CN111246894B - 两亲抗微生物水凝胶 - Google Patents
两亲抗微生物水凝胶 Download PDFInfo
- Publication number
- CN111246894B CN111246894B CN201880066154.7A CN201880066154A CN111246894B CN 111246894 B CN111246894 B CN 111246894B CN 201880066154 A CN201880066154 A CN 201880066154A CN 111246894 B CN111246894 B CN 111246894B
- Authority
- CN
- China
- Prior art keywords
- hydrogel
- antimicrobial
- amphiphilic
- hydrogels
- hydrophobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/10—Peptides having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/0066—Medicaments; Biocides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/26—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/46—Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0009—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
- A61L26/0019—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/008—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L12/00—Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
- A61L12/08—Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using chemical substances
- A61L12/14—Organic compounds not covered by groups A61L12/10 or A61L12/12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/25—Peptides having up to 20 amino acids in a defined sequence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Communicable Diseases (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Oncology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Transplantation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Preparation (AREA)
- Materials For Medical Uses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种固态抗微生物水凝胶,包含第一两亲组分。该第一两亲组分在其化学交联状态下是溶致液晶,并且具有疏水和亲水结构域的有序纳米结构,该组合物还包含与至少一个亲水或疏水结构域共价连接的抗微生物剂。
Description
技术领域
本发明涉及抗微生物水凝胶。具体而言,其涉及一种包含第一两亲组分和与之共价连接的抗微生物剂的抗微生物水凝胶。
背景技术
波及伤口附近的皮肤或组织的伤口感染会干扰愈合过程,并且可能会引起全身性疾病。目前,抗生素疗法是用于治疗伤口感染的最常规的疗法。多年来,已经发现这类例行抗生素疗法不仅会对患者引起全身性副作用,而且还会导致由抗生素耐受性细菌引起的严重感染的迅速增加。
目前有多种伤口敷料旨在减轻或消除感染。然而,不断增加的抗生素耐受性问题使得新型的、先进的伤口敷料的需求不断增大。许多市售的伤口敷料如或(由墨尼克医疗用品公司(Health Care)销售)引入了包含银作为抗微生物剂的软质超吸收性敷料层。银释放至伤口中,通过破坏细胞壁或抑制微生物繁殖来杀灭微生物。多种其它伤口敷料引入了抗微生物分子如氯己定或常规抗生素药物如青霉素,用来防止伤口处的细菌粘附或感染。然而,上述化合物的应用是有限的,这是因为它们对人细胞的活性谱和细胞毒性谱是有限的,并且有可能在短时间内发展出微生物耐受性。
许多近期工作着眼于将抗微生物化合物如磺胺嘧啶银、抗生性苯酚衍生物、氯己定和季铵聚合物共价固定在用于伤口敷料的基材上(F.Costa等,Acta Biomaterialia 7(2011)1431-1440)。这些化合物的共价固定阻止分子泄漏至生物环境中,并同时防止损伤或伤口处的感染的发展。活性化合物连接于伤口敷料的其余部分,该伤口敷料可以是纤维、水凝胶或市售柔性塑料的形式。虽然共价连接限制了敷料中抗微生物物质的量,但仍然有对存在于伤口处或伤口周围的人上皮细胞产生细胞毒性的风险。
因此,作为替代性药物,阳离子型抗微生物聚合物如抗微生物肽(AMP)受到越来越多的关注,尤其是在皮肤伤口的治疗中。
然而,将AMP用作伤口敷料中的治疗剂时会产生问题,其通常都着眼于让物理吸附的AMP释放或渗出以发挥所需功能。上述方案存在两个主要缺点。AMP通常是肽分子,其中,酰胺键是不同氨基酸之间的主要连接方式。酰胺键容易因生物环境中的酶而降解,因此需要增加AMP的数量(一般在微克至毫克水平)才能起作用,进而也增加装置的成本。这限制了AMP在医疗器械中作为功能性治疗剂的应用。
US 2007/0254006 A1公开了一种基材,其可以是葡聚糖水凝胶,其上可以系链AMP。US 2007/0254006 A1的葡聚糖水凝胶是亲水性的无规交联结构。系链在这种结构上的AMP可能容易降解。而且,所提供的AMP只能是与系链连接且未被吸收至葡聚糖水凝胶中。
因此,需要具有抗微生物性质的改进材料。
发明内容
因此,本发明优选通过提供一种抗微生物水凝胶来试图单独地或以任意组合方式减小、减轻或消除本领域中的上述缺陷中的一种或多种,并解决至少上述问题,所述抗微生物水凝胶包含第一可交联两亲组分,所述第一两亲组分在其化学交联状态下具有疏水和亲水结构域的有序纳米结构,所述组合物还包含与至少一个亲水或疏水结构域共价连接的抗微生物剂。
也提供包含抗微生物水凝胶的装置。
还提供制造抗微生物水凝胶的方法。
在所附和附属的专利权利要求中公开了其它有利的实施方式。
附图说明
以附图为参考,根据本发明的实施方式的以下说明,本发明的这些及其它方面、特征和优点将会是清楚明了的。
图2显示抗微生物肽与二丙烯酸酯改性Pluronic三嵌段共聚物F-127通过EDC/NHS活化而共价连接的反应方案。
图3显示5(6)羧基荧光素标记的RRPRPRPRPWWWW-NH2的荧光显微镜图像。图3a(上排)显示共价固定在如实验部分所述制备的DA-F127正常胶束立方水凝胶上的标记肽,图3b(下排)显示物理吸附(physically absorbed)(即,并非共价固定)在DA-F127正常胶束立方水凝胶上的标记肽。所有样品均在50%乙醇中处理最长达3周。
图4显示在:a、如实验部分所述制备的、不具有任何AMP的两亲水凝胶;b、具有物理吸附的AMP(即,并非共价连接的AMP)的两亲水凝胶;以及c、根据一个方面的、AMP已共价固定在两亲水凝胶上的两亲抗微生物水凝胶之上形成的表皮葡萄球菌(S.epidermidis)生物膜的活/死细胞图像。细菌用9和碘化丙啶染色。活细菌呈绿色,死细菌呈红色。
图5显示抗微生物水凝胶与对照样品的抑制区测试。图5a显示不具有AMP的阴性对照两亲水凝胶;图5b显示仅具有物理吸附的AMP的两亲水凝胶;图5c显示根据一个方面的、AMP共价连接在两亲水凝胶上的两亲抗微生物水凝胶。
图6显示在具有重复的、3D打印并对准的、正六边形的有序纳米结构的化学交联两亲水凝胶上共价结合的AMP的示意图。
图7显示在对照两亲水凝胶(最左图)和根据一个方面的抗微生物两亲水凝胶(最右图)上形成的各种生物膜的活/死细胞图像。图7a所示为表皮葡萄球菌(S.epidermis);图7b所示为铜绿假单胞菌(P.aeruginosa)的图;图7c所示为金黄色葡萄球菌(S.aureus)。
图8显示图7中的水凝胶表面上的死细菌细胞比例的定量分析。死细胞比例用基于公式(死细胞÷(死细胞+或细胞))的图像分析宏来计算,以算出生物膜生长的差异。图8c包括物理吸附而非共价连接AMP的水凝胶中的死细胞比例。星号(*)表示与对照样品相比以95%置信水平存在显著差异。
图9显示在根据一个方面的抗微生物两亲水凝胶表面上形成的细菌菌落/生物膜的活/死细胞荧光图像。死细胞在三张图像中分别呈现不同形态。
图10显示下述五个不同样品的波数1500~1900cm-1之间的FTIR谱:a)未改性、b)改性、c)交联、d)交联并洗涤、以及e)EDC&NHS活化。波数(cm-1)列于x轴,透射率(%T)列于y轴。除未改性样品外,所有样品中均可见清晰的信号。未改性是指含有嵌段共聚物、但却因为缺少丙烯酸酯官能团而不能交联的样品。
图11显示磷酸盐缓冲生理盐水(PBS)中的储存稳定性测试的结果。图11a中可以看到对照两亲水凝胶和抗微生物两亲水凝胶的死细胞(金黄色葡萄球菌(S.aureus))比例。图11b显示水凝胶上的总表面覆盖率。星号(*)表示与对照样品相比以95%置信水平存在显著差异。
图12显示将水凝胶暴露于20%人血清的血清稳定性测试的结果。在x轴所示的时间将水凝胶从血清中取出。通过活/死细胞染色来确定水凝胶表面上的死细胞(金黄色葡萄球菌(S.aureus))比例,并示于y轴。除第5天外,在各时间点,活化的表面与对照相比均以95%置信水平存在显著差异。各棒由取自两份样品的图像编译而得。
图13显示由用不同的含AMP液滴活化的水凝胶表面的活/死细胞染色计算出的死细胞比例。所有AMP活化样品与对照相比均以95%置信水平显示出显著差异。
图14显示通过在水凝胶表面上喷雾AMP溶液来进行水凝胶表面活化的结果。通过水凝胶表面上的生物膜的活/死细胞染色对表面进行研究。通过上述图像分析宏计算活/死细胞比例。所有AMP活化样品与对照样品相比均以95%置信水平显示出显著差异。
图15显示由两个MTT试验得到的细胞活力,这两个MTT试验在成纤维细胞上用暴露于对照和测试样品的培养基来进行。虚线表示75%细胞活力。高于该虚线的样品被认为是无毒的。被分析的水凝胶是对照和共价连接AMP。对照和抗微生物两亲水凝胶显示出比75%截止值明显更高的细胞活力。
具体实施方式
本发明的以下说明书描述了一种改进的抗微生物水凝胶。该抗微生物水凝胶包含第一可交联两亲组分。在其交联状态下,两亲组分成为包含亲水和疏水结构域的有序结构的水凝胶。该抗微生物水凝胶还包含与交联水凝胶的重复的亲水和/或疏水结构域共价结合的抗微生物剂。
重复的有序纳米结构包含重复且交替的疏水-亲水结构域。疏水-亲水结构域的形态和具体结构在下文中讨论。水凝胶包含在整个水凝胶中(即,并非仅在水凝胶表面上)的有序且重复的纳米结构。交联的水凝胶是固态的。分子间交联不可逆地锁定有序结构,成为具有高完整性和机械弹性的水凝胶。
该抗微生物水凝胶尤其适合于伤口护理用途,这是因为有序且重复的纳米结构实现了抗微生物剂在皮肤或伤口表面上的有序且重复的供给。而且,抗微生物剂最好是固定的,以实现更好的长期性能。
可以认为水凝胶形成基材,可将抗微生物剂固定于其上。水凝胶在其交联状态下是自支撑的,并且是三维的。一般来说,水凝胶在生理条件下基本上是非降解性的。即,水凝胶是不能生物降解的,其基本上不会被相关的体外及体内条件下的化学条件或酶促条件所降解。例如,水凝胶不会在血液、汗液、尿液或其它生物液体的存在下降解。而且,水凝胶基本上是非降解性的,即,其在相对较低或较高的pH环境下是稳定的,并且保持固态。
水凝胶可以形成第一基本均匀层,抗微生物剂与其共价连接。抗微生物剂可以在整个层中至少与水凝胶的重复的亲水结构域共价连接。其可以在层内提供,而非仅在水凝胶的表面上提供。与只能实现抗微生物剂的表面固定的水凝胶或其它基材的表面改性技术相比,这是显著的改进。
亲水和疏水结构域的重复且有序的结构至少在纳米尺度上是有序的,并且如将会在下文中进一步讨论的那样,取决于生产技术,可以在更大的微观或宏观尺度上是有序的。术语有序的和重复的针对的是具有规整的周期性的水凝胶。与基于碳水化合物、多糖或其它非两亲分子的水凝胶相反,本文所述的水凝胶的纳米结构是有序且重复的纳米结构,并且不是无规交联的。该水凝胶是两亲的。交联后,该两亲水凝胶是化学交联的两亲水凝胶。
有序且重复的纳米结构使得抗微生物剂与具有规整的取向的水凝胶共价结合。如果抗微生物剂本身是两亲的,那么抗微生物剂将更加有效地固定在水凝胶的表面上及水凝胶内。水凝胶的两亲性也允许水溶液和非水溶液的吸收。
如上所述,与具有表面处理以限定表面化学的水凝胶相反,本发明的水凝胶在表面上和水凝胶主体内均具有重复且有序的纳米结构。这使得表面上和水凝胶内的抗微生物剂的固定均得到改进。
抗微生物水凝胶可以通过有机两亲材料,例如可交联共聚物、可交联表面活性剂、可交联蛋白质、可交联肽和可交联脂质的化学交联来形成。本文所用的可交联是指利用存在于分子上的反应性化学基团的分子之间的共价连接。化学交联过程可以用光如紫外光、热、或其它化学催化剂如酶来催化。水凝胶的共价交联是不可逆的。共价交联在升高的温度下不会降解或分解。共价交联对于pH变化也是稳定的。
水凝胶的第一两亲组分可以是可交联两亲聚合物。典型且适合的两亲材料是二丙烯酸酯改性泊洛沙姆,例如以下实验部分所述的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(DA-PEOx-PPOy-PEOx-DA,其中x和y分别表示存在的PEO和PPO基团的数量)。具体而言,两亲材料可以是两亲三嵌段共聚物聚环氧乙烷(100)-聚环氧丙烷(70)-聚环氧乙烷(100)(F127-巴斯夫公司(BASF Corporation))、聚环氧乙烷(30)-聚环氧丙烷(70)-聚环氧乙烷(30)(P123-巴斯夫公司)。
如上所述,两亲组分可以是三嵌段共聚物的二丙烯酸酯衍生物,因而使得共聚物能够化学交联。二丙烯酸酯改性的方法在以下实验部分中提供。改性可以通过三嵌段两亲共聚物与丙烯酰氯形成二丙烯酸酯衍生物的反应来进行。可以采用形成可交联两亲聚合物的其它方法,例如形成甲基丙烯酸酯衍生物或通过羧-胺桥。
可交联两亲聚合物可以在水的存在下自组装,形成称为溶致液晶(LLC)的有序纳米结构。在其交联形式下,即在交联后,可以认为水凝胶是化学交联的溶致液晶(LLC)。可以认为两亲聚合物的交联形成具有非常规整的结构的聚合溶致液晶(PLLC)。
非固态交联的水凝胶可以具有尺寸在2~100nm范围内、在整个水凝胶中无规排列的球形胶束聚集体的结构,称为正常胶束体系,简记为L1。这种正常胶束水凝胶可以包含约1%~约19%(重量%)的两亲聚合物和约99%~约81%(重量%)的水。一般来说,这种体系不会形成交联固态凝胶,但在某些情况下,例如在15~19%(重量%)范围内的两亲聚合物浓度下,该体系能够表现为具有非常柔软且柔顺的机械特性的交联固体。
水凝胶可以具有尺寸在2~100nm范围内、在溶致液晶中排列、立方体形的有序排列的球形胶束聚集体的结构,称为正常胶束立方体系,简记为I1,在立方晶格内具有基本排列(P…)或体心(B…)排列或面心(F…)排列的胶束结构。具有Im3m晶体对称性的正常胶束立方结构的例子可以包含约20%~约65%(重量%)的两亲聚合物和约80%~约35%(重量%)的水。用于获得在立方晶格内具有胶束结构的基本排列的正常胶束立方体系的另一种示例组合物是65%(重量%)的水、10%(重量%)的丁醇和25%(重量%)的两亲聚合物。
水凝胶可以具有尺寸在2~100nm范围内、在溶致液晶中排列、双连续立方体形的有序排列的球形胶束聚集体的结构,称为具有Pn3m晶体结构的胶束立方体系。这种具有Pn3m晶体结构的双连续胶束立方体系可以包含约25%~约65%(重量%)的两亲聚合物和约75%~约35%(重量%)的水。用于获得这种LLC结构的另一种示例组合物是33~38%(重量%)的水和由两亲物质或两亲聚合物组成的其余部分。
水凝胶可以具有尺寸在2~100nm范围内、在溶致液晶中排列、双连续立方体形的有序排列的球形胶束聚集体的结构,称为具有Ia3d晶体结构的胶束立方体系。用于获得这种LLC结构的一种示例组合物是13~32%(重量%)的水和由两亲物质或两亲聚合物组成的其余部分。
水凝胶可以具有圆柱体直径大小在2~100nm范围内、在有序溶致液晶中排列、六边形几何形状的圆柱形胶束聚集体的结构,称为正六边形体系。在这种正六边形体系中,两亲聚合物的含量可以为约30%~约80%(重量%),水的含量可以为约60%~约20%(重量%),含有少量有机溶剂或不含。这种正常胶束六边形体系可以包含约35%~约40%(重量%)的两亲聚合物、约50%(重量%)的水、以及约10%~约15%(重量%)的有机溶剂。
抗微生物水凝胶也可以是具有中性几何形状和零曲率的具有下述结构的化学交联的有序纳米结构:片状胶束聚集体,相邻的片之间的距离在2~100nm的范围内,排列成溶致液晶,呈层状几何形状,称为层状体系。这种层状体系可以在任一处包含20~80%(重量%)的两亲分子、15~60%(重量%)的水性溶液和0~25%(重量%)的有机溶剂如丁醇。用于获得层状LLC的一种示例组合物是20%的两亲聚合物、55%(重量%)的水和25%(重量%)的有机溶剂如丁醇。
抗微生物水凝胶的胶束和溶致液晶纳米结构可以包含水性液体如水作为连续结构域和限制在胶束聚集体内的疏水性部分。胶束和溶致液晶纳米结构可以包含限制在胶束聚集体内的水性液体如水和疏水连续结构域。水性液体包括但不限于水、盐溶液、血液、汗液及其它可能的生物液体。在其充分湿润状态(也称为溶胀状态)下,抗微生物水凝胶可吸收最高达3~4倍于其自身重量的水性液体。充分湿润/溶胀状态是指水凝胶的初始浓度(以重量计)为20~90%的水性溶液和10~80%的两亲有机分子,取决于水凝胶所具有的交联LLC结构的种类。在其充分干燥状态下,水凝胶均匀地含有少于10重量%的水性溶液,更通常含有少于5重量%的水性溶液,在这种情况下,其可以吸收最高达8~10倍于其自身重量的水性溶液。表2~3详细地记载了抗微生物水凝胶的液体吸收行为。吸收液体后,抗微生物水凝胶溶胀并改变其尺寸。然而,水凝胶的形状和几何形状基本保持不变。
由于抗微生物水凝胶的两亲性,其也可以吸收疏水液体。如实验部分的表2所示,在疏水溶剂氯仿的存在下,充分干燥的水凝胶可吸收最高达20~30倍于其自身重量的疏水液体如氯仿。如上所述,充分干燥状态是指水凝胶的浓度为少于5重量%的水性溶液和多于95重量%的两亲有机分子。
可以调节水凝胶的液体吸收性质,以吸收更多或更少的水或疏水液体。这可通过使用具有不同的亲水基团相对于疏水基团的链长比例的两亲分子形成水凝胶来实现。例如,两亲嵌段共聚物DA-PEOx-PPOy-PEOx-DA中,其中x和y表示PEO和PPO的数量,基团可具有更多或更少的PEO或PPO基团。PEO基团的量比PPO基团的量更多可导致水凝胶具有高水吸收容量,最高达3~8倍于其自身初始重量。反之,PPO基团比PEO基团更多的水凝胶吸收较少的水,大约0.5~1.5倍于其初始重量。这一效果在针对由DA-PEO100-PPO70-PEO100-DA形成的水凝胶材料和由DA-PEO30-PPO70-PEO30-DA形成的水凝胶材料的液体吸收性质的实验部分的表3中示出。
抗微生物剂与重复的亲水和/疏水结构域共价结合。在抗微生物水凝胶中,有多个抗微生物分子,它们各自与重复且周期性的亲水和/疏水结构域的至少一部分共价结合。
