中。举例来说,碱性水溶液可为NaOH、KOH、其他合适的碱类、或上述的组合的水溶液。在一实施例中,碱性水溶液的pH值大于14且小于15。若碱性水溶液的pH值过低,则导电度不佳。若碱性水溶液的pH值过高,则溶液粘度过高。上述方法也施加电位至阳极与阴极以电解碱性水溶液,使阴极产生氢气,并使阳极产生氧气。
综上所述,本发明实施例的氮化物催化剂符合电解碱性水溶液产氢的需求。在HER部分,氮化物催化剂可解决现有催化剂的催化效果不佳、导电性不良、与抗蚀性低的问题。在OER部分,氮化物催化剂可解决现有催化剂的催化效果不佳、导电性不良、抗氧化耐蚀性低等问题。氮化物催化剂需具备高导电能力,与高HER及OER的电化学活性。本发明实施例的氮化物催化剂在扩散观点中,在低温下的晶界扩散系数远大于体扩散系数。由于氮化物催化剂中添加的杂质原子M可填充于晶界,可阻隔原子经由晶界扩散,以改善其效能。氮化物催化剂的快速扩散路径如晶界等,可被某些材料填充,以阻止相邻的材料原子经由晶界或其它缺陷扩散。通过插入晶界缝细隙的氮原子,可大量减少原子经由晶界扩散的机会。综上所述,采用氮化物可增加抗氧化及材料稳定性。由于氮化物催化剂的导电佳,在兼顾活性与成本下,以Ru(与Pt活性相近)结合M可得高导电度与电化学活性的氮化物催化剂。
为了让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举数实施例配合所附图示,作详细说明如下:
实施例
制备例1
采用反应磁控溅镀机台,在玻璃碳电极(5mm OD×4mm H)上沉积Pt催化剂。将Pt靶材置入溅镀机台中,施加功率至Pt靶材,并将氩气(流速为20sccm)通入机台,且机台内的压力为30mTorr。以氩离子撞击Pt靶材,在室温下进行溅镀5至6分钟,以形成膜厚约100nm的Pt催化剂于玻璃碳电极上,催化剂披覆量为0.042mg。
制备例2
采用反应磁控溅镀机台,在玻璃碳电极(5mm OD×4mm H)上分别沉积不同元素比例的NixRuy催化剂。将Ni靶材与Ru靶材置入溅镀机台中,调整施加至Ni靶材的功率10至200W之间与Ru靶材的功率10至200W之间,并将氩气(流速为20sccm)通入机台,且机台内的压力为20mTorr。以氩离子撞击Ni靶材与Ru靶材,在室温下进行反应式溅镀5至6分钟,以形成膜厚约100nm的NixRuy催化剂于玻璃碳电极上,催化剂披覆量为0.024mg。由EDS分析NixRuy催化剂,x介于约0.065至0.85之间,例如:x为0.0656~0.1408、0.1408~0.1498、0.1498~0.2872、0.2872~0.2888、0.2888~0.2938、0.2938~0.496、0.496~0.5332、或0.5332~0.8472,而y介于约1.935至1.153之间,例如:y=1.9344~1.8592、1.8592~1.8502、1.8502~1.7128、1.7128~1.7112、1.7112~1.7062、1.7062~1.504、1.504~1.4768、或1.4768~1.1528。由SEM分析NixRuy催化剂,其表面形貌为粒状。由X射线绕射(XRD)分析NixRuy催化剂,其为立方晶系。另一方面,可只将Ru靶材置入溅镀机台中,以类似参数形成膜厚约100nm的Ru催化剂于玻璃碳电极上,催化剂披覆量为0.024mg。
制备例3
采用反应磁控溅镀机台,在玻璃碳电极(5mm OD×4mm H)上分别沉积不同元素比例的NixRuyN2催化剂。将Ni靶材与Ru靶材置入溅镀机台中,调整施加至Ni靶材的功率10至200W之间与Ru靶材的功率10至200W之间,并将氮气与氩气(流速为20sccm)通入机台,氮气/(氩气+氮气)=50%,且机台内的压力为20mTorr。以氩离子撞击Ni靶材与Ru靶材,在室温下进行反应式溅镀5至6分钟,以形成膜厚约100nm的NixRuyN2催化剂于玻璃碳电极上,催化剂披覆量为0.024mg。由EDS分析NixRuyN2催化剂,x介于约0.069至1.086之间,例如:x为0.0692~0.1128、0.1128~0.1258、0.1258~0.2012、0.2012~0.318、0.318~0.4672、0.4672~0.6816、或0.6816~1.086,而y介于约1.931至0.914之间,例如:y为1.9308~1.8872、1.8872~1.8742、1.8742~1.7988、1.7988~1.682、1.682~1.5328、1.5328~1.3184、或1.3184~0.914。由SEM分析NixRuyN2催化剂,其表面形貌为三角锥与四角锥。由XRD分析NixRuyN2催化剂,其为立方晶系或非晶。另一方面,可只将Ru靶材置入溅镀机台中,以类似参数形成膜厚约100nm的Ru2N2催化剂于玻璃碳电极上,催化剂披覆量为0.024mg。
实施例1
将上述Pt、Ru、Ru2N2、NixRuy、与NixRuyN2催化剂,进行OER电化学活性测试如下。在0.1MKOH溶液中,分别取Pt、Ru、Ru2N2、NixRuy、与NixRuyN2催化剂形成其上的玻璃碳电极作为工作电极。取Hg/HgO作为参考电极,并取铂作为辅助电极。扫描电压范围:-0.8~1V,扫描速度为50mV/s,扫描次数为10次。接着进行OER的CV测量,扫描电压范围:-0.8~0.1V,扫描速度为10mV/s,且扫描次数为5次。上述OER结果如图2(Ru与NixRuy)与图3(Ru2N2与NixRuyN2)所示,横轴为相对于可逆氢电极(Reverible hydrogen electrode,RHE)的电位(V),纵轴为电流密度(J,mA/cm2)。如图2所示,纯Ru催化剂层无OER活性,而添加Ni的Ru催化剂活性明显提升。如图3所示,Ru2N2催化剂活性远高于Ru催化剂活性,而添加适量Ni的Ru2N2催化剂(即NixRuyN2催化剂)的活性可大幅提升。举例来说,NixRuyN2的x介于0.4至1.1之间时,可具有较佳效果。部分催化剂的比较如表1所示:
表1
由表1可知,OER中的Ni0.29Ru1.71与Ni0.46Ru1.53N2催化剂的电流密度,均高于铂膜催化剂的电流密度。不过NixRuy无抗氧化能力,因此不适于应用于OER。换言之,Ni0.46Ru1.53N2比铂膜催化剂更适用于OER。
实施例2
将上述Pt、Ru、Ru2N2、NixRuy、与NixRuyN2催化剂,进行HER电化学活性测试如下。在0.1MKOH溶液中,分别取Pt、Ru、Ru2N2、NixRuy、与NixRuyN2催化剂形成其上的玻璃碳电极作为工作电极。取Hg/HgO作为参考电极,并取铂作为辅助电极。在HER测量部分,工作电极的转速为1600rpm,扫描电压范围:0~1V,扫描速度为10mV/s,扫描次数为3次。上述HER结果如图4(Ru与NixRuy)与图5(Ru与NixRuyN2)所示,横轴为相对于可逆氢电极(RHE)的电位(V),纵轴为电流密度(J,mA/cm2)。如图4所示,添加Ni的Ru催化剂(即NixRuy)活性明显高于Ru催化剂。部分催化剂的比较如表2所示:
表2
由上述可知,HER中的Ni0.06Ru1.93与Ni1.2Ru0.8N2催化剂的电流密度,均高于铂膜催化剂的电流密度。换言之,Ni0.06Ru1.93与Ni1.2Ru0.8N2催化剂均比铂膜催化剂更适用于HER。
制备例4
采用反应磁控溅镀机台,在玻璃碳电极(5mm OD×4mm H)上分别沉积不同元素比例的MnxRuyN2催化剂。将Mn靶材与Ru靶材置入溅镀机台中,调整施加至Mn靶材的功率(10至200W之间)与Ru靶材的功率(10至200W之间),并将氮气与氩气(流速为20sccm)通入机台,氮气/(氩气+氮气)=50%,且机台内的压力为20mTorr。以氩离子撞击Mn靶材与Ru靶材,在室温下进行反应式溅镀5至6分钟,以形成膜厚约100nm的MnxRuyN2催化剂于玻璃碳电极上,催化剂披覆量为0.024mg。由EDS分析MnxRuyN2催化剂,x介于约0.01至0.8之间,例如:x为0.0218~0.0394、0.0394~0.0684、0.0684~0.0794、0.0794~0.323、或0.323~0.7744,而y介于约1.2至1.99之间,例如:y为1.9782~1.9606、1.9606~1.9316、1.9316~1.9206、1.9206~1.677、或1.677~1.2256。由SEM分析MnxRuyN2催化剂,其表面形貌为三角锥与四角锥。由XRD分析MnxRuyN2催化剂,其为立方晶系或非晶。
实施例3
将上述MnxRuyN2催化剂,进行OER电化学活性测试如下。在0.1MKOH溶液中,取MnxRuyN2催化剂形成其上的玻璃碳电极作为工作电极。取Hg/HgO作为参考电极,工作电极的转速为1600rpm,并取铂作为辅助电极。扫描电压范围:-0.8~1V,扫描速度为50mV/s,扫描次数为10次。接着进行OER的CV测量,扫描电压范围:-0.8~0.1V,扫描速度为10mV/s,且扫描次数为5次。上述OER结果如图6(Ni2N2与MnxRuyN2)所示,横轴为相对于可逆氢电极(RHE)的电位(V),纵轴为电流密度(J,mA/cm2)。如图6所示,添加适量Mn的Ru2N2催化剂(即MnxRuyN2催化剂)的活性可大幅提升。举例来说,MnxRuyN2的x介于0.3至0.7之间时,可具有较佳效果。部分催化剂的比较如表3所示:
表3
由表3可知,OER中的Mn0.323Ru1.677N2催化剂的电流密度,高于铂膜催化剂的电流密度。换言之,Mn0.323Ru1.677N2催化剂比铂膜催化剂更适用于OER。
实施例4
将MnxRuyN2催化剂进行HER电化学活性测试如下。在0.1MKOH溶液中,取MnxRuyN2催化剂形成其上的玻璃碳电极作为工作电极。取Hg/HgO作为参考电极,并取铂作为辅助电极。在HER测量部分,工作电极的转速为1600rpm,扫描电压范围:0~1V,扫描速度为10mV/s,扫描次数为3次。上述HER结果如图7所示,横轴为相对于可逆氢电极(RHE)的电位(V),纵轴为电流密度(J,mA/cm2)。部分催化剂的比较如表4所示:
表4
由上述可知,HER中的Mn0.079Ru1.92N2催化剂的电流密度高于铂膜催化剂的电流密度。换言之,Mn0.079Ru1.92N2催化剂比铂膜催化剂更适用于HER。
制备例5
采用反应磁控溅镀机台,在不锈钢网(316不锈钢,200mesh,50mm×50mm)上沉积Ni0.75Ru1.25N2催化剂。将Ni靶材与Ru靶材置入溅镀机台中,调整施加至Ni靶材的功率(150W)与Ru靶材的功率(100W),并将氮气与氩气(流速为10sccm)通入机台,氮气/(氩气+氮气)=50%,且机台内的压力为5mTorr。以氩离子撞击Ni靶材与Ru靶材,在室温下进行反应式溅镀8分钟,以形成膜厚约300nm的Ni0.75Ru1.25N2催化剂(由EDS确认)于不锈钢网上,单位面积的催化剂披覆量为0.17mg/cm2。由SEM分析Ni0.75Ru1.25N2催化剂,其表面形貌为三角锥与四角锥。由XRD分析Ni0.75Ru1.25N2催化剂,其为立方晶系或非晶。
实施例5
取制备例5的Ni0.75Ru1.25N2-不锈钢网作为HER的阴极,市售的DSA不溶性阳极(IrO2/RuO2-Ti mesh,佳荣能源科技股份有限公司)作为OER的阳极,并将阴离子交换膜X37-50(购自Dioxide Materials)夹设于阴极与阳极的催化剂层之间,以形成膜电极组。将膜电极组浸置于2M的KOH溶液中,进行电化学活性测试如下。扫描电压范围:1.3~2.2V,扫描速度为50mV/s。上述膜电极组的电流-电压曲线如图8所示,在2V时可产生1.35A的电流。
实施例6
取制备例5的Ni0.75Ru1.25N2-不锈钢网同时作为HER的阴极与OER的阳极,并将阴离子交换膜X37-50(购自Dioxide Materials)夹设于阴极与阳极的催化剂层之间,以形成膜电极组。将膜电极组浸置于2M的KOH溶液中,进行电化学活性测试如下。扫描电压范围:1.3~2.2V,扫描速度为50mV/s。上述膜电极组的电流-电压曲线如图9所示,在2V时可产生1.02A的电流。控制膜电极组的电位为2V并持续操作18小时,其电流稳定如图10所示。换言之,Ni0.75Ru1.25N2-不锈钢网可有效抵抗氧化反应,可作为OER的阳极。
比较例1
取市售的PtC(HISPEC 13100,Johnson Matthey)涂布于H23C8(Freudenberg)碳纸上作为HER的阴极,阴极催化剂的单位面积披覆量控制为1.8mg/cm2,市售的DSA不溶性阳极(IrO2/RuO2-Ti mesh,佳荣能源科技股份有限公司)作为OER的阳极,并将阴离子交换膜X37-50(购自Dioxide Materials)夹设于阴极与阳极的催化剂层之间,以形成膜电极组。将膜电极组浸置于2M的KOH溶液中,进行电化学活性测试如下。扫描电压范围:1.3~2.2V,扫描速度为50mV/s。上述膜电极组的电流-电压曲线如图11所示,在2V时可产生1.3A的电流。
实施例5、实施例6、与比较例1的膜电极组比较如表5所示:
表5
由表5可知,实施例5及6的Ni0.75Ru1.25N2催化剂的活性,远高于PtC/及IrO2/RuO2催化剂的活性,且其单位面积的催化剂披覆量仅为PtC及IrO2/RuO2的单位面积的催化剂披覆量的1/10。
虽然结合以上数个实施例公开了本发明,然而其并非用以限定本发明,任何本技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作任意的更动与润饰,因此本发明的保护范围应当以附上的权利要求所界定的为准。
Claims (9)
1.一种氮化物催化剂,其特征在于,其化学结构为:
MxRuyN2,
其中M为Ni、Co、Fe、Mn、Cr、V、Ti、Cu、或Zn,0<x<1.3,0.7<y<2,且x+y=2,
其中该氮化物催化剂为立方晶系或非晶。
2.如权利要求1所述的氮化物催化剂,其中M为Ni,0.069<x<1.086,且0.914<y<1.931。
3.如权利要求1所述的氮化物催化剂,其中M为Mn,0.01<x<0.8,且1.2<y<1.99。
4.如权利要求1所述的氮化物催化剂,其表面形貌为三角锥与四角锥。
5.一种氮化物催化剂的形成方法,包括:
将Ru靶材与M靶材置于含氮气的氛围中,其中M为Ni、Co、Fe、Mn、Cr、V、Ti、Cu、或Zn;
分别提供功率至该Ru靶材与该M靶材;以及
提供离子撞击Ru靶材与该M靶材,以溅镀沉积MxRuyN2于基材上,其中0<x<1.3,0.7<y<2,且x+y=2,
其中MxRuyN2为立方晶系或非晶。
6.如权利要求5所述的氮化物催化剂的形成方法,其中提供至该Ru靶材的功率介于10W至200W之间,而提供至该M靶材的功率介于10W至200W之间。
7.如权利要求5所述的氮化物催化剂的形成方法,其中该含氮气的氛围压力介于1mTorr至30mTorr之间。
8.如权利要求5所述的氮化物催化剂的形成方法,其中该含氮气的氛围包含载气,且氮气与载气的分压比例介于0.1至10之间。
9.如权利要求5所述的氮化物催化剂的形成方法,其中该基材包括多孔导电层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107142991 | 2018-11-30 | ||
TW107142991A TWI659780B (zh) | 2018-11-30 | 2018-11-30 | 氮化物觸媒與其形成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111250130A true CN111250130A (zh) | 2020-06-09 |
CN111250130B CN111250130B (zh) | 2023-05-23 |
Family
ID=67348159
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910103191.7A Withdrawn CN111250129A (zh) | 2018-11-30 | 2019-02-01 | 氮化物催化剂与其形成方法 |
CN201911198942.4A Active CN111250130B (zh) | 2018-11-30 | 2019-11-29 | 氮化物催化剂与其形成方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910103191.7A Withdrawn CN111250129A (zh) | 2018-11-30 | 2019-02-01 | 氮化物催化剂与其形成方法 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN111250129A (zh) |
TW (1) | TWI659780B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114045465A (zh) * | 2021-11-10 | 2022-02-15 | 成都大学 | 一种非晶CrCoNi合金薄膜负载Pt的甲醇氧化复合电极及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015189865A1 (en) * | 2014-06-13 | 2015-12-17 | Háskóli Íslands | Electrolytic production of ammonia |
US20160160365A1 (en) * | 2013-08-05 | 2016-06-09 | Brookhaven Science Associates, Llc | Metal nitride catalysts for promoting a hydrogen evolution reaction |
CN106914254A (zh) * | 2015-12-27 | 2017-07-04 | 财团法人工业技术研究院 | 碱性电化学能量转换反应用催化剂组合物及其用途 |
CN108855166A (zh) * | 2018-06-20 | 2018-11-23 | 郑州轻工业学院 | 一种负载型催化剂及其制备方法、应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI608990B (zh) * | 2015-11-26 | 2017-12-21 | 國立交通大學 | 用於製備氫氣之觸媒組成物、其製法及其用途 |
US11339484B2 (en) * | 2017-03-13 | 2022-05-24 | Asahi Kasei Kabushiki Kaisha | Electrolytic cell and electrolyzer |
-
2018
- 2018-11-30 TW TW107142991A patent/TWI659780B/zh active
-
2019
- 2019-02-01 CN CN201910103191.7A patent/CN111250129A/zh not_active Withdrawn
- 2019-11-29 CN CN201911198942.4A patent/CN111250130B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160160365A1 (en) * | 2013-08-05 | 2016-06-09 | Brookhaven Science Associates, Llc | Metal nitride catalysts for promoting a hydrogen evolution reaction |
WO2015189865A1 (en) * | 2014-06-13 | 2015-12-17 | Háskóli Íslands | Electrolytic production of ammonia |
CN106914254A (zh) * | 2015-12-27 | 2017-07-04 | 财团法人工业技术研究院 | 碱性电化学能量转换反应用催化剂组合物及其用途 |
CN108855166A (zh) * | 2018-06-20 | 2018-11-23 | 郑州轻工业学院 | 一种负载型催化剂及其制备方法、应用 |
Non-Patent Citations (6)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114045465A (zh) * | 2021-11-10 | 2022-02-15 | 成都大学 | 一种非晶CrCoNi合金薄膜负载Pt的甲醇氧化复合电极及其制备方法 |
CN114045465B (zh) * | 2021-11-10 | 2023-07-04 | 成都大学 | 一种非晶CrCoNi合金薄膜负载Pt的甲醇氧化复合电极及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111250130B (zh) | 2023-05-23 |
TW202021666A (zh) | 2020-06-16 |
CN111250129A (zh) | 2020-06-09 |
TWI659780B (zh) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111229271B (zh) | 催化剂材料与其形成方法 | |
KR101939666B1 (ko) | 부식방지 기체 확산층 및 그 제조방법과 이를 구비한 막전극접합체 | |
KR20170022788A (ko) | 극소량의 백금이 도포된 니켈 전극촉매, 이의 제조방법 및 이를 이용한 음이온 교환막 물 전기분해 장치 | |
JP2023523614A (ja) | 白金族金属フリーの自立型酸素発生電極を有する陰イオン交換膜電解槽 | |
Kunwar et al. | Hybrid CoP2–Pt–FTO nanoarchitecture for bifunctional electrocatalysts in H2 generation by water splitting | |
US10914012B2 (en) | Membrane electrode assembly and method for hydrogen evolution by electrolysis | |
CN111254460B (zh) | 膜电极组与电解产氢的方法 | |
US12077873B2 (en) | Method for manufacturing nitride catalyst | |
Qin et al. | Integrated ultra-low PtIr catalyst coated membrane toward efficient proton exchange membrane water electrolyzers | |
Yasutake et al. | Ru-core Ir-shell electrocatalysts deposited on a surface-modified Ti-based porous transport layer for polymer electrolyte membrane water electrolysis | |
Farsak et al. | The snowflake‐like structured NiO‐Cu2O@ Fe/Ru catalyst for hydrogen fuel production | |
CN111250130B (zh) | 氮化物催化剂与其形成方法 | |
US10914011B2 (en) | Membrane electrode assembly and method for hydrogen evolution by electrolysis | |
Park et al. | The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes | |
CN111304677B (zh) | 膜电极组与电解产氢的方法 | |
Jiang et al. | Deep reconstruction of Ni–Al-based pre-catalysts for a highly efficient and durable anion-exchange membrane (AEM) electrolyzer | |
JP2018081812A (ja) | 空気極用ガス拡散層 | |
Yasutake et al. | GDL-integrated electrodes with Ir-based electrocatalysts for polymer electrolyte membrane water electrolysis | |
Yoshinaga et al. | Development of ACLS electrodes for a water electrolysis cell | |
TWI671122B (zh) | 觸媒材料與其形成方法 | |
KR102556498B1 (ko) | 코발트 인화물을 포함하는 산소 및 수소 발생 반응용 이중기능성 전기화학적 촉매용 나노구조체 및 이의 제조방법 | |
EP4436736A1 (en) | Method of manufacturing a catalyst membrane, catalyst membrane obtained thereby and use thereof | |
WO2023057656A1 (en) | Porous ionomer free layered metal alloy electrocatalyst electrode | |
CN116411300A (zh) | 阳极催化剂材料与电解水产氢装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |