CN111245366B - 一种mwt太阳能电池改善稳态的psg调整和测试方法 - Google Patents

一种mwt太阳能电池改善稳态的psg调整和测试方法 Download PDF

Info

Publication number
CN111245366B
CN111245366B CN202010024420.9A CN202010024420A CN111245366B CN 111245366 B CN111245366 B CN 111245366B CN 202010024420 A CN202010024420 A CN 202010024420A CN 111245366 B CN111245366 B CN 111245366B
Authority
CN
China
Prior art keywords
hole
over
adjusting
etching
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010024420.9A
Other languages
English (en)
Other versions
CN111245366A (zh
Inventor
段帅华
邢飞
史修江
夏中雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Guyang New Energy Technology Co ltd
Original Assignee
Xuzhou Guyang New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Guyang New Energy Technology Co ltd filed Critical Xuzhou Guyang New Energy Technology Co ltd
Priority to CN202010024420.9A priority Critical patent/CN111245366B/zh
Publication of CN111245366A publication Critical patent/CN111245366A/zh
Application granted granted Critical
Publication of CN111245366B publication Critical patent/CN111245366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种MWT太阳能电池改善稳态的PSG调整和测试方法,包括测试方法和调整方法两个方面,第一步,取刻蚀即背面碱抛后的硅片,顺着打孔的位置将孔1/2位置平均分成2块;第二步,将孔位置放在3D显微镜下,用5倍物镜,灯光亮度26%‑30%找到打孔侧面位置;第三步,将打孔位置移至光标中心;第四步,调整物镜50倍,灯光亮度12%‑16%,测试模式Zeta 3D模式测试孔内3D图片;第五步,选择直线,拉取孔内过刻长度及硅片厚度;第六步,计算孔内过刻比,孔内过刻比=过刻长度/硅片厚度,控制孔内过刻比为硅片横截面积的0‑50%。

Description

一种MWT太阳能电池改善稳态的PSG调整和测试方法
技术领域
本发明涉及一种MWT太阳能电池改善稳态的PSG调整和测试方法,属于MWT太阳能电池组件加工技术领域。
背景技术
金属穿孔卷绕硅太阳能电池(MWT)因其效率高,遮光面积小以及更好的外观特点以及易于现有传统晶硅工艺整合受到越来越多的关注。MWT硅太阳能电池是通过激光钻孔将正面收集的能量穿过电池转移至电池背面,以减少遮光面积来达到提高转换效率的目的。
刻蚀清洗工艺至关重要,而且MWT电池制备过程中孔内PN结的留存非常重要,PN结的留存可以降低堵孔浆料的技术要求及开发难度,降低孔内漏电风险,避免组件端出现热斑风险。背面的清洗效果和孔内的PN留存,这是一个亟需解决的问题。
目前,印刷后稳态不稳定,影响组件端的可靠性,没有有效的解决和监控方法。
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明提供一种可靠性强的可提前监控孔内过刻异常并有效减低稳态超标的MWT太阳能电池改善稳态的PSG调整和测试方法。
技术方案:一种MWT太阳能电池改善稳态的PSG调整和测试方法,其特征在于:包括测试步骤和调整步骤,所述测试步骤包括:
第一步,取刻蚀即背面碱抛后的硅片,顺着打孔的位置将孔1/2位置平均分成2块;
第二步,将孔位置放在3D显微镜下,用5倍物镜,灯光亮度26%-30%找到打孔侧面位置;
第三步,将打孔位置移至光标中心;
第四步,调整物镜50倍,灯光亮度12%-16%,测试模式Zeta 3D模式测试孔内3D图片;
第五步,选择直线,拉取孔内过刻长度及硅片厚度;
第六步,计算孔内过刻比,孔内过刻比=过刻长度/硅片厚度,控制孔内过刻比为硅片横截面积的0-50%。
所述调整步骤即测试孔内过刻比偏大或漏刻调整方法包括:
第一步,确认去PSG药液浓度,电导率控制在20-60ms/cm;
第二步,去PSG的HF药液浓度控制在5%-30%,过刻比大则减少HF补加,漏刻则反之;
第三步,调整正面水膜覆盖量,过刻增大水膜量,漏刻则反之;
第四步:槽体液位高度通过泵的功率来控制或调整槽体挡板高度来控制,泵功率控制在20%-60%。
有益效果:与现有技术相比,本发明所提供的链式去psg和槽式碱抛光工艺,主要是通过监控链式去PSG和槽式碱抛光后的孔内过刻比,做到孔内过刻比偏大和漏刻能够及时调整,孔内过刻比偏大漏电值会大,对稳态影响很大,本发明主要是能做到提前预防和改善稳态,避免因稳态异常导致制程批量不良,改善组件端出现热斑和可靠性问题。
附图说明
图1为Zeta 3D测试孔内过刻图。
图2为模拟孔内过刻图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
如图1-2所示,本实施例提供一种MWT太阳能电池改善稳态的PSG调整和测试方法,其特征在于:包括以下两个方面:
1)测试方法:
第一步,取刻蚀即背面碱抛后的硅片,顺着打孔的位置将孔1/2位置平均分成2块;
第二步,将孔位置放在3D显微镜下,用5倍物镜,灯光亮度26%-30%找到打孔侧面位置;
第三步,将打孔位置移至光标中心;
第四步,调整物镜50倍,灯光亮度12%-16%,测试模式Zeta 3D模式测试孔内3D图片;
第五步,选择直线,拉取孔内过刻长度及硅片厚度;
第六步,计算孔内过刻比,孔内过刻比=过刻长度/硅片厚度,控制孔内过刻比为硅片横截面积的0-50%。其中:图1的①为孔内过刻长度对应图2的③;图2的②硅片厚度对应图2的④。
2)调整方法即测试孔内过刻比偏大或漏刻调整方法:
第一步,确认去PSG药液浓度,电导率一般控制在20-60ms/cm
第二步,去PSG的HF药液浓度一般控制在5%-30%,过刻比大减少HF补加,漏刻则反之;
第三步,调整正面水膜覆盖量,过刻增大水膜量,漏刻则反之;
第四步:槽体液位高度可以通过泵的功率来控制或调整槽体挡板高度,泵功率一般控制在20%-60%;
第五步,槽体滚轮水平达不到要求,需要调整去PSG槽体滚轮水平。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (1)

1.一种MWT太阳能电池改善稳态的PSG调整和测试方法,其特征在于:包括测试步骤和调整步骤,所述测试步骤包括:
第一步,取刻蚀即背面碱抛后的硅片,顺着打孔的位置将孔1/2位置平均分成2块;
第二步,将孔位置放在3D显微镜下,用5倍物镜,灯光亮度26%-30%找到打孔侧面位置;
第三步,将打孔位置移至光标中心;
第四步,调整物镜50倍,灯光亮度12%-16%,测试模式Zeta 3D模式测试孔内3D图片;
第五步,选择直线,拉取孔内过刻长度及硅片厚度;
第六步,计算孔内过刻比,孔内过刻比=过刻长度/硅片厚度,控制孔内过刻比为硅片横截面积的0-50%;
所述调整步骤包括:
第一步,确认去PSG药液浓度,电导率控制在20-60ms/cm;
第二步,去PSG的HF药液浓度控制在5%-30%,若过刻比大,则减少HF补加,漏刻则反之;
第三步,调整正面水膜覆盖量,过刻则增大水膜量,漏刻则反之;
第四步:槽体液位高度通过调节泵的功率或调整槽体挡板高度来控制,泵功率控制在20%-60%。
CN202010024420.9A 2020-01-09 2020-01-09 一种mwt太阳能电池改善稳态的psg调整和测试方法 Active CN111245366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010024420.9A CN111245366B (zh) 2020-01-09 2020-01-09 一种mwt太阳能电池改善稳态的psg调整和测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010024420.9A CN111245366B (zh) 2020-01-09 2020-01-09 一种mwt太阳能电池改善稳态的psg调整和测试方法

Publications (2)

Publication Number Publication Date
CN111245366A CN111245366A (zh) 2020-06-05
CN111245366B true CN111245366B (zh) 2021-05-18

Family

ID=70878183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010024420.9A Active CN111245366B (zh) 2020-01-09 2020-01-09 一种mwt太阳能电池改善稳态的psg调整和测试方法

Country Status (1)

Country Link
CN (1) CN111245366B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938819A (zh) * 2004-02-05 2007-03-28 日出能源公司 背-触点太阳能电池及制备方法
CN102132421A (zh) * 2009-03-25 2011-07-20 Lg电子株式会社 太阳能电池及其制造方法
CN102637773A (zh) * 2012-03-29 2012-08-15 北京吉阳技术股份有限公司 一种晶硅太阳能mwt电池及制作方法
WO2012143467A2 (de) * 2011-04-19 2012-10-26 Schott Solar Ag Verfahren zur herstellung einer solarzelle
CN102800723A (zh) * 2011-05-27 2012-11-28 苏州阿特斯阳光电力科技有限公司 太阳电池组件及其制造方法
CN104364911A (zh) * 2012-06-08 2015-02-18 泰姆普雷斯艾普公司 制造太阳能电池的方法和由此得到的太阳能电池
US10217876B2 (en) * 2015-09-25 2019-02-26 Heraeus Precious Metals North America Conshohocken Llc Poly-siloxane containing organic vehicle for electroconductive pastes
CN109585351A (zh) * 2018-10-29 2019-04-05 苏州腾晖光伏技术有限公司 一种提高晶硅双面太阳电池的背铝栅线对准精度的方法
CN109713053A (zh) * 2018-12-27 2019-05-03 江苏日托光伏科技股份有限公司 一种mwt太阳能电池的制备方法
CN110112230A (zh) * 2019-03-29 2019-08-09 无锡日托光伏科技有限公司 一种mwt太阳能电池的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093889B8 (en) * 2015-05-13 2024-05-22 Trina Solar Co., Ltd Solar cell and method of manufacturing the same
CN106299022A (zh) * 2016-08-19 2017-01-04 天津英利新能源有限公司 一种减少设备弹片电池片c3比例的工艺方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938819A (zh) * 2004-02-05 2007-03-28 日出能源公司 背-触点太阳能电池及制备方法
CN102132421A (zh) * 2009-03-25 2011-07-20 Lg电子株式会社 太阳能电池及其制造方法
WO2012143467A2 (de) * 2011-04-19 2012-10-26 Schott Solar Ag Verfahren zur herstellung einer solarzelle
CN102800723A (zh) * 2011-05-27 2012-11-28 苏州阿特斯阳光电力科技有限公司 太阳电池组件及其制造方法
CN102637773A (zh) * 2012-03-29 2012-08-15 北京吉阳技术股份有限公司 一种晶硅太阳能mwt电池及制作方法
CN104364911A (zh) * 2012-06-08 2015-02-18 泰姆普雷斯艾普公司 制造太阳能电池的方法和由此得到的太阳能电池
US10217876B2 (en) * 2015-09-25 2019-02-26 Heraeus Precious Metals North America Conshohocken Llc Poly-siloxane containing organic vehicle for electroconductive pastes
CN109585351A (zh) * 2018-10-29 2019-04-05 苏州腾晖光伏技术有限公司 一种提高晶硅双面太阳电池的背铝栅线对准精度的方法
CN109713053A (zh) * 2018-12-27 2019-05-03 江苏日托光伏科技股份有限公司 一种mwt太阳能电池的制备方法
CN110112230A (zh) * 2019-03-29 2019-08-09 无锡日托光伏科技有限公司 一种mwt太阳能电池的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High throughput via-metallization technique for multi-crystalline metal wrap through (MWT) silicon solar cells exceeding 16% efficiency;Florian Clement. et al;《Solar Energy Materials & Solar Cells》;20090812;第94卷;全文 *
MWT太阳能电池专利技术现况分析;陈学妍 等;《电子世界》;20181231;全文 *

Also Published As

Publication number Publication date
CN111245366A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN102208486B (zh) 一种mwt太阳能电池的制备方法
US9515217B2 (en) Monolithically isled back contact back junction solar cells
US9419165B2 (en) Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
US9379258B2 (en) Fabrication methods for monolithically isled back contact back junction solar cells
US10453976B2 (en) Systems and methods for forming foil contact rear emitter solar cells with carrier selective contacts
US9508886B2 (en) Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
US8551866B2 (en) Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing
CN102859709B (zh) 背面接触光伏电池的制造方法以及由该方法制造的背面接触光伏电池
CN102362356A (zh) 衬底的表面粗化方法以及光伏装置的制造方法
CN104952975A (zh) 用于硅太阳能电池的改善的金属化方法
CN104993019A (zh) 一种局部背接触太阳能电池的制备方法
JP2009177109A (ja) 太陽電池及びその製造方法
CN102473648B (zh) 硅的表面处理
US20170278998A1 (en) Manufacturing method for solar cell and solar cell
CN105576074A (zh) 一种n型双面电池的湿法刻蚀方法
CN104221167A (zh) 硅片太阳能电池的非酸性各向同性回蚀
CN103178159A (zh) 一种晶体硅太阳能电池刻蚀方法
CN104362221A (zh) 一种rie制绒的多晶硅太阳电池的制备方法
Mondon et al. Plated nickel-copper contacts on c-Si: From microelectronic processing to cost effective silicon solar cell production
CN105655424A (zh) 全背场扩散n型硅基电池及其制备方法
CN109585600A (zh) 一种双面perc高效晶硅太阳能电池的制作方法
CN111245366B (zh) 一种mwt太阳能电池改善稳态的psg调整和测试方法
CN104505425A (zh) 一种制备太阳能单晶背抛光电池片的方法
CN103646992A (zh) 一种p型晶体硅双面电池的制备方法
CN101969082B (zh) 一种两次丝网印刷与刻槽结合的太阳能电池制造工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant