CN111239064A - 一种用于溶液浓度测量的反射和透射组合光学测量系统 - Google Patents

一种用于溶液浓度测量的反射和透射组合光学测量系统 Download PDF

Info

Publication number
CN111239064A
CN111239064A CN202010114656.1A CN202010114656A CN111239064A CN 111239064 A CN111239064 A CN 111239064A CN 202010114656 A CN202010114656 A CN 202010114656A CN 111239064 A CN111239064 A CN 111239064A
Authority
CN
China
Prior art keywords
optical
measurement system
optical fiber
coupler
optical measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010114656.1A
Other languages
English (en)
Inventor
张梅
林林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Guangdong Medical University
Original Assignee
Dongguan University of Technology
Guangdong Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology, Guangdong Medical University filed Critical Dongguan University of Technology
Priority to CN202010114656.1A priority Critical patent/CN111239064A/zh
Publication of CN111239064A publication Critical patent/CN111239064A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种用于溶液浓度测量的反射和透射组合光学测量系统,所述光学测量系统包括依次连接的低相干光源、光隔离器、以及光纤耦合器,依次连接的电荷耦合器、信号放大器、时频信号转换电路以及数据处理器;所述光纤耦合器的其中一输出端连接有第一光纤准直器,第一光纤准直器沿光路方向依次设置有第一凸透镜以及反射镜,所述光纤耦合器的另一输出端连接有第二光纤准直器,第二光纤准直器沿光路方向依次设置有振镜、显微物镜以及样品台,样品台的下方设置有透射测量装置。本发明提供的光学测量系统,能够完成反射光信号和透射光信号的测量,并且具有成本低、结构简单,体积小等优点。

Description

一种用于溶液浓度测量的反射和透射组合光学测量系统
技术领域
本发明涉及一种光学测量系统,具体涉及一种用于溶液浓度测量的反射和透射组合光学测量系统。
背景技术
溶液浑浊度的测量在生物医学、食品和环境监测中具有重要的意义和价值。当前一般采用的方法是比浊法和散射法,并规定一升蒸馏水中含有1毫克二氧化硅为一个浊度单位。浑浊性主要是由于溶液中存在散射颗粒,对入射光的传输方向产生了影响。粒子的浓度、形状、成份和尺寸都会影响散射特性,溶液对光的吸收则会造成光衰减,同样会影响测量结果。现有方法得到的所谓“浑浊度”,其实是散射和吸收共同作用的结果。溶液对光的散射是指溶液内具有不同折射率的粒子(或颗粒)对光的传输方向产生的影响和改变。根据散射粒子的尺寸与入射光波长之间的大小关系,散射可以分为瑞利散射(Rayleighscattering)和米氏散射(Mie scattering)。当粒子的尺寸远小于光波长时,散射作用为瑞利散射;当粒子的尺寸与光波长相当时,散射为米氏散射。表征散射的参数为散射系数:
μs=ρ×σs[cm-1] (1)
其中,σs[cm2]称为有效散射面积,并满足σs=Qs×A,Qs代表散射效率,A[cm2]为粒子最大截面积,ρ[cm-3]为粒子的体密度。散射系数可以理解为光子在传输单位距离上被吸收的概率。
表征吸收的参数为吸收系数:
μa=ρ×σa[cm-1] (2)
其中,σa[cm2]称为有效吸收面积,并满足σa=Qa×A,Qa代表散射效率。
浑浊溶液对光同时具有散射和吸收作用,其结果是光强在传输过程中的衰减和传输方向的改变。单纯依靠透射光或者反射光测量方法都无法分离散射系数和吸收系数的确切数值。由于散射和吸收效应都会造成光能量的变化,所以如果能够通过技术方法同时测量得到溶液的散射和吸收系数,则具有重要的应用价值。目前,可以同时测量散射系数和吸收系数的实验方法是使用双积分球,但是测量成本较高,样品准备和测量过程复杂,而且设备体积也比较大。
发明内容
为了克服现有技术中的不足,本发明提供一种成本低、结构简单的用于溶液浓度测量的反射和透射组合光学测量系统,利用该光学测量系统测得的数据,可求解出溶液样品的散射系数和吸收系数。
本发明是通过以下技术方案实现的:一种用于溶液浓度测量的反射和透射组合光学测量系统,所述光学测量系统包括依次连接的低相干光源、光隔离器、以及光纤耦合器,依次连接的电荷耦合器、信号放大器、时频信号转换电路以及数据处理器;
所述光纤耦合器的其中一输出端连接有第一光纤准直器,第一光纤准直器沿光路方向依次设置有第一凸透镜以及反射镜,
所述光纤耦合器的另一输出端连接有第二光纤准直器,第二光纤准直器沿光路方向依次设置有振镜、显微物镜以及样品台;其中,样品台由透光材质制成,且样品台的下方设置有透射测量装置,该透射测量装置与所述数据处理器连接;所述振镜与所述数据处理器连接;
所述光学测量系统还包括有反射光栅,该反射光栅用于将来自光纤耦合器的反射光传输至所述电荷耦合器,所述反射光栅与电荷耦合器之间设置有第二凸透镜。
优选地,所述透射测量装置为光束分析仪或电荷耦合器。
优选地,所述低相干光源可以为LED光源、SLED光源或SLD光源。
本发明提供的光学测量系统,其能够完成反射光信号和透射光信号的测量,从而可以利用测量出的反射光信号和透射光信号求解出溶液样品的散射系数和吸收系数。本发明提供的光学测量系统,其将反射测量系统和透射测量系统集成在一起,对于反射光信号和透射光信号的测量,既可以同步进行又可相互独立进行,并且具有成本低、结构简单,体积小等优点。
附图说明
附图1为本发明实施例所述的光学测量系统的结构示意框图。
具体实施方式
为了便于本领域技术人员的理解,下面结合附图对本发明作进一步的描述。
如附图1所示,一种用于溶液浓度测量的反射和透射组合光学测量系统,所述光学测量系统包括依次连接的低相干光源1、光隔离器2、以及光纤耦合器3,依次连接的电荷耦合器9、信号放大器10、时频信号转换电路11以及数据处理器12;
所述光纤耦合器3的其中一输出端连接有第一光纤准直器4,第一光纤准直器沿光路方向依次设置有第一凸透镜5以及反射镜6,
所述光纤耦合器3的另一输出端连接有第二光纤准直器13,第二光纤准直器沿光路方向依次设置有振镜14、显微物镜15以及样品台16;其中,样品台16由透光材质制成,且样品台的下方设置有透射测量装置17;所述振镜14与所述透射测量装置17与所述数据处理器12连接;
所述光学测量系统还包括有反射光栅7,该反射光栅7用于将来自光纤耦合器3的反射光传输至所述电荷耦合器9,所述反射光栅7与电荷耦合器9之间设置有第二凸透镜8。本发明实施例中,反射光栅7将来自光纤耦合器3的反射光传输至所述电荷耦合器9中,该反射光包括有由光路方向依次为反射镜6、第一凸透镜5、第一光纤准直器4以及所述光纤耦合器3的参考反射光,和由光路方向依次为显微物镜15、振镜14、第二光纤准直器13以及所述光纤耦合器3的样品反射光。
本实施例中,低相干光源、光隔离器以及光纤耦合器依次通过单模光纤连接;电荷耦合器、信号放大器、时频信号转换电路以及数据处理器依次通过数据线缆连接。光纤耦合器的其中一个输出端通过单模光纤与第一光纤准直器连接,光纤耦合器的另一输出端通过单模光纤与第二光纤准直器;所述时频信号转换电路优选为傅里叶变换电路。另外,透射测量装置通过数据线缆与所述数据处理器连接,振镜同样通过数据线缆与所述数据处理器连接。本实施例中,所述数据处理器为现有技术存在的数据处理设备,本实施例优选为计算机(电脑),如PC机或其他具备数据处理功能、数据存储及显示的移动终端设备。此外,本实施例中的计算机,还用于对振镜14的驱动控制。其中,计算机对振镜的驱动控制为现有技术,在此不再对其控制方法进行详述。
作为优选的实施例中,所述透射测量装置可以为光束分析仪或电荷耦合器;所述低相干光源可以为LED光源、SLED光源(超辐射LED光源)或SLD光源(超辐射半导体激光器光源);所述透射测量装置为光束分析仪或电荷耦合器。
在其中一个优选的实施例中,所述样品台由透明石英玻璃材质制成;所述光隔离器为近红外单向光纤隔离器;所述第一光纤准直器、第二光纤准直器为近红外波段光纤准直器;所述电荷耦合器为近红外波段电荷耦合器,线分辨率小于10微米;所述反射光栅为近红外波段闪耀光栅。
在一个具体的实施例中,第一凸透镜、第二凸透镜的焦距=50mm,所述反射镜为镀铝全反射镜;所述光纤耦合器,其分光比为50:50,采用FC或SC接头;所述近红外波段电荷耦合器,线分辨率小于10微米;所述信号放大器,由放大滤波电路组成,可使用集成模块;所述傅里叶变换电路,用于实现时频信号转换,其同样可使用集成模块,以减少体积;所述振镜镀全反射膜,且具备1kHz以上频率;所述显微物镜为10倍显微物镜,其焦距=16mm;另外,所述光束分析仪,其分辨率小于10微米,响应波段与低相干光源相同。
为了更好地降低所述光学测量系统的成本,所述低相干光源采用近红外波段(800-300nm)的LED光源,所述透射测量装置采用电荷耦合器。
本发明实施例提供的光学测量系统,其能够对样品(溶液)完成反射光信号和透射光信号的测量,从而可以利用测量出的反射光信号和透射光信号求解出溶液样品的散射系数和吸收系数。本发明提供的光学测量系统,其将反射测量系统和透射测量系统集成在一起,对于反射光信号和透射光信号的测量,既可以同步进行又可相互独立进行,并且由于系统所有部件均为常用的光源和无源器件,在形成产品后其总成本可以降到千元以内,相对于现有的采用双积分球系统的测量设备,成本不到其十分之一;另外;本发明实施例提供的光学测量系统,其结构简单,部件也便于集成,最终可以形成手持式测量设备,因此本发明实施例提供的光学测量系统,具有成本低、结构简单,体积小等优点。
以下对本发明实施例提供的光学测量系统的工作过程或工作原理作简要的说明:
将需要测量的样品放置在样品台上,低相干光源1输出激光经过光纤隔离器2和光纤耦合器3分为两路,一路为参考光,通过第一光纤准直器4和第一凸透镜5投射到反射镜6,经反射后原路返回,最终通过反射光栅7和第二凸透镜8达到电荷耦合器9。另一路为样品入射光,经过第二光纤准直器13透射到振镜上14,经过振镜反射至显微物镜15,经过显微物镜聚焦在样品台16上的样品上,当振镜沿x轴和y轴振动时可以完成光在样品表面的扫描测量。经过复杂的散射作用,来自样品的反射光将由具有不同时间延迟的光波分量组成并沿入射光路返回,反射光将到达反射光栅7,并经过第二凸透镜8投射到电荷耦合器9上,并与返回的参考光进行叠加干涉。电荷耦合器9将叠加干涉的光信号转换为电压信号并经过信号放大器10放大和傅里叶变换电路11进行时频信号转换,进而获得一组与光延迟时间相关的干涉信号;再根据光延迟时间与位置的对应关系,可将其转换为与深度相关的干涉曲线,傅里叶变换电路11将测得数据输入计算机12,计算机将接收到的数据作进一步的拟合处理,最终转化为反射光信号数据x1,且计算机将测得的反射光信号数据x1存储和显示。另外,部分样品入射光则会透过样品和透光材质的样品台16被光束分析仪17检测,通过光束分析仪可以准确获得透射光斑直径x2和透射光功率x3,最后,光束分析仪器17将测得的透射光信号数据(透射光斑直径x2和透射光功率x3)传输至所述计算机12进行存储和显示。因此,通过本发明实施例提供的光学测量系统,可以实现对溶液样品的反射光信号和透射光信号的测量。
最后,通过对溶液样品测得的反射光信号数据x1和透射光信号数据(透射光斑直径x2和透射光功率x3),可以利用现有技术求解出溶液样品的散射系数和吸收系数。另外,在其中一个较佳的实施例中,可以在计算机(电脑)上可以装载有相关利用上述反射光信号数据x1和透射光斑直径x2和透射光功率x3数据的计算出溶液样品的散射系数y1和吸收系数y2的计算工具,且可以在计算机上显示和保存所述散射系数y1和吸收系数y2。由于利用反射光信号数据x1和透射光信号数据和透射光斑直径x2和透射光功率x3计算出所述散射系数y1和吸收系数y2并非是本发明的发明改进点,且利用反射光信号数据x1和透射光信号数据和透射光斑直径x2和透射光功率x3计算出所述散射系数y1和吸收系数y2属于现有技术可实现的技术手段,因此本发明不再对其进行详述。
上述实施例中提到的内容为本发明较佳的实施方式,并非是对本发明的限定,在不脱离本发明构思的前提下,任何显而易见的替换均在本发明的保护范围之内。

Claims (10)

1.一种用于溶液浓度测量的反射和透射组合光学测量系统,其特征在于:所述光学测量系统包括依次连接的低相干光源、光隔离器、以及光纤耦合器,依次连接的电荷耦合器、信号放大器、时频信号转换电路以及数据处理器;
所述光纤耦合器的其中一输出端连接有第一光纤准直器,第一光纤准直器沿光路方向依次设置有第一凸透镜以及反射镜,
所述光纤耦合器的另一输出端连接有第二光纤准直器,第二光纤准直器沿光路方向依次设置有振镜、显微物镜以及样品台;其中,样品台由透光材质制成,且样品台的下方设置有透射测量装置,该透射测量装置与所述数据处理器连接;所述振镜与所述数据处理器连接;
所述光学测量系统还包括有反射光栅,该反射光栅用于将来自光纤耦合器的反射光传输至所述电荷耦合器,所述反射光栅与电荷耦合器之间设置有第二凸透镜。
2.根据权利要求1所述的光学测量系统,其特征在于:所述透射测量装置为光束分析仪或电荷耦合器。
3.根据权利要求1或2所述的光学测量系统,其特征在于:所述低相干光源为LED光源、SLED光源或SLD光源。
4.根据权利要求3所述的光学测量系统,其特征在于:所述样品台由透明石英玻璃材质制成。
5.根据权利要求1所述的光学测量系统,其特征在于:所述光隔离器为近红外单向光纤隔离器。
6.根据权利要求5所述的光学测量系统,其特征在于:所述第一光纤准直器、第二光纤准直器为近红外波段光纤准直器。
7.根据权利要求6所述的光学测量系统,其特征在于:所述电荷耦合器为近红外波段电荷耦合器。
8.根据权利要求7所述的光学测量系统,其特征在于:所述反射光栅为近红外波段闪耀光栅。
9.根据权利要求1所述的光学测量系统,其特征在于:所述时频信号转换电路为傅里叶变换电路。
10.根据权利要求1所述的光学测量系统,其特征在于:所述数据处理器为计算机。
CN202010114656.1A 2020-02-25 2020-02-25 一种用于溶液浓度测量的反射和透射组合光学测量系统 Pending CN111239064A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010114656.1A CN111239064A (zh) 2020-02-25 2020-02-25 一种用于溶液浓度测量的反射和透射组合光学测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010114656.1A CN111239064A (zh) 2020-02-25 2020-02-25 一种用于溶液浓度测量的反射和透射组合光学测量系统

Publications (1)

Publication Number Publication Date
CN111239064A true CN111239064A (zh) 2020-06-05

Family

ID=70862008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010114656.1A Pending CN111239064A (zh) 2020-02-25 2020-02-25 一种用于溶液浓度测量的反射和透射组合光学测量系统

Country Status (1)

Country Link
CN (1) CN111239064A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879714A (zh) * 2020-08-03 2020-11-03 杭州谱析光晶半导体科技有限公司 一种基于光场重构的井下液体分析系统及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854339A (ja) * 1994-08-10 1996-02-27 Fuji Electric Co Ltd コロイド状物質を含む溶媒の色度、濁度の測定方法と その装置
US20030020920A1 (en) * 2001-01-12 2003-01-30 Dave Digant P. Method and apparatus for differential phase optical coherence tomography
US20040179194A1 (en) * 2001-11-08 2004-09-16 S.A.E. Afikim Computerized Dairy Management System Spectroscopic fluid analyzer
US20050190372A1 (en) * 2003-08-14 2005-09-01 Aristide Dogariu Interferometric sensor for characterizing materials
EP1775545A2 (en) * 2005-10-12 2007-04-18 Kabushiki Kaisha TOPCON Optical image measuring device, optical image measuring program, fundus observation device, and fundus observation program
JP2011226966A (ja) * 2010-04-22 2011-11-10 Sigma Koki Co Ltd 計測方法、計測装置
JP2012063333A (ja) * 2010-09-20 2012-03-29 Osaka Univ 光学特性値計測装置、光学特性値計測方法及び光学特性値計測プログラム
CN103884659A (zh) * 2014-02-20 2014-06-25 南京邮电大学 角分辨微纳光谱分析装置
CN105996999A (zh) * 2016-05-19 2016-10-12 南京航空航天大学 基于oct测量样品深度分辨衰减系数的方法和系统
CN206618658U (zh) * 2017-01-13 2017-11-07 浙江大学 一种颗粒快速检测装置
CN109431518A (zh) * 2018-12-20 2019-03-08 佛山科学技术学院 一种基于oct技术测量血氧饱和度的系统及方法
US20190212256A1 (en) * 2016-09-13 2019-07-11 Basf Coatings Gmbh Sensor for a virtually simultaneous measurement of a transmission and/or forward scattering and/or remission and for a simultaneous measurement of the transmission and forward scattering or transmission and remission of a liquid sample

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854339A (ja) * 1994-08-10 1996-02-27 Fuji Electric Co Ltd コロイド状物質を含む溶媒の色度、濁度の測定方法と その装置
US20030020920A1 (en) * 2001-01-12 2003-01-30 Dave Digant P. Method and apparatus for differential phase optical coherence tomography
US20040179194A1 (en) * 2001-11-08 2004-09-16 S.A.E. Afikim Computerized Dairy Management System Spectroscopic fluid analyzer
US20050190372A1 (en) * 2003-08-14 2005-09-01 Aristide Dogariu Interferometric sensor for characterizing materials
EP1775545A2 (en) * 2005-10-12 2007-04-18 Kabushiki Kaisha TOPCON Optical image measuring device, optical image measuring program, fundus observation device, and fundus observation program
JP2011226966A (ja) * 2010-04-22 2011-11-10 Sigma Koki Co Ltd 計測方法、計測装置
JP2012063333A (ja) * 2010-09-20 2012-03-29 Osaka Univ 光学特性値計測装置、光学特性値計測方法及び光学特性値計測プログラム
CN103884659A (zh) * 2014-02-20 2014-06-25 南京邮电大学 角分辨微纳光谱分析装置
CN105996999A (zh) * 2016-05-19 2016-10-12 南京航空航天大学 基于oct测量样品深度分辨衰减系数的方法和系统
US20190212256A1 (en) * 2016-09-13 2019-07-11 Basf Coatings Gmbh Sensor for a virtually simultaneous measurement of a transmission and/or forward scattering and/or remission and for a simultaneous measurement of the transmission and forward scattering or transmission and remission of a liquid sample
CN206618658U (zh) * 2017-01-13 2017-11-07 浙江大学 一种颗粒快速检测装置
CN109431518A (zh) * 2018-12-20 2019-03-08 佛山科学技术学院 一种基于oct技术测量血氧饱和度的系统及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MYUNG K.KIM: "《数字全息显微》", 28 February 2017, 北京:国防工业出版社 *
徐志龙等: "农产品光学参数测量的双积分球系统及其应用", 《农业工程学报》 *
林林等: "基于逆向蒙特卡洛法的溶液葡萄糖浓度低相干测量", 《光学精密工程》 *
王驰: "《激光检测技术及应用》", 上海大学出版社 *
郭建强等: "《光纤通信原理与仿真》", 31 May 2013, 成都:西南交通大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879714A (zh) * 2020-08-03 2020-11-03 杭州谱析光晶半导体科技有限公司 一种基于光场重构的井下液体分析系统及方法

Similar Documents

Publication Publication Date Title
CN103616164B (zh) 一种基于脉冲激光光源的反射率/透过率综合测量方法
CN101699265A (zh) 动态偏振光散射颗粒测量装置及测量方法
CN106556576A (zh) 一种基于光腔衰荡技术同时测量高反射/高透射光学元件的反射率和透过率的方法
WO2020097847A1 (zh) 液面侦测系统及液面侦测方法
CN101290351B (zh) 一种光学识别及测距装置
CN106994006A (zh) 双模态成像系统
CN104535535B (zh) 一种基于自混合干涉的折射率测量装置及方法
CN106769737B (zh) 一种光纤式粉尘浓度测量装置
CN111239064A (zh) 一种用于溶液浓度测量的反射和透射组合光学测量系统
CN201622228U (zh) 动态偏振光散射颗粒测量装置
CN102252828B (zh) 一种监测高反射光学元件在激光辐照下反射率实时变化的方法
CN113029217B (zh) 基于法布里波罗标准具的光纤声传感系统及光学麦克风
CN108426834A (zh) 一种快速光程扫描装置
CN105181155A (zh) 基于单模光纤的太赫兹脉冲单次探测系统及探测方法
CN208091897U (zh) 一种快速光程扫描装置
CN103674905A (zh) 双端单基线透射式能见度仪
CN212723361U (zh) 一种人眼安全激光相控阵雷达
CN111537414A (zh) 一种液体光学腔增强测量系统
CN112362546A (zh) 一种高精度多波段便携式颗粒物质量浓度测量仪
JP3502076B2 (ja) 光散乱媒体の吸光計測装置
CN112857752A (zh) 一种光学元件角分辨散射的绝对测量系统及方法
CN113340851A (zh) 一种水体前向小角度三维体积散射函数测量系统
CN104849237A (zh) 基于波长调制spr的折射率测量装置
CN113607694B (zh) 一种低散射涂层双向反射分布函数高精度测量装置
CN210990224U (zh) 手持光声成像探测机构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200605

RJ01 Rejection of invention patent application after publication