水凝胶中可以有多于10%、例如多于50%或多于90%的抗微生物剂与水凝胶共价连接。这带来更好的稳定性,并减少抗微生物剂从水凝胶的渗出。
抗微生物剂可以是两亲抗微生物剂。即,抗微生物分子可以具有亲水区域和疏水区域。可以选择抗微生物剂,以使其通过静电力来破坏细菌细胞壁。抗微生物剂可以是抗微生物聚合物分子,例如聚合物杀生物剂或抗微生物肽(AMP)。AMP通常通过破坏微生物的细胞膜来阻碍或抑制微生物的生长和增殖。AMP通常是两亲的。AMP通常是短链肽,即,由1~25个氨基酸构成,且分子量在10~25kDa之间。AMP可以是线性链状AMP、分支AMP和/或环状AMP。它们通常带有净正电荷,并且同时具有亲水区域和疏水区域。已知带正电的AMP的两亲结构使得该肽能够穿透带负电的细菌膜。受损的细胞壁导致细胞死亡。AMP的两亲性,再加上水凝胶的有序且重复的纳米结构,使得AMP具有取向性且固定得更好。即,AMP不会从下面的水凝胶分离或释放。这使得抗微生物水凝胶成为抗微生物剂的不可渗出的基材。AMP可以同时与两亲水凝胶的亲水结构域和疏水结构域共价连接。AMP可以与相邻的亲水和疏水结构域共价连接。AMP的N末端可以与水凝胶的疏水结构域共价连接。AMP的C末端可以与水凝胶的亲水结构域共价连接。
AMP可以在与两亲水凝胶共价连接的同时物理吸附在水凝胶内。如图3B中的最右图所示,即使在50%乙醇中洗涤3周后,两亲水凝胶也不会释放所有的物理吸附荧光标记AMP。这是因为水凝胶的两亲性以及AMP与水凝胶的亲水和疏水结构域的相互作用。这使得抗微生物性能提高,并且使用过程中的长期稳定性提高。
抗微生物剂可以是银(Ag)。例如,抗微生物剂可以是银纳米颗粒,固定在水凝胶的重复且有序的亲水和/或疏水结构域之内或之上。如上所述,银具有对哺乳动物细胞的毒性提高的缺点,然而,与AMP相比,其通常也是成本更低的抗微生物剂。
对于本领域技术人员来说并非显而易见的是,两亲水凝胶中存在羧基。因此,这就没有理由在未对水凝胶进行额外改性的情况下想到将AMP与两亲水凝胶共价连接。然而,如图10B-E所示,两亲水凝胶中存在羧基,并且是在水凝胶的交联过程中实现的。
固定通常通过与水凝胶的亲水结构域上的羧基之间的共价结合来实现。在抗微生物剂是抗微生物肽的情况下,在AMP与水凝胶的重复的亲水结构域之间形成强酰胺键。如实验部分所述,AMP可以通过水凝胶的亲水结构域上存在的羧基的1-乙基-3-(3-二甲氨基丙基)碳二亚胺(EDC)-N-羟基琥珀酰亚胺(NHS)活化而与水凝胶共价结合。AMP通过EDC/NHS活化而共价连接的反应方案可参见图2。由实验部分可见,AMP或其它抗微生物剂可以进一步物理吸附在水凝胶内,但在这种情况下,抗微生物剂与水凝胶的亲水或疏水区域不存在共价结合。然而,非共价结合的抗微生物剂容易相对更快地降解和从水凝胶渗出/释放。
AMP或其它两亲抗微生物剂具有疏水区域,其与水凝胶的有序且重复的疏水区域相互作用。这使得抗微生物剂的取向和固定得到改进。因此,AMP的稳定性和对降解的耐受性提高,而AMP在周边环境中的释放减少或消除,这是因为水凝胶具有有序且重复的亲水和疏水结构域。根据实验部分的结果,这样的构成可改进AMP的稳定性和活性,其改进量从数小时到最高达2天或更长。
如以下实验部分所示,抗微生物水凝胶能够杀灭最高达99.99%的革兰氏阳性和革兰氏阴性细菌。不受理论的限制,另一个益处是抗微生物水凝胶的亲水结构域能够吸引带负电的细菌,从而有效地杀灭它们。在伤口护理用途中,也可以通过移除包含抗微生物水凝胶的伤口敷料来除去死亡和/或粘附的细菌。针对革兰氏阳性和革兰氏阴性细菌的实验结果表明,抗微生物水凝胶也能够杀灭细菌的耐药性菌株,例如MRSA和多药耐药性(MDR)大肠杆菌。
如实验部分所示,抗微生物肽可以是下述的一种或多种:RRPRPRPRPWWWW-NH2(RRP9W4N,Red Glead Discovery AB,瑞典隆德)、RRPRPRPRP-NH2(RRP9N,Red GleadDiscovery AB,瑞典隆德)、RRPRPRPWWWWRP-NH2(RRP7W4RPN,Red Glead Discovery AB,瑞典隆德)、RRPRPWWRPWWRP-NH2(RRP5W2RPW2RPN,Red Glead Discovery AB,瑞典隆德)。RRP9W4N、RRP9N的序列见WO 2012/033450 A1。RRP7W4RPN(SEQ ID NO:1)和RRP5W2RPW2RPN(SEQ ID NO:2)的序列一并见该申请。抗微生物肽可以是包含少于20个氨基酸的抗微生物肽,其中包含与氨基酸序列RRPRPRPRP(WO 2012/033450A1中提供的序列)有至少90%、例如95%相同性的氨基酸序列,并且任选地包含附加在C或N末端或两者之间的至少三个连续的色氨酸或苯丙氨酸残基的延伸片段(stretch)。抗微生物肽可以包含N末端酰胺化。抗微生物肽可以是包含形成疏水区域的至少一个、例如至少三个疏水性氨基酸如苯丙氨酸或色氨酸残基的延伸片段的抗微生物肽。疏水区域允许与水凝胶的疏水区域相互作用。然而,其它抗微生物肽也可能适合用作抗微生物剂。
抗微生物剂可以是如上述段落中所述的源于合成的AMP,或者是生物来源的。生物来源的AMP可以源于激肽原蛋白、富含脯氨酸和精氨酸末端富含亮氨酸重复蛋白(PRELP)、生长因子蛋白、凝血系统蛋白、补体因子C3a、血管假性血友病因子、玻连蛋白、超氧化物歧化酶、朊病毒蛋白、蛋白C抑制因子、纤连蛋白、层粘连蛋白、趋化因子和富组氨酸糖蛋白。生物来源的AMP的一些例子是源于人抗菌肽的LL-37肽和盐酸奥米加南(Omigananpentahydrochloride)。所有这些肽均可以共价连接或物理吸附的方式引入水凝胶中。单独或与其它肽一起。
抗微生物剂可以通过各种方式与水凝胶连接。如实验部分所示,抗微生物剂可以通过将水凝胶浸渍在含抗微生物剂的溶液中来连接。与浸渍相反,抗微生物剂可以通过表面施加方式基本上施加在水凝胶的表面。含抗微生物剂的溶液可以滴加在水凝胶的表面上。含抗微生物剂的溶液可以喷雾在水凝胶上。如实验部分所示,通过滴加和喷雾,与浸渍相比,表面的抗微生物活化所需的抗微生物剂的量通常显著减少。这是因为水凝胶主体未被抗微生物剂活化。
除抗微生物剂外,水凝胶可以包含至少一种治疗剂。由于水凝胶的有序且重复的亲水和疏水结构域,治疗剂可以是疏水性的、亲水性的或两亲的,可以是极性的或非极性的。抗微生物水凝胶可将疏水性治疗剂容纳在疏水结构域中,而亲水结构域容纳亲水性治疗剂。治疗剂可以是但不限于具有抗炎症、抗生素或抗癌性质的药物分子或小生物分子如肽或蛋白质。从抗微生物水凝胶选择性释放治疗剂的这一性质,再加上其抗微生物性质,可用于医疗器械,例如用于伤口护理和伤口愈合或其它抗微生物/药物释放用途。至少一种治疗剂可以共价连接或物理吸附于抗微生物水凝胶的疏水和/或亲水结构域。可以为水凝胶提供多种治疗剂。在这种情况下,第一治疗剂可以共价连接于水凝胶,而第二、第三等治疗剂可以物理吸附。与抗微生物剂相反,至少一种治疗剂不需要固定在水凝胶之上或之内,而可以自由地从表面基本上渗出。
抗微生物水凝胶不粘附或粘贴在生物表面如皮肤或伤口床上。这使其在各种用途中有着改进的性能。伤口护理制品如伤口敷料必须是柔软的,并且能够吸收溢出的伤口渗出物,其目的是控制感染,并保持伤口环境中不含微生物。抗微生物水凝胶可用作伤口敷料以吸收从受损皮肤释放出的不可控渗出物。伤口渗出物可含有脓、血液、水和汗液。由于抗微生物水凝胶的良好且通用的吸收性质,再加上抗微生物性质,其尤其适合作为伤口护理制品。如实验部分的表2所示,与包含两亲组分但没有抗微生物剂与之共价结合的水凝胶相比,抗微生物水凝胶吸收基本上等量的水。因此,即使在包含抗微生物剂时,抗微生物水凝胶也具有足够的伤口渗出物吸收性能。
可以通过在基材上施加抗微生物水凝胶来形成包含抗微生物水凝胶的装置。基材可以具有比水凝胶更好的机械强度,从而更不容易在使用过程中受损。
本文所用的术语装置是指医疗、卫生或伤口护理装置,其中抗微生物性质是有利的。例如,装置可以选自下组:个人卫生制品、尿布、植入物、手术设备、支架、导管、皮肤移植物、隐形眼镜、伤口敷料、造口术敷料、造口术基板、切口膜、手术单、贴片、绷带、创可贴、膏药、粘合剂、胶带、胶布(adhesive plasters)、橡皮膏(sticking-plasters)、薄橡皮膏布(court-plasters)及其任意组合。
装置包含第一层,该第一层是本文所述的抗微生物水凝胶。装置可以包含第二层,该第二层是上述的基材,第二层可以包含水凝胶层,从而该装置至少包含第一和第二水凝胶层。第二层可以包含例如金属、塑料、弹性体、膜、织物、泡沫、无纺膜、纤维网络、针织物。可以选择第二层,以使其与第一层相比具有较差的液体吸收性质。
在装置是施用在患者皮肤上的伤口护理或个人卫生装置的情况下,第一层和抗微生物水凝胶层设置成靠近皮肤。因此,第二层设置成远离皮肤。
第二层可以设置在第一抗微生物水凝胶层上。可以在装置上覆盖设置覆盖层、粘附层或保护层。
如上所述,抗微生物水凝胶可以应用于植入物或可植入装置,从而提供带有非渗出性抗微生物涂层的植入物。这种植入物可以是螺钉、板、分流器、人工关节、人工心脏、支架、导管、气道管、诱导管(conduits)、瓣膜等。类似地,抗微生物水凝胶可以应用于手术设备。
抗微生物水凝胶可以通过常规浇铸技术或例如增材制造(AM)技术形成为三维结构。增材制造可以改进亲水和疏水结构域的结构和取向。例如,在水凝胶的挤出AM过程中,剪切力和拉伸力使得水凝胶的有序纳米结构在优选方向上取向。因此抗微生物剂与水凝胶连接,所以水凝胶纳米结构的这种取向或排列可使抗微生物剂在任何优选方向上均匀地存在于抗微生物水凝胶上,如图6所示。这可以使得抗微生物剂均匀地面向外部环境,因而使得细菌的吸引和杀灭得到改进。
尽管上文中已经参照具体实施方式对本发明进行了描述,但这并不旨在将本发明限制在本文所述的具体形式。相反地,本发明仅由所附权利要求书限制。
权利要求书中,术语“包括/包含”不排除其它元素或步骤的存在。此外,尽管是单独列出的,但可以通过例如一个单元或处理器来实现多个方式、元素或方法步骤。另外,尽管单个特征可以包括在不同权利要求中,但这些特征可以有利地组合,并且包括在不同权利要求中并不暗示着特征的组合不是可行的和/或有利的。再者,单数指代不排除复数。术语“一个”、“一种”、“第一”、“第二”等不排除复数。权利要求书中的参考标记仅作为阐明用示例而提供,不应以任何方式被解释为限制权利要求书的范围。
实验部分
以下实施例仅是示例,不应认为对本发明的范围构成限制。相反地,本发明仅由所附权利要求书限制。
实验1:抗微生物水凝胶的制造
可交联两亲分子的形成
概述
两亲三嵌段共聚物聚环氧乙烷(100)-聚环氧丙烷(70)-聚环氧乙烷(100)(F127)、聚环氧乙烷(30)-聚环氧丙烷(70)-聚环氧乙烷(30)(P123)、氯仿、丙烯酰氯、三乙胺、碳酸钠、无水硫酸镁均未经处理直接使用。两亲三嵌段共聚物F127(DA-F127)(或)P123(DA-P123)的二丙烯酸酯衍生物通过Pluronic分子与丙烯酰氯的反应来合成(图1)。所有玻璃器皿均用丙酮、乙醇和水清洁,然后在100℃下在对流烘箱中干燥过夜。
详细步骤
反应在三口圆底烧瓶(250ml或1L)中进行,当中的口用于冷凝,两边的口一个用于N2吹扫,一个用于滴加丙烯酰氯。
在500ml烧杯中称取18.9g(0.0015mol)的Pluronic F127,在磁力搅拌(400rpm)下向其中加入200ml的氯仿(CHCl3)。Pluronic F127在10分钟内完全溶解于CHCl3。将该溶液加入圆底烧瓶中。另用30ml的CHCl3洗涤烧杯以除去残留表面活性剂。任何残留表面活性剂和CHCl3均加入圆底烧瓶中。
向圆底烧瓶中的表面活性剂溶液中加入两倍摩尔量的三乙胺TEA(0.303g,以10mlCHCl3的溶液的形式加入)。加入TEA以中和反应过程中产生的盐酸(HCl)。
制备丙烯酰氯(0.006mol,0.5431g)的氯仿(20ml)溶液。用带有弯头的滴管将该溶液滴加至圆底烧瓶中,(将反应容器保持在冷水浴中)在N2气氛下(N2气管与固定在胶塞上的玻璃吸管连接)以400rpm进行磁力搅拌。
所有接头和开口均在放置过夜前用封口膜(parafilm)密封。反应混合物在3小时后变得非常浑浊(提示产生的HCl被TEA中和)。取决于粘度的增加,间歇地向反应混合物中加入20~30ml的CHCl3。24小时后停止反应,将反应混合物从滴管侧的开口移出,排空倒入分液漏斗。
取决于产物的量,在250ml或500ml分液漏斗中将反应产物用100ml的Na2CO3水溶液(5重量%)洗涤3次。在将其分离前,将两相混合物剧烈搅拌。形成稠厚的缓慢分离的乳液。在第二次或第三次洗涤后,将带有混合物的分液漏斗放置过夜,以进行清晰且彻底的分离。在每次洗涤中,通过底部释放移除CHCl3相。水相从顶部移除,以防污染。
将有机相转移至500ml烧杯中。向混合物中逐份加入无水硫酸镁(5刮勺,约20~30g的Mg2SO4),将其在磁力搅拌(200~300rpm,RT)下放置2小时,直至形成CHCl3相的澄清层。
使用布氏漏斗将CHCl3混合物真空滤除至锥形瓶中。在过滤前,向含有混合物的烧杯中进一步加入100ml的CHCl3用于稀释,这会降低混合物的粘度并有助于防止漏斗通道的堵塞。将直径11cm的沃特曼(Whatman)滤纸放置在分液漏斗的开口处用于过滤。在过滤过程中,刮擦滤纸以促进过滤过程。当滤液的产生开始大幅减慢时,更换纸张。过滤采用水基真空系统。将过滤出的澄清溶液转移至已事先称重的1L单口圆底烧瓶中,以进行减压下的溶剂蒸发。
在减压、40℃下用2.5~6小时除去溶剂。大部分溶剂在最初的30分钟内被除去,并收集在初级和二级收集容器内。然后,在可能的最小压力下进行蒸发,直至形成干燥粉末状残留物。该步骤耗时将近6小时才完成。蒸发结束后,得到白色粉末状残留物。
总体产率达到75~85%(DA-F127)。重复以上步骤来合成DA-P123。
使用可交联两亲嵌段共聚物来形成可化学交联溶致液晶
在本实施例中,使用二丙烯酸酯改性Pluronic F127(DA-F127)和水来形成胶束立方LLC相。本特定实施例的组成以重量计为30%的DA-F127和70%的水。然后加入光引发剂2-甲基-2-羟基苯丙酮。所加入的光引发剂的浓度为1重量%,以DA-F127嵌段共聚物组合物的总重量计。为了形成LLC凝胶,将二丙烯酸酯改性两亲嵌段共聚物、水和光引发剂在玻璃容器内充分混合,以形成粘稠、澄清、透明的凝胶。接着,将装有凝胶的容器在黑暗环境中保持紧密密封24小时。对能够用DA-F127或DA-P123两亲嵌段共聚物形成的所有可能的LLC相实施同样的步骤。
本发明的三维固态化学交联溶致液晶基质的形成
接着,将可交联LLC凝胶或是转移至优选形状的模具,或是用挤出增材制造系统进行增材制造(3D打印),以获得感兴趣的最终形状。在该步骤之后,使用紫外光(90W等,252nm)使成形的凝胶交联5~30分钟,以形成具有交替的亲水和疏水纳米结构的三维固态交联溶致液晶水凝胶。
具有共价连接的带正电的抗微生物肽的化学交联溶致液晶水凝胶的形成
在无菌水中制备抗微生物肽RRPRPRPRPWWWW-NH2(RRP9W4N,Red Glead DiscoveryAB,瑞典隆德)的溶液,浓度为200μM。为了将AMP与水凝胶共价连接,将水凝胶浸没在MES缓冲液(pH=6)中的1-乙基-3-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)溶液中,终浓度为2mg/ml,使其在缓慢振摇下在室温下反应30分钟。接着,将水凝胶在磷酸盐缓冲生理盐水(PBS,pH 7.4)中洗涤3次,在室温下在AMP溶液中悬浮2小时。将水凝胶洗涤3次,每次0.5小时,以从材料中除去未反应的肽,供细菌试验使用。
表1通过上述步骤制造的抗微生物水凝胶的组成和详情
实验2:测试抗微生物水凝胶的抗微生物活性和非渗出性
测试水凝胶的固定和非渗出性能
在乙醇中重复多次洗涤步骤最高达3周后,使用荧光标记AMP(5(6)羧基荧光素-RRPRPRPRPWWWW-NH2)来研究AMP连接的稳定性及其在水凝胶表面上的分布。为了测试AMP与水凝胶的连接效率,将抗微生物水凝胶在50%乙醇中依次洗涤3周。在特定时间点的每次洗涤后,将抗微生物水凝胶移除,用纸巾拍打以除去多余的溶剂,并在荧光显微镜下成像,以评估由AMP发出的荧光。将结果与对照水凝胶进行比较,对照水凝胶中,荧光标记AMP通过浸渍吸附在水凝胶内,但不存在标记AMP的共价结合。图3a(上排)显示,在洗涤后的不同时间点,由与水凝胶共价结合的AMP发出的荧光仍保持完整。图3b(下排)所示为对照。由图中可见,共价结合的AMP的固定明显更强。
评价抗微生物水凝胶的抗微生物活性
使用表皮葡萄球菌(S.epidermidis)(ATCC 35984)来评估抗微生物水凝胶上的生物膜形成。在实验前一天,使用无菌10μL环从各细菌的经培养的琼脂板上取一个菌落,接种5mL胰蛋白酶大豆肉汤(TSB)的管。将接种的细胞在培养箱中培养6小时,在TSB中稀释,并在培养箱中培养过夜,以达到细菌生长的停滞期(stationary phase)。
用光谱仪将细菌培养物的620nm处的光学密度调节至0.7(估计提供109个菌落)。将细菌悬浮液以2500rpm离心10分钟,将形成的细菌沉淀悬浮在新鲜TSB培养基中。在12孔板中,将2mL悬浮液接种在阴性对照玻璃基材、阴性对照水凝胶、阳性对照水凝胶以及本发明的一个方面的两亲抗微生物水凝胶上。阴性对照水凝胶具有上述有序且重复的结构,但未提供任何抗微生物剂(AMP)。阳性对照水凝胶具有吸附在水凝胶内的AMP,但不存在AMP与水凝胶的共价结合。接着,将细菌在标准培养条件下(环境空气,37℃下)培养24小时,以促进表面上的生物膜形成。培养1小时后,吸去培养基,替换成新鲜TSB,再培养23小时。在24小时的时间点结束时,将对照和抗微生物水凝胶样品用新鲜PBS淋洗3次,以在生物膜分析前洗去任何未连接的浮游细菌。生物膜用BacLightTM细菌活力试剂盒(分子探针,英杰公司(Invitrogen))染色。图4中的图像获自试剂盒中提供的9和碘化丙啶核酸染色。具有完整细胞膜的活细菌呈绿色,具有受损膜的死细菌呈红色。图4a显示在不具有任何AMP的阴性对照水凝胶上形成的表皮葡萄球菌(S.epidermidis)生物膜。图4b显示在具有物理吸附(即,并非共价结合)的AMP的阳性对照水凝胶上形成的表皮葡萄球菌(S.epidermidis)生物膜。图4c显示在本发明的一个方面的具有共价结合的AMP的水凝胶上形成的表皮葡萄球菌(S.epidermidis)生物膜。图4b显示,连接在阳性水凝胶对照上的细菌较少。而图4c显示几乎100%的抗微生物效果,即杀灭抗微生物水凝胶上的细菌。
抑制区测试
在实验前一天,使用无菌10μL环从经培养的琼脂板上取一个表皮葡萄球菌(S.epidermidis)菌落,接种5mL胰蛋白酶大豆肉汤(TSB)的管。将接种的细胞在培养箱中培养6小时,在TSB中稀释,并孵育到细菌生长的停滞期。将50μl的悬浮液接种在脑心浸液(BHI)琼脂板上,然后将水凝胶放置在琼脂上。接着,将板在标准培养条件下(环境空气,37℃下)孵育24小时。图5b中,具有物理吸附的AMP的水凝胶周围出现洁净区域,这表示因为AMP从凝胶中扩散,所以有效地抑制了微生物生长。另一方面,如图5c所示,当AMP与水凝胶共价连接时,水凝胶周围未见洁净区域,并且仅在水凝胶覆盖区正下方的区域可见抑制,这表明没有AMP从凝胶渗出。
实验3:评价水凝胶和抗微生物水凝胶的液体吸收容量
使用具有正常胶束立方和正六边形的有序纳米结构的基于DA-F127和DA-P123的水凝胶和抗微生物水凝胶,进行液体吸收研究。将小块的水凝胶冷冻干燥2天,以除去水凝胶中存在的所有水。对于处于充分湿润状态的那些水凝胶,在没有任何其它干燥步骤的情况下进行测试。干燥后,水凝胶处于干燥状态,并在过量的水或氯仿(20ml)中放置过夜,以使水凝胶吸收尽可能多的液体。在环境温度下吸收15小时后,用镊子将水凝胶从各种液体中移除,并通过在纸巾上拍打来除去多余的液体。然后,以0.001g的精度称量样品。表2显示各水凝胶在水和氯仿中的初始和最终的液体吸收容量(LQ%)。抗微生物水凝胶仅在水中进行测试,因为水与本研究更相关。用以下等式计算水凝胶和抗微生物水凝胶的液体吸收性。
表2:充分干燥水凝胶和抗微生物水凝胶胶束立方有序纳米结构的液体吸收
表2显示,干燥状态的水凝胶在氯仿中具有最高为1795%的液体吸收性,同时其能吸收750%的水。重要的是,水凝胶的抗微生物功能不会大幅改变水凝胶的液体吸收性,抗微生物水凝胶的水吸收性为676%。
表3:充分湿润状态的本发明的各种水凝胶的液体吸收
表3中的充分湿润状态是指水凝胶初始浓度的20~80重量%的水和20~80重量%的两亲有机分子。高液体吸收性使得水凝胶尤其适合用于重视伤口渗出物的液体吸收的伤口敷料。
结论
制备了与现有的水凝胶相比表现出改进的性质的两亲抗微生物水凝胶。抗微生物剂与两亲水凝胶的亲水结构域和/或疏水结构域的共价结合使得抗微生物剂固定于水凝胶。而且,两亲抗微生物水凝胶能够以显著的程度吸收水性和非水性疏水溶液。
实验4:LLC水凝胶的形成、AMP的共价连接、以及后续的表征和分析
二丙烯酸酯改性Pluronic F-127的合成
Pluronic F127在其初始形式下不能化学交联。反之,其是响应不同的浓度和温度而不断变化的LLC溶液。这里需要固态水凝胶,这意味着为了使其能够化学(或共价)交联,必须对Pluronic进行改性。这通过在两亲聚合物末端添加丙烯酸酯基来实现,这在早先的研究(He,W.等,Mesoscopically Ordered Bone-Mimetic Nanocomposites.Adv.Mater.,Vol 27:2260-2264)以及上文中已被证明是成功的。化学反应的常规示意图示于图1。合成工艺的详细描述可参见He,W.等,2015。
两亲水凝胶的形成
Pluronic F127的二丙烯酸酯衍生物是外观上与其母体分子基本类似的白色粉末。将该粉末与水混合而形成所需的LLC。本研究仅采用胶束立方相(简记为I1),因为I1相易于形成和处理,并且与更加稠厚且需要更高浓度两亲物的其它LLC结构如六边形相或层状相相比,只需要少量的两亲物。胶束立方相的LLC通过将二丙烯酸酯化Pluronic F-127(DA-F127)(40重量%)与水(60重量%)手动混合形成稠厚且均匀的凝胶而得到。为了促进交联,向凝胶混合物中加入相当于DA-F127的2重量%的光引发剂2-羟基-2-甲基苯丙酮。在本研究的一部分中也采用另一非细胞毒性光引发剂,名为2-羟基-4-(2-羟基乙氧基)-2-甲基苯丙酮。接着,将凝胶混合物在两片载玻片之间展开,以获得合适的厚度,接着将其包裹在封口膜(Parafilm)和铝箔中。为了使LLC相达到其平衡状态,将凝胶保持静置过夜。第二天,将仍位于载玻片之间的凝胶暴露在UV光(λ=254nm)下10分钟,以使凝胶交联。得到固态水凝胶,并在直径4mm(后面称为小水凝胶)和8mm(后面称为大水凝胶)的圆形活检穿孔器的帮助下切成所需形状。对于直径更大的水凝胶,使用厚度为1.8mm的塑料模具,也得到均匀的厚度。最后一步是,为了除去引发剂和未交联的聚合物,并使得水凝胶处于其充分溶胀状态,在水中洗涤水凝胶48小时。
AMP与两亲水凝胶的共价连接
不同的种类是指不具有AMP的对照水凝胶、具有物理承载AMP的水凝胶和具有共价连接AMP的水凝胶。在所有实验中均使用对照水凝胶,其仅由交联水凝胶构成。第二种变体——物理承载AMP是在200μM的AMP溶液中浸泡了2小时的水凝胶。第二种变体基本上不诱导任何AMP和水凝胶之间的共价连接。称为共价连接AMP样品的最后一种变体如下所述得到:在前一部分的洗涤步骤之后,将水凝胶放在24孔板的不同孔内。各别称取N-羟基琥珀酰亚胺(NHS)和1-乙基-3-(3-二甲氨基丙基)碳二亚胺(EDC),以制成在2-(N-吗啉代)乙磺酸(MES)缓冲液(pH为6.00)中的2mg/ml溶液。溶液制备后迅速将500μl的EDC和NHS溶液各自加入各孔中,因为它们的半衰期短。将水凝胶在EDC/NHS溶液中保留30分钟,然后在水中洗涤。EDC/NHS活化后,将水凝胶在AMP溶液中浸泡2小时。根据实验改变溶液的浓度和体积。除非另有说明,所有实验中使用的浓度和体积均为:200μM,小水凝胶为400μl,大水凝胶为700μl,如上述实验1中所述并如图2中的反应方案所示。
傅里叶变换红外光谱(FTIR)分析
图2所示反应只能在Pluronic分子上存在羧酸时发生。然而,DA-F127只含有酯基,而没有羧酸基。因此,为了在EDC/NHS活化前在水凝胶形成过程中的某处使反应发生,必须要形成羧酸基。为了试图考察该反应,对来自AMP连接步骤之前的所有不同步骤样品进行FTIR测定。这包括未改性Pluronic F127粉末、DA改性Pluronic F127粉末、交联水凝胶(经过洗涤和未经洗涤)、以及最终经EDC/NHS活化的水凝胶。在珀金埃尔默公司(PerkinElmer)Frontier光谱仪上采用衰减全反射模式(ATR,来自派客技术公司(PikeTechnologies)的GladiATR钻石板)来进行FTIR分析。扫描范围为波数400~4000cm-1。样品厚1~2mm,每个样品扫描16次。
五种不同样品的1500~1900cm-1范围内的光谱示于图10。粉末形式的未改性Pluronic F127在该区域内未显示出明显的峰。另一方面,改性Pluronic粉末在1725cm-1处显示出明显的峰。交联水凝胶、交联且经过洗涤的水凝胶以及经EDC&NHS活化的水凝胶分别在1734、1734和1735cm-1处显示出明显的峰。
在未改性Pluronic F127上,在酮区域内没有清晰的单独信号,表明该分子中不存在羰基。另一方面,在改性Pluronic F127的FTIR测定中可见清晰的信号,表明成功引入了丙烯酸酯基。可见信号的步骤之间仅有的差异是在改性Pluronic F127和交联水凝胶之间,这显示从1725cm-1到1734cm-1的峰位移。该峰最有可能表明,反应的产率小于100%,因而在整个水凝胶中存在正常酯、偶联酯和羧酸的混杂。
采用UV-可见(UV-Vis)光谱法的肽浓度测定
采用UV-Vis分光光度法来估计水凝胶内存在的AMP量。首先将水凝胶以如上所述的标准方式活化,然后暴露于AMP溶液,收集所有液体并转移至添加有水的药瓶中,总体积为3ml。将该稀释溶液转移至石英比色皿中,置于HP8453分光光度计内。用水作为参照进行测定,280nm处的吸光度如下所示。该波长与氨基酸色氨酸的吸光区域相关联。为了将测得的波长与对应的浓度相关联,在测定前制备肽的外部标准。在大(直径8mm)和小(4mm)水凝胶以及共价连接AMP的水凝胶和物理承载AMP的水凝胶上均进行分析。将水凝胶浸泡在AMP溶液中后,对它们重新进行洗涤,在洗出的提取物上进行测定,以对从水凝胶渗出的AMP进行定量。
显示连接量或吸附量(物理承载AMP的水凝胶的情况)的结果示于表4。
表4:水凝胶中连接或吸附的AMP量,用mg±标准差表示。
样品 | 连接/吸附的AMP(mg) |
4mm,共价连接AMP | 0.031±0.013 |
4mm,物理吸附AMP | 0.035±0.015 |
8mm,共价连接AMP | 0.091±0.025 |
8mm,物理吸附AMP | 0.093±0.028 |
表4表明,物理承载有AMP的水凝胶和共价连接有AMP的水凝胶获取类似量的AMP。这表明两亲LLC水凝胶即使只有物理吸附也能有效地引入AMP,这最有可能是因为疏水效应的机制。
两亲水凝胶的生物膜形成和抗菌活性的定性和定量评价
在本实验中,根据实验2的方案来测试水凝胶的抗微生物效果,但是用三种不同的细菌菌株重复了实验:金黄色葡萄球菌(Staphylococcus aureus)CCUG 10778、表皮葡萄球菌(Staphylococcus epidermidis)ATCC 35984和铜绿假单胞菌(Pseudomonasaeruginosa)CCUG 6489。之所以选择这些细菌,是因为它们在感染中很常见,并且因为假单胞菌属是革兰氏阴性的,而葡萄球菌属是革兰氏阳性的。所有细菌均储存在-80℃冰箱中,基本上只为了形成培养用的菌落才取出。此步骤在脑心浸液琼脂板(BHI琼脂板)上进行,该板上通过无菌技术划线,然后在37℃培养箱中上下颠倒孵育过夜。存在于水凝胶样品上的细菌在活/死细胞染色后所拍摄的显微镜图像的选择示于图7。一般来说,金黄色葡萄球菌(S.aureus)和表皮葡萄球菌(S.epidermis)在对照水凝胶上完全存活,以覆盖样品主要部分的方式形成生物膜结构。铜绿假单胞菌(P.aeruginosa)的生长似乎不像革兰氏阳性葡萄球菌种类那样高效。在数种情况下,如果在和铜绿假单胞菌(P.aeruginosa)一起培养的水凝胶上不是没有细菌,那就是有很少的细菌。针对表面上可见的死细胞比例,用公式(死细胞)÷(死+活细胞)分析结果。定量结果示于图8。
由图7和8可知,材料中的AMP的引入对于与表面直接接触的细菌产生主要抗菌效果。大部分细菌死亡,活着的细菌与对照相比相对较少,并且在大多数时间内分成小的集落。因此,生物膜形成保持在最少,提示水凝胶表面上的活细菌可能更容易被机体自身的免疫响应所照顾。如果无菌性是至关重要的,则在这些情况下,应当将常规抗生素和AMP-水凝胶一起使用,这应当使得更少的细菌在处理中存活,并因此产生更低的抗生素耐受性。图9显示死细胞的不同形态。图9a所示的不规则斑点和9b的粉末状结构均暗示细菌膜的受损的结构完整性。这意味着即使肽实在太短而无法完全穿透膜,它们也仍然能够通过干扰膜来发挥它们的活性,这最有可能是通过静电力实现的。
PBS中的储存稳定性
为了确定两亲水凝胶的稳定性,进行了储存稳定性实验。大水凝胶在PBS中保留10周,接着和金黄色葡萄球菌(S.aureus)一起孵育,然后再次如上所述进行活/死细胞染色。接着,将已在PBS中保留10周的具有或不具有AMP的水凝胶和金黄色葡萄球菌(S.aureus)一起孵育。细菌的活/死细胞染色的结果示于图11。所示为死细胞的比例a)和细菌的表面覆盖率b),在两者中均可见显著差异。
血清稳定性
为了评价AMP与两亲水凝胶的共价连接的稳定性,将水凝胶放在人血清中。根据上述步骤制备大水凝胶,放在24孔板的不同孔内。将400μl的20%人血清通过0.2μm滤器过滤以除去细菌和沉淀物,然后加入各孔中。血清以纯血清的形式购自西格玛奥德里奇公司(Sigma Aldrich),用Milli-Q水稀释至20%。将板保持在室温,包裹在铝箔中。在所需的时间点,将一套水凝胶(2x对照、2x物理和2x共价)从血清中取出,在PBS中洗涤三次。将水凝胶放置在新的24孔板中,在该24孔板上,金黄色葡萄球菌(S.aureus)的培养物在37℃培养箱中生长过夜。孵育后,将水凝胶用活/死细胞活力试剂盒染色,并分析结果。结果示于图12。结果显示,在最初的10小时内,达到正常的活性。共价连接的AMP-水凝胶样品在血清中放1天和2天后仍可见杀菌效果,这显著高于对照。
对水凝胶表面施用AMP
为了使得用于活化水凝胶的AMP量最小化而又不会有损杀菌效果进行了试验。该试验通过两种同方式进行,或是在水凝胶上滴加AMP溶液,或是采用喷雾装置。对于液滴测试,采用四种不同的体积和两种不同的浓度,产生八种不同的组合。不同的组合总结在表5中。作为比较,将400μl的200μM小水凝胶溶液通过浸渍在含有154.5μg的AMP分子的液中而正常活化。将AMP小心称重,接着在水中稀释,以达到所需浓度800μM。将该溶液的一部分稀释至200μM,作为更低浓度。以与实验2中所述类似的方式制备水凝胶,接着如上所述在EDC/NHS中活化。然后,用纸巾迅速地轻拍水凝胶,以干燥其表面。接着,根据表5,在吸管的帮助下将液滴分布在水凝胶顶部。将液滴在水凝胶上保持3小时,然后在水中洗涤3次。以与上文的实验2中所述相同的方式针对金黄色葡萄球菌(S.aureus)评价抗菌效果,并通过活/死细胞染色进行分析。
表5:液滴测试中采用的不同组合。
体积 | AMP浓度 | 液滴中的AMP量 |
10μl | 200μM | 3.83μg |
20μl | 200μM | 7.65μg |
40μl | 200μM | 15.30μg |
90μl | 200μM | 34.434μg |
10μl | 800μM | 15.30μg |
20μl | 800μM | 30.61μg |
40μl | 800μM | 61.22μg |
90μl | 800μM | 137.74μg |
结果示于图13。所有样品均显示出与对照的显著差异。与浸渍技术相比,用200μM的AMP溶液的液滴活化的水凝胶显示出相对较低的抗菌效果。用800μM液滴活化的水凝胶显示出相同的抗菌效果,均处于与以上述浸泡方式活化的水凝胶相同的范围。可见,较大的体积、即40μl和90μl并不总是在水凝胶上保持为液滴,而是从水凝胶上流走。这例如可以解释200μM 90μl样品的较大的误差棒和200μM 40μl液滴的活性的显著下降。
对于喷雾测试,用活检穿孔器将水凝胶切成圆盘,然后用EDC/NHS活化,只对一侧进行处理。因此,并不是小盘被活化,而是整个片材都被活化。这是为了在水凝胶上获得一致的喷雾物质层,并且也是为了模拟在工业生产方式中水凝胶最有可能如何被活化。这些研究中使用的喷雾枪是来自喷枪(airbrush)系统的A470系列。分析了两种水凝胶——已在水中洗涤48小时的水凝胶,和新鲜交联但在AMP活化前没有任何洗涤步骤的水凝胶。为了进一步模拟工业方法,所有这些水凝胶均用非细胞毒性光引发剂来制备。本实验中采用的AMP浓度为200μM、400μM和800μM。因为喷雾过程中的损失,喷雾在表面上的液体的精确体积很难估计。然而,据粗略估计,每10cm2的水凝胶使用约500μl的AMP溶液。
在第一个试验中,用200μM、400μM的AMP和800μM的AMP溶液活化水凝胶片材。使用的水凝胶矩形片材已在水中洗涤2天,并且是新鲜交联的。这是指充分溶胀(约90%水)的水凝胶和介于干燥和充分溶胀状态之间(约60%水)的水凝胶。对于两种片材,水凝胶之间均未为了除去任何多余的、并且因而在加入AMP时留在水凝胶上的EDC/NHS而进行洗涤,这是因为已经确认,与在施用AMP溶液前将EDC-NHS溶液从水凝胶上洗去的情况相比,这可能会产生更高的性能。400μM和800μM的AMP溶液的结果示于图14。用200μM的AMP溶液进行喷雾导致性能下降。因为无论水凝胶是否已经溶胀都未见显著差异,所以这些结果表明,在交联后完全有可能直接使水凝胶活化。
两亲抗微生物水凝胶的人细胞毒性-MTT试验
为了研究水凝胶对人细胞的毒性,对对照水凝胶和具有共价连接AMP的水凝胶进行MTT试验。MTT试验测定细胞代谢活性,这与细胞的活力相关联。通过上述步骤制备水凝胶,并用直径为4mm的较小的活检穿孔器切成盘。接着,将它们在水中洗涤48小时,然后在乙醇中、接着再次是Milli-Q水中洗涤30分钟。将一半的水凝胶活化,然后将所有样品转移至0.7ml生长培养基中至少24小时。实验中施用的生长培养基是杜贝克氏改良的依格培养基(DMEM)的一种版本,其不具有任何酚红,但添加有1v/v%的200mM L-谷氨酰胺、10v/v%的胎牛血清、1μg/ml的氢化可的松、3ng/ml的碱性(baisc)成纤维细胞生长因子、10的ng/mL的人表皮生长因子、10的μg/ml的肝素、10μg/ml的庆大霉素和0.25μg/ml的两性霉素B。
当水凝胶在生长培养基中时,偶尔将管混合并涡旋,以使得潜在毒性混合物从水凝胶中渗出。接着,向96孔板的不同孔内和等量的人成纤维细胞一起加入生长培养基,每孔0.2ml。将板置于37℃、5%CO2的湿润培养箱中,将成纤维细胞扩展至30000~50000个细胞每孔。接着,除去培养基,替换成100μl的浸泡了相应样品的生长培养基以及10μl的12mMMTT溶液。也使用阳性和阴性对照进行培养。阳性对照由在未接触过任何水凝胶样品的培养基中生长的细胞构成,阴性对照仅由生长培养基和MTT溶液构成,没有任何细胞。接着,将板孵育4小时,然后向每孔加入100μl的SDS-HCl溶液。接着,将板再次孵育4小时,然后在570nm处进行吸光度测定,这与细胞密度相关联。结果示于图15。虚线表示75%细胞活力,其通常被视作截止点,低于该截止点的值被认为对细胞有毒性。0%的棒表示完全没有生长,100%表示等于只有生长培养基的阳性对照的生长。结果显示出明显的数据,表明所有水凝胶均不释放出任何对人成纤维细胞有毒性的物质。
序列表
SEQ ID | 序列 | 名称 |
SEQ ID NO:1 | RRPRPRPWWWWRP-NH2 | RRP7W4RPN |
SEQ ID NO:2 | RRPRPWWRPWWRP-NH2 | RRP5W2RPW2RPN |
Claims (21)
1.一种固态抗微生物水凝胶,其包含第一可交联两亲组分,其为三嵌段共聚物的可聚合衍生物,所述第一可交联两亲组分在其化学交联状态下是溶致液晶,并且具有疏水和亲水结构域的有序纳米结构,所述水凝胶包含与亲水和/或疏水结构域共价连接的抗微生物剂。
2.如权利要求1所述的抗微生物水凝胶,其中,抗微生物剂是两性的抗微生物剂,其共价固定在第一可交联两亲组分的亲水结构域上,并且任选地固定在疏水结构域上。
3.如权利要求2所述的抗微生物水凝胶,其中,抗微生物剂是抗微生物肽。
4.如权利要求3所述的抗微生物水凝胶,其中,抗微生物剂是包含形成与水凝胶的疏水区域相互作用的疏水区域的至少一个疏水性氨基酸的延伸片段的抗微生物肽。
5.如权利要求3或4所述的抗微生物水凝胶,其中,抗微生物肽是RRP9W4N。
6.如权利要求1所述的抗微生物水凝胶,其中,水凝胶是化学交联的溶致液晶。
7.如权利要求1所述的抗微生物水凝胶,其中,两亲组分是共聚物。
8.如权利要求7所述的抗微生物水凝胶,其中,所述共聚物是三嵌段共聚物的二丙烯酸酯衍生物。
9.如权利要求1所述的抗微生物水凝胶,其中,有序纳米结构是胶束、六边形、立方或层状形态的有序且重复的纳米结构。
10.如权利要求1所述的抗微生物水凝胶,其中,抗微生物剂也物理吸附在水凝胶内,从而存在于水凝胶内的抗微生物剂的一部分是物理吸附的,一部分是共价连接的。
11.如权利要求1所述的抗微生物水凝胶,其中,除了抗微生物剂,治疗剂也与第一可交联两亲组分的亲水和/或疏水结构域共价连接或物理吸附。
12.如权利要求1所述的抗微生物水凝胶,其中,第一可交联两亲组分通过存在于第一可交联两亲组分上的反应性基团化学交联。
13.如权利要求1所述的抗微生物水凝胶,其中,水凝胶在生理条件下是非降解性的。
14.一种装置,其包含如权利要求1~13中任一项的抗微生物水凝胶。
15.如权利要求14所述的装置,其中,抗微生物水凝胶施用在基材上。
16.如权利要求14或15所述的装置,其中,抗微生物水凝胶形成抗微生物水凝胶层,其中,基材相对于抗微生物水凝胶层具有更高的机械强度。
17.如权利要求14所述的装置,其中,装置选自下组:植入物、手术设备、皮肤移植物、隐形眼镜、个人卫生制品、伤口敷料、造口术基板、贴片、膏药、粘合剂、胶带、橡皮膏及其任意组合。
18.如权利要求1~13中任一项所述的抗微生物水凝胶或如权利要求14~17中任一项所述的装置在制备用于预防和/或治疗烧伤、疤痕、细菌感染、病毒感染和/或真菌感染的药物中的应用。
19.一种制造权利要求1~13中任一项所述的抗微生物水凝胶的方法,其包括:
-提供第一可交联两亲组分,
-使第一可交联两亲组分交联,由第一可交联两亲组分形成三维固态且化学交联的溶致液晶,以及
-将抗微生物剂与水凝胶共价连接。
20.如权利要求19所述的方法,其中,抗微生物剂定位于水凝胶的表面,其中,抗微生物剂的连接通过表面施用含抗微生物剂的溶液来实现。
21.如权利要求20所述的方法,其中,抗微生物剂是抗微生物肽AMP,并且表面施用通过对水凝胶表面喷雾具有大于50μM的AMP浓度的溶液来实现。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1751277A SE541313C2 (en) | 2017-10-13 | 2017-10-13 | Amphiphilic antimicrobial hydrogel |
SE1751277-3 | 2017-10-13 | ||
PCT/SE2018/051002 WO2019074422A1 (en) | 2017-10-13 | 2018-10-01 | ANTIMICROBIAL AMPHIPHILE HYDROGEL |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111246894A CN111246894A (zh) | 2020-06-05 |
CN111246894B true CN111246894B (zh) | 2023-02-17 |
Family
ID=63832474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880066154.7A Active CN111246894B (zh) | 2017-10-13 | 2018-10-01 | 两亲抗微生物水凝胶 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11235021B2 (zh) |
EP (1) | EP3694568B1 (zh) |
CN (1) | CN111246894B (zh) |
AU (1) | AU2018349776B2 (zh) |
CA (1) | CA3078695A1 (zh) |
DK (1) | DK3694568T3 (zh) |
ES (1) | ES2927417T3 (zh) |
SE (1) | SE541313C2 (zh) |
WO (1) | WO2019074422A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE544460C2 (en) * | 2019-12-18 | 2022-06-07 | Amferia Ab | Improved wound care device |
DE102020211389A1 (de) | 2020-09-10 | 2022-03-10 | Beiersdorf Aktiengesellschaft | Wirkstoffhaltige Wundverschlusszubereitung |
DE102020211387A1 (de) | 2020-09-10 | 2022-03-10 | Beiersdorf Aktiengesellschaft | Wirkstoffhaltige Wundverschlusszubereitung |
US20220090219A1 (en) * | 2020-09-23 | 2022-03-24 | Solenis Technologies, L.P. | Compositions and methods for extracting biological material from sugar-bearing plants |
US20230390316A1 (en) * | 2020-10-13 | 2023-12-07 | University Of South Australia | Antimicrobial compositions and methods of use |
CN112263708B (zh) * | 2020-11-02 | 2021-09-28 | 上海交通大学 | 一种促进创面愈合的多功能气凝胶敷料及其制备方法 |
DE102021200975B4 (de) | 2021-02-03 | 2022-11-24 | Beiersdorf Aktiengesellschaft | Biologisch-basierte Wundverschlusszubereitung |
WO2024177556A1 (en) * | 2023-02-21 | 2024-08-29 | Amferia Ab | Endotoxin neutralising agent |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101611127A (zh) * | 2006-12-11 | 2009-12-23 | 爱尔康研究有限公司 | Peo-pbo嵌段共聚物在眼用组合物中的应用 |
CN101801180A (zh) * | 2007-07-16 | 2010-08-11 | 艾尔维奥血管公司 | 抗微生物构建体 |
CN102146200A (zh) * | 2011-04-19 | 2011-08-10 | 复旦大学 | 一种基于化学交联凝胶颗粒的温敏性水凝胶及其制备方法 |
WO2012033450A1 (en) * | 2010-09-07 | 2012-03-15 | Dermagen Ab | Novel antimicrobial peptides |
CN102614109A (zh) * | 2012-04-16 | 2012-08-01 | 上海现代药物制剂工程研究中心有限公司 | 基于多层液晶骨架的、含有活性物质的凝胶组合物及制法 |
CN104548118A (zh) * | 2015-01-12 | 2015-04-29 | 东南大学 | 抗体共价修饰的泊洛沙姆共聚物及其制备方法和应用 |
CN105102469A (zh) * | 2013-01-28 | 2015-11-25 | 新加坡科技研究局 | 交联的肽水凝胶 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993006921A1 (en) * | 1991-10-04 | 1993-04-15 | Gs Biochem Ab | Particles, method of preparing said particles and uses thereof |
US6201065B1 (en) * | 1995-07-28 | 2001-03-13 | Focal, Inc. | Multiblock biodegradable hydrogels for drug delivery and tissue treatment |
US20050276829A1 (en) * | 2004-04-21 | 2005-12-15 | Qing Stella | Personal care compositions that deposit solid hydrophilic benefit agents |
US20050239670A1 (en) * | 2004-04-21 | 2005-10-27 | Qing Stella | Personal care compositions that deposit hydrophilic benefit agents |
WO2007095393A2 (en) * | 2006-02-15 | 2007-08-23 | Massachusetts Institute Of Technology | Medical devices and coatings with non-leaching antimicrobial peptides |
AU2010203698B2 (en) * | 2009-01-06 | 2016-07-21 | C3 Jian, Inc. | Targeted antimicrobial moieties |
US8361495B2 (en) * | 2009-12-23 | 2013-01-29 | International Business Machines Corporation | Antimicrobial polymers and methods of manufacture thereof |
AU2012272804B2 (en) * | 2011-06-22 | 2017-07-06 | Vyome Therapeutics Limited | Conjugate-based antifungal and antibacterial prodrugs |
PT2983641T (pt) * | 2013-04-08 | 2020-04-23 | Univ Yeditepe | Hidrogel à base de polímero |
WO2016090060A1 (en) * | 2014-12-02 | 2016-06-09 | Georgia Tech Research Corporation | Nucleophile-triggered degradble materials and methods of making and using the same |
CN106309515A (zh) * | 2015-07-08 | 2017-01-11 | 上海中医药大学附属龙华医院 | 鸦胆子油溶致液晶纳米粒分散体、原料组合物及制备方法 |
CN106540339B (zh) * | 2016-11-03 | 2019-04-09 | 东南大学 | 一种脂肽自组装凝胶及其制备方法和应用 |
-
2017
- 2017-10-13 SE SE1751277A patent/SE541313C2/en unknown
-
2018
- 2018-10-01 CA CA3078695A patent/CA3078695A1/en active Pending
- 2018-10-01 AU AU2018349776A patent/AU2018349776B2/en active Active
- 2018-10-01 EP EP18785464.1A patent/EP3694568B1/en active Active
- 2018-10-01 DK DK18785464.1T patent/DK3694568T3/da active
- 2018-10-01 US US16/755,275 patent/US11235021B2/en active Active
- 2018-10-01 ES ES18785464T patent/ES2927417T3/es active Active
- 2018-10-01 WO PCT/SE2018/051002 patent/WO2019074422A1/en unknown
- 2018-10-01 CN CN201880066154.7A patent/CN111246894B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101611127A (zh) * | 2006-12-11 | 2009-12-23 | 爱尔康研究有限公司 | Peo-pbo嵌段共聚物在眼用组合物中的应用 |
CN101801180A (zh) * | 2007-07-16 | 2010-08-11 | 艾尔维奥血管公司 | 抗微生物构建体 |
WO2012033450A1 (en) * | 2010-09-07 | 2012-03-15 | Dermagen Ab | Novel antimicrobial peptides |
CN102146200A (zh) * | 2011-04-19 | 2011-08-10 | 复旦大学 | 一种基于化学交联凝胶颗粒的温敏性水凝胶及其制备方法 |
CN102614109A (zh) * | 2012-04-16 | 2012-08-01 | 上海现代药物制剂工程研究中心有限公司 | 基于多层液晶骨架的、含有活性物质的凝胶组合物及制法 |
CN105102469A (zh) * | 2013-01-28 | 2015-11-25 | 新加坡科技研究局 | 交联的肽水凝胶 |
CN104548118A (zh) * | 2015-01-12 | 2015-04-29 | 东南大学 | 抗体共价修饰的泊洛沙姆共聚物及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
EP3694568A1 (en) | 2020-08-19 |
ES2927417T3 (es) | 2022-11-07 |
CA3078695A1 (en) | 2019-04-18 |
SE541313C2 (en) | 2019-06-25 |
DK3694568T3 (da) | 2022-09-19 |
AU2018349776B2 (en) | 2023-07-27 |
WO2019074422A1 (en) | 2019-04-18 |
US11235021B2 (en) | 2022-02-01 |
EP3694568B1 (en) | 2022-08-31 |
CN111246894A (zh) | 2020-06-05 |
AU2018349776A1 (en) | 2020-04-23 |
SE1751277A1 (en) | 2019-04-14 |
US20200237857A1 (en) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111246894B (zh) | 两亲抗微生物水凝胶 | |
Yin et al. | Development of inherently antibacterial, biodegradable, and biologically active chitosan/pseudo-protein hybrid hydrogels as biofunctional wound dressings | |
Zhou et al. | A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine | |
Ng et al. | Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections | |
Wang et al. | Intelligent textiles with comfort regulation and inhibition of bacterial adhesion realized by cross-linking poly (n-isopropylacrylamide-co-ethylene glycol methacrylate) to cotton fabrics | |
Shah et al. | Chemical synthesis of chitosan/silver nanocomposites films loaded with moxifloxacin: their characterization and potential antibacterial activity | |
Wang et al. | Novel nonreleasing antibacterial hydrogel dressing by a one-pot method | |
Che et al. | Surface-adaptive and on-demand antibacterial sponge for synergistic rapid hemostasis and wound disinfection | |
He et al. | Fabrication of Cu2+-loaded phase-transited lysozyme nanofilm on bacterial cellulose: Antibacterial, anti-inflammatory, and pro-angiogenesis for bacteria-infected wound healing | |
Gharibi et al. | Antibacterial and biocompatible hydrogel dressing based on gelatin-and castor-oil-derived biocidal agent | |
Sun et al. | Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity | |
Liu et al. | Fabrication and characterization of composite meshes loaded with antimicrobial peptides | |
Nguyen et al. | Enzymatically triggered graphene oxide released from multifunctional carriers boosts anti-pathogenic properties for promising wound-healing applications | |
Huang et al. | Preparation of novel stable microbicidal hydrogel films as potential wound dressing | |
Onat et al. | Multifunctional layer-by-layer modified chitosan/poly (ethylene glycol) hydrogels | |
Tao et al. | N-halamine-based multilayers on titanium substrates for antibacterial application | |
Wang et al. | Sustained release of EGF/bFGF growth factors achieved by mussel-inspired core–shell nanofibers with hemostatic and anti-inflammatory effects for promoting wound healing | |
Yang et al. | Charged group-modified poly (vinyl alcohol) hydrogels: preparation and antibacterial property | |
ur Rehman et al. | Citric acid crosslinked biocompatible silk fibroin-mediated porous chitosan films for sustained drug release application | |
Li et al. | Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing | |
US20230346876A1 (en) | Improved wound care device | |
Du et al. | Constructing a Photothermal and Quaternary Ammonium Cation Bactericidal Platform onto SEBS for Synergistic Therapy | |
Zhang et al. | Antibacterial and rapidly absorbable hemostatic sponge by aldehyde modification of natural polysaccharide | |
Veregue et al. | Enhancing biological properties with straightforward deposition of durable heparin/chitosan surface coatings on wettable poly (ε-caprolactone)/Tween-20 electrospun fibers | |
Sundaran et al. | Fabrication and in vitro evaluation of photo cross-linkable silk fibroin–epsilon-poly-L-lysine hydrogel for wound repair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |