CN111241743B - 一种基于贝叶斯方法的放射性物品运输容器评价方法 - Google Patents

一种基于贝叶斯方法的放射性物品运输容器评价方法 Download PDF

Info

Publication number
CN111241743B
CN111241743B CN202010000451.0A CN202010000451A CN111241743B CN 111241743 B CN111241743 B CN 111241743B CN 202010000451 A CN202010000451 A CN 202010000451A CN 111241743 B CN111241743 B CN 111241743B
Authority
CN
China
Prior art keywords
lambda
cap
distribution
container
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010000451.0A
Other languages
English (en)
Other versions
CN111241743A (zh
Inventor
王任泽
庄大杰
孟东原
张建岗
李国强
杨亚鹏
徐潇潇
冯宗洋
贾林胜
王宁
孙洪超
王学新
孙树堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute for Radiation Protection
Original Assignee
China Institute for Radiation Protection
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute for Radiation Protection filed Critical China Institute for Radiation Protection
Priority to CN202010000451.0A priority Critical patent/CN111241743B/zh
Publication of CN111241743A publication Critical patent/CN111241743A/zh
Application granted granted Critical
Publication of CN111241743B publication Critical patent/CN111241743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

本发明提供一种基于贝叶斯方法的放射性物品运输容器评价方法,所述方法包括:(1)确定容器整体的可靠度函数;(2)基于贝叶斯方法估计指数分布参数λ;(3)进行容器的整体可靠性评价。本发明提供的方法能对放射性物品进行多方面的整体可靠性评论,且能克服实验数据量少的缺点。

Description

一种基于贝叶斯方法的放射性物品运输容器评价方法
技术领域
本发明属于概率安全评价技术领域,具体涉及一种基于贝叶斯方法的放射性物品运输容器评价方法。
背景技术
根据我国《放射性物品运输安全管理条例》(中华人民共和国国务院令第562号)中第二章第八条的规定“放射性物品运输容器设计单位应当建立健全和有效实施质量保证体系,按照国家放射性物品运输安全标准进行设计,并通过试验验证或者分析论证等方式,对设计的放射性物品运输容器的安全性能进行评价。”上述提及的安全标准即是《放射性物质安全运输规程》(GB 11806-2004),在该标准中详细规定了对各种类型货包的要求,尤其相应试验验证的要求。
通常在认为计算程序和材料参数均为可靠或保守时,可应用仿真分析验证货包安全性能。现在,对容器的力学、耐热分析均可采用商用有限元软件进行仿真分析,并结合样机试验验证,共同评判货包的安全性能。
货包的安全性能试验——力学试验、耐热试验、水浸没试验等都是针对货包的单一性能逐步进行的验证,属于确定论的评价方法,是一项基于设计基准事故的安全包络性评估,首先通过理论分析计算找出最严重的损坏状态对应的试验姿态,进而通过试验进行验证容器在最严苛工况下的安全性能。确定论的评价方法未给出容器整体可靠性的评价,更不能给出容器整体可靠性随时间迁移产生的变化。从概率论方法而言,确定论的性能验证试验可作为一次的抽样试验。仿真分析是对实物试验的一次计算机仿真,本质上可以认为是另外一次抽样试验,只是方式有所不同。一般情况下,对于货包的安全性能试验次数非常有限,因而从概率论方法角度来说,对于容器可靠性的抽样试验次数是很少的,根本达不到统计学意义上对数据量的要求。
经典概率论方法中假设参数是恒定的(但未知),用样本统计量作为参数的估计量。其优点是方法简单;缺点是参数的精确估计需要大量数据。因此,有必要提供一种基于贝叶斯方法的放射性物品运输容器评价方法以解决上述问题。
发明内容
针对现有技术中存在的缺陷,本发明的目的是提供一种基于贝叶斯方法的放射性物品运输容器评价方法,能对放射性物品进行多方面的整体可靠性评论,且能克服实验数据量少的缺点。
为达到以上目的,本发明采用的技术方案是:
一种基于贝叶斯方法的放射性物品运输容器评价方法,所述方法包括:
(1)确定容器整体的可靠度函数;
(2)基于贝叶斯方法估计指数分布参数λ;
(3)进行容器的整体可靠性评价。
进一步的,所述步骤(1)中所述容器整体的可靠度函数R为:
Figure BDA0002353049140000021
其中,t为容器的投入使用时间;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4。
进一步的,所述步骤(1)中所述力学性能、屏蔽性能、耐热性能和密封性能的可靠度函数为:
Rcap(t)=exp(-λcapt) (2)
其中,λ为失效率常数,指数分布参数。
进一步的,所述步骤(1)中所述容器整体的可靠度函数R为:
R(t)=exp(-λt) (3)
其中,λ为指数分布参数。
进一步的,所述容器整体的失效率常数λ为:
Figure BDA0002353049140000031
其中,λ为指数分布参数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4。
进一步的,在步骤(2)具体包括:
先建立估计λ的先验分布:Γ分布;
再根据试验验证或者仿真分析更新λ的先验分布,得到后验分布,对λcap估计的后验分布est(λcap|samp)为:
Figure BDA0002353049140000032
其中,λ为指数分布参数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4;samp为抽样试验(试验验证或者仿真分析)得到的数据(证据);est(λcap)为对λcap估计的先验分布;L(samp|λcap)为似然率。
进一步的,步骤(3)中容器整体可靠性评价依据为:
将式(5)、式(2)代入式(1)得到评价依据。
进一步的,步骤(3)中容器整体可靠性评价依据为:
将式(5)、式(4)代入式(3)得到评价依据。
本发明的效果在于,本发明所述的方法,能对放射性物品进行多方面的整体可靠性评论,且能克服实验数据量少的缺点。
附图说明
图1为基于贝叶斯方法的放射性物品运输容器的可靠性评价流程图。
具体实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
贝叶斯方法是一种精确的数据预测方式。一方面,在数据没有期望的那么多,却意图全面地获取预测信息时非常有用。贝叶斯方法假设(或令)未知参数服从某种分布,用“分布”的方式表示当前对该事物的认识程度(不确定性),来自各地方的证据被结合起来,作为先验分布,根据新证据更新先验分布,得到后验分布,代表对事物的新认识。另一方面,如果有足够量的数据,贝叶斯方法做出的后验分布也趋向于“忘记”先验分布,会汇聚在参数真值附近,贝叶斯方法和经典概率论方法最终应给出相同的答案。
参阅图1,图1是本发明所述基于贝叶斯方法的放射性物品运输容器的可靠性评价流程图。
一种基于贝叶斯方法的放射性物品运输容器评价方法,包括以下步骤:
步骤101:确定容器整体的可靠度函数。
根据可靠性理论和工程经验确定容器整体的可靠度函数。对于放射性物品运输容器来说,力学性能、屏蔽性能、耐热性能、耐水浸没的密封性能是四个最重要的可通过试验验证或仿真模拟分析的安全性能。可以假设四种性能是具有独立性的随机变量,因为如果完全相关,就没必要对四种性能均进行试验验证或仿真模拟分析,只需对其中的一到三种性能进行验证即可。因此,只有容器的四种性能均可靠才能表明容器整体可靠。
在一个具体的实施例中,容器整体的可靠度是四种性能可靠度的乘积,所述容器整体的可靠度函数R数学表达见式(1):
Figure BDA0002353049140000051
其中,t为容器的投入使用时间;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4。
其中,所述力学性能、屏蔽性能、耐热性能和密封性能的可靠度函数为:
Rcap(t)=exp(-λcapt) (2)
其中,λ为失效率常数,指数分布参数。
在另一个具体的实施例中,同样可以假设容器整体的可靠度函数为指数分布,此时所述步骤(1)中所述容器整体的可靠度函数R为:
R(t)=exp(-λt) (3)
其中,λ为指数分布参数。
从失效率常数λ的角度而言,容器整体的失效率常数λ应该是四种性能失效率常数的和,所述容器整体的失效率常数λ为:
Figure BDA0002353049140000061
其中,λ为指数分布参数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4。
将式(4)代入式(3),与将式(2)代入式(1)得到的结果一样,可见假设容器可靠度函数为指数分布是逻辑自洽的。
步骤102:基于贝叶斯方法估计指数分布参数λ。
首先,建立估计λ的先验分布。在本实施例中,为指数分布参数λ的先验分布为Γ分布。
还需要说明的是,在给出关于λ的先验分布时,容器自身的类型是一个比较重要的条件,一般情况下,可认为放射性物品的分类级别越高,对容器的可靠性要求自然越高,这符合相关法规标准的要求和历史运行经验。
即有如下关系,见式(6):
RI,cap>RII,cap>RIII,cap (6)
其中,R为可靠度函数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4;I、II、III分别为一、二、三类放射性物品的运输容器。
其次,根据试验验证或者仿真分析更新λ的先验分布,得到后验分布。PSA理论表明,如果其先验分布为Γ分布,那么后验分布仍为Γ分布,只是参数改变。
对于具体的某类型某型号的容器,只要完成一定次数的抽样试验(试验验证或者仿真分析),就可以根据贝叶斯方法,更新失效率常数λ的先验分布,得到其后验分布,对λcap估计的后验分布est(λcap|samp)见式(5):
Figure BDA0002353049140000071
其中,λ为指数分布参数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4;samp为抽样试验(试验验证或者仿真分析)得到的数据(证据);est(λcap)为对λcap估计的先验分布;L(samp|λcap)为似然率,即给定λcap条件下samp概率。
最后,得到λcap的后验分布后,进而得出λcap的数学期望。
步骤103:进行容器的整体可靠性评价。
在一个具体的实施例中,容器整体可靠性评价依据可以为:
将式(5)、式(2)代入式(1)得容器整体的可靠度函数的确切计算式,进而可进行容器整体的可靠性评价。
在另一个具体的实施例中,容器整体可靠性评价依据还可以为:
将式(5)、式(4)代入式(3)得容器整体的可靠度函数的确切计算式,进而可进行容器整体的可靠性评价。
区别于现有技术,本发明提供的一种基于贝叶斯方法的放射性物品运输容器评价方法,能对放射性物品进行多方面的整体可靠性评论,且能克服实验数据量少的缺点。
本领域技术人员应该明白,本发明所述的方法并不限于具体实施方式中所述的实施例,上面的具体描述只是为了解释本发明的目的,并非用于限制本发明。本领域技术人员根据本发明的技术方案得出其他的实施方式,同样属于本发明的技术创新范围,本发明的保护范围由权利要求及其等同物限定。

Claims (2)

1.一种基于贝叶斯方法的放射性物品运输容器评价方法,其特征在于,所述方法包括:
(1)确定容器整体的可靠度函数;所述容器整体的可靠度函数R为:
Figure FDA0004142625210000011
其中,t为容器的投入使用时间;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4;
所述力学性能、屏蔽性能、耐热性能和密封性能的可靠度函数为:
Rcap(t)=exp(-λcapt) (2)
其中,λ为失效率常数,指数分布参数;
(2)基于贝叶斯方法估计指数分布参数λ;先建立估计λ的先验分布:Γ分布;
再根据试验验证或者仿真分析更新λ的先验分布,得到后验分布,对λcap估计的后验分布est(λcap|samp)为:
Figure FDA0004142625210000012
其中,λ为指数分布参数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4;samp为抽样试验得到的数据;est(λcap)为对λcap估计的先验分布;L(samp|λcap)为似然率;
(3)进行容器的整体可靠性评价;将式(5)、式(2)代入式(1)得到评价依据。
2.一种基于贝叶斯方法的放射性物品运输容器评价方法,其特征在于,所述方法包括:
(1)确定容器整体的可靠度函数;所述容器整体的可靠度函数R为:
R(t)=exp(-λt) (3)
其中,λ为指数分布参数;
所述容器整体的失效率常数λ为:
Figure FDA0004142625210000021
其中,λ为指数分布参数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4;
(2)基于贝叶斯方法估计指数分布参数λ;先建立估计λ的先验分布:Γ分布;
再根据试验验证或者仿真分析更新λ的先验分布,得到后验分布,对λcap估计的后验分布est(λcap|samp)为:
Figure FDA0004142625210000022
其中,λ为指数分布参数;cap为性能类型编号,具体为:力学性能mech=1、屏蔽性能shld=2、耐热性能ther=3、密封性能seal=4;samp为抽样试验得到的数据;est(λcap)为对λcap估计的先验分布;L(samp|λcap)为似然率;
(3)进行容器的整体可靠性评价;将式(5)、式(4)代入式(3)得到评价依据。
CN202010000451.0A 2020-01-02 2020-01-02 一种基于贝叶斯方法的放射性物品运输容器评价方法 Active CN111241743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010000451.0A CN111241743B (zh) 2020-01-02 2020-01-02 一种基于贝叶斯方法的放射性物品运输容器评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010000451.0A CN111241743B (zh) 2020-01-02 2020-01-02 一种基于贝叶斯方法的放射性物品运输容器评价方法

Publications (2)

Publication Number Publication Date
CN111241743A CN111241743A (zh) 2020-06-05
CN111241743B true CN111241743B (zh) 2023-06-23

Family

ID=70872915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010000451.0A Active CN111241743B (zh) 2020-01-02 2020-01-02 一种基于贝叶斯方法的放射性物品运输容器评价方法

Country Status (1)

Country Link
CN (1) CN111241743B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106570281A (zh) * 2016-11-08 2017-04-19 上海无线电设备研究所 基于相似产品信息的小子样产品贝叶斯可靠性评估方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2905094C2 (de) * 1979-02-10 1982-03-18 GNS Gesellschaft für Nuklear-Service mbH, 4300 Essen Abschirmtransport- und/oder Abschirmlagerbehälter
WO2006110253A2 (en) * 2005-04-08 2006-10-19 Eikman Edward A Quantitative transmission/emission detector system and methods of detecting concealed radiation sources
JP5329748B2 (ja) * 2006-09-06 2013-10-30 株式会社東芝 使用済み燃料の未臨界度測定方法および装置
US20090138415A1 (en) * 2007-11-02 2009-05-28 James Justin Lancaster Automated research systems and methods for researching systems
US8676744B2 (en) * 2007-10-25 2014-03-18 Lawrence Livermore National Security, Llc Physics-based, Bayesian sequential detection method and system for radioactive contraband
JP2015068677A (ja) * 2013-09-27 2015-04-13 日立Geニュークリア・エナジー株式会社 廃棄体容器の放射線計測方法および装置
US9865066B2 (en) * 2014-05-06 2018-01-09 Astrophysics Inc. Computed tomography system for cargo and transported containers
US9865366B2 (en) * 2014-07-10 2018-01-09 Energysolutions, Llc Shielded packaging system for radioactive waste
CN205050567U (zh) * 2015-09-16 2016-02-24 中国辐射防护研究院 一种高活度辐照用放射源运输容器
US11010852B2 (en) * 2017-06-30 2021-05-18 Lantern Unmanned Autonomous Systems, Llc Unmanned autonomous container inspection
WO2019067092A1 (en) * 2017-08-07 2019-04-04 The Johns Hopkins University METHODS AND SUBSTANCES FOR THE EVALUATION AND TREATMENT OF CANCER
CN108805467A (zh) * 2018-06-29 2018-11-13 广东工业大学 一种变压器老化状态评估的概率模糊集方法
CN109632522B (zh) * 2018-11-30 2021-03-19 中国辐射防护研究院 一种测试放射性物品运输容器低温力学性能的试验方法
CN110287453B (zh) * 2019-05-22 2023-04-14 中国辐射防护研究院 一种基于蒙特卡罗方法的货包跌落角度分析方法及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106570281A (zh) * 2016-11-08 2017-04-19 上海无线电设备研究所 基于相似产品信息的小子样产品贝叶斯可靠性评估方法

Also Published As

Publication number Publication date
CN111241743A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
Wang et al. Predicting transient building fire based on external smoke images and deep learning
RU2686252C2 (ru) Способ оценки нормальности или ненормальности измеренного значения физического параметра двигателя летательного аппарата
CN109379240B (zh) 车联网流量预测模型构建方法、装置和电子设备
CN112115897B (zh) 多指针仪表报警检测方法、装置、计算机设备及存储介质
US20110010140A1 (en) Probability Distribution Function Mapping Method
Alessandri et al. Parameter estimation of fire propagation models using level set methods
CN111967167B (zh) 一种非线性退化过程可靠性评估方法
Benstock et al. Extreme value analysis (EVA) of inspection data and its uncertainties
Paroissin Inference for the Wiener process with random initiation time
CN112115898A (zh) 多指针仪表检测方法、装置、计算机设备及存储介质
Al-Mudhafer Multinomial logistic regression for bayesian estimation of vertical facies modeling in heterogeneous sandstone reservoirs
CN111241743B (zh) 一种基于贝叶斯方法的放射性物品运输容器评价方法
CN106779354B (zh) 用于飞行器性能评估的Bayes数据融合评估方法
KR101044348B1 (ko) 변동 계수에 의한 공정 관리 방법 및 장치
CN115795928A (zh) 基于伽马过程的加速退化试验数据处理方法和装置
CN113743707B (zh) 一种基于均匀分布的产品可信度计算方法
Hongwei et al. A method for detecting abnormal changes in the temperature field of grain bulk based on HSV features of cloud maps
Bharathi et al. A framework for the estimation of OO software reliability using design complexity metrics
TW201833825A (zh) 因果關係評估裝置、因果關係評估系統以及因果關係評估方法
CN110399803B (zh) 一种车辆检测方法及装置
Erdmann et al. Assessment of binary inspection with a hybrid measurand
Nicolin et al. Effects of variable diffusivity on soybean hydration modelling as a Stefan problem
CN117478394B (zh) 一种基于数字孪生的网络安全分析方法、系统、计算机设备及计算机可读存储介质
Harte et al. Quantifying the M8 algorithm: model, forecast, and evaluation
CN114970183B (zh) 风速仿真的评估方法、装置、计算机设备、存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant