CN111235044B - Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application - Google Patents

Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application Download PDF

Info

Publication number
CN111235044B
CN111235044B CN201911424045.0A CN201911424045A CN111235044B CN 111235044 B CN111235044 B CN 111235044B CN 201911424045 A CN201911424045 A CN 201911424045A CN 111235044 B CN111235044 B CN 111235044B
Authority
CN
China
Prior art keywords
seq
delta
tocotrienol
saccharomyces cerevisiae
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911424045.0A
Other languages
Chinese (zh)
Other versions
CN111235044A (en
Inventor
宋浩
孙鸿
杨景丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201911424045.0A priority Critical patent/CN111235044B/en
Publication of CN111235044A publication Critical patent/CN111235044A/en
Application granted granted Critical
Publication of CN111235044B publication Critical patent/CN111235044B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/110274-Hydroxyphenylpyruvate dioxygenase (1.13.11.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, a construction method and application thereof, wherein the method comprises the following steps: integrating exogenous genes hpd, hpt and vte1 into a genome rDNA locus of a saccharomyces cerevisiae BY4742 strain to obtain a recombinant strain VE 01; the invention integrates thmg1 gene and ggppssa gene at the delta site of the recombinant strain VE01 genome to obtain a recombinant strain VE02. The method for synthesizing the delta-tocotrienol by using the microorganisms is simple and convenient to operate, and can obtain the delta-tocotrienol with high yield.

Description

Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application
Technical Field
The invention relates to the technical field of biosynthesis, in particular to a recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol and a construction method thereof.
Background
Vitamin e (vitamin e) is a fat-soluble vitamin whose hydrolysate is tocopherol, one of the most important antioxidants. It was discovered as early as 20s in the 20 th century that Evans and his colleagues discovered during the course of their research reproduction that rancid lard could cause infertility in rats. Crystals were isolated in 1936 and artificially synthesized by Swiss chemists in 1938. Vitamin E comprises a group of eight structurally related tocopherols (tocophenols) and tocotrienols (tocotrienols), which were less studied in the early days because tocotrienols have a very low biological activity compared to tocopherols. Recent studies have shown that tocotrienols have functions not possessed by tocopherols, such as neuronal protection and cholesterol lowering effects. And the tocotrienol has strong antitumor activity, and can inhibit tumor cell proliferation, induce tumor cell apoptosis, block cell cycle and inhibit angiogenesis in vitro and in vivo. Has good clinical application prospect. Delta-tocotrienol is an isomer of vitamin E and has recently received much attention due to its potential diverse biomedical applications, such as anticancer activity, prevention of osteoporosis and cholesterol reduction.
To date, according to reports on the market prospects of vitamin E, approximately 80% of vitamin E in the market comes from chemical synthesis and 20% from plant or seed extracts. However, the use of toxic catalysts in the chemical synthesis of vitamin E makes the process environmentally unfriendly and non-sustainable. However, delta-tocotrienols are mainly extracted from oil palm and rice, and little has been studied on the biosynthesis of their microorganisms. Engineered saccharomyces cerevisiae can replace extraction methods in plants as an alternative and promising way to produce delta-tocotrienols.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide a recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol.
The second purpose of the invention is to provide a construction method of the recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol.
A third object of the invention is the use of a recombinant strain of saccharomyces cerevisiae for the production of delta-tocotrienol.
The technical scheme of the invention is summarized as follows:
the construction method of the recombinant saccharomyces cerevisiae strain for synthesizing the delta-tocotrienol comprises the following steps: integrating exogenous genes hpd, hpt and vte1 into a genome rDNA locus of a saccharomyces cerevisiae BY4742 strain to obtain a recombinant strain VE 01; integrating a thmg1 gene and a ggppssa gene at a delta site of a recombinant strain VE01 genome to obtain a recombinant strain VE02, wherein the nucleotide sequence of the hpd gene is shown as SEQ ID NO. 7; the nucleotide sequence of the hpt gene is shown as SEQ ID NO. 8; the nucleotide sequence of the vte1 gene is shown as SEQ ID NO. 9; the nucleotide sequence of the thmg1 gene is shown in SEQ ID NO. 10; the nucleotide sequence of the ggppssa gene is shown as SEQ ID NO. 11.
The synthetic delta-tocotrienol recombinant saccharomyces cerevisiae strain constructed by the method.
The application of the recombinant saccharomyces cerevisiae strain for synthesizing the delta-tocotrienol to produce the delta-tocotrienol comprises the following steps: culturing and fermenting the recombinant delta-tocotrienol-synthesizing saccharomyces cerevisiae strain VE02 of claim 2 in a fermentation medium to obtain delta-tocotrienol, wherein the formula of the fermentation medium is 35.66g/L glucose, 24.46g/L peptone, 14.01g/L yeast extract powder and the balance water.
The invention has the advantages that:
the recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol constructed by the invention can be used for synthesizing the delta-tocotrienol again by taking glucose as a carbon source, and can replace a plant extraction method. The method for synthesizing the delta-tocotrienol by using the microorganisms is simple and convenient to operate, and can obtain the delta-tocotrienol with high yield.
Drawings
FIG. 1 is a scheme for the synthesis of delta-tocotrienol in Saccharomyces cerevisiae.
FIG. 2 is a graph of the yield of recombinant s.cerevisiae strain VE01 for the synthesis of delta-tocotrienol.
FIG. 3 is a graph of the yield of recombinant s.cerevisiae strain VE02 for the synthesis of delta-tocotrienol.
FIG. 4 is a graph showing the yield of delta-tocotrienol synthesized by recombinant Saccharomyces cerevisiae strain VE02 after optimization of fermentation conditions.
Detailed Description
The original strain Saccharomyces cerevisiae BY4742 was purchased at ATCC official website in 2016, 9 months (https:// www.atcc.org/products/all/201389. aspx).
The present invention will be further described with reference to the following examples.
Example 1
The construction method of the recombinant saccharomyces cerevisiae strain for synthesizing the delta-tocotrienol comprises the following steps: the expression cassettes of three exogenous genes hpd, hpt and vte1 are integrated to the rDNA locus of a yeast (Saccharomyces cerevisiae BY4742) genome BY using an rDNA locus specificity homologous recombination method to obtain a recombinant strain VE 01.
Integrating the thmg1 gene and the ggppssa gene at the delta site of the recombinant strain VE01 genome to obtain a recombinant strain VE02.
The nucleotide sequence of the hpd gene is shown as SEQ ID NO. 7; the nucleotide sequence of the hpt gene is shown as SEQ ID NO. 8; the nucleotide sequence of the vte1 gene is shown as SEQ ID NO. 9; the nucleotide sequence of the thmg1 gene is shown in SEQ ID NO. 10; the nucleotide sequence of the ggppssa gene is shown as SEQ ID NO. 11.
The method comprises the following specific steps:
(1) the construction method of the recombinant saccharomyces cerevisiae strain VE01 for synthesizing the delta-tocotrienol comprises the following steps:
obtaining amino acid sequences of a Pseudomonas putida KT2440 derived gene hpd, a Synechocystis sp.PCC6803 derived gene hpt and an Arabidopsis thaliana derived gene vte1 from an NCBI database, artificially synthesizing sequences of the three genes through codon optimization, and simultaneously constructing expression cassettes of the three genes,
the hpd gene expression cassette uses Ppgk1 promoter and Tpgk1 terminator (SEQ ID NO.1 and SEQ ID NO.4),
the hpt gene expression cassette uses the Ptef1 promoter and the Ttpi1 terminator (SEQ ID NO.2 and SEQ ID NO.5),
the vte1 gene expression cassette used Ppgk1 promoter and Tcyc1 terminator (SEQ ID NO.1 and SEQ ID NO.6),
and (3) introducing the hpd gene expression cassette, the hpt gene expression cassette and the vte1 gene expression cassette into a saccharomyces cerevisiae rDNA locus by a homologous recombination method to obtain the recombinant saccharomyces cerevisiae strain VE01 for synthesizing the delta-tocotrienol.
(2) The construction method of the recombinant saccharomyces cerevisiae strain VE02 for synthesizing the delta-tocotrienol comprises the following steps:
obtaining gene thmg1 gene of Saccharomyces cerevisiae BY4742 from NCBI database, obtaining the nucleotide sequence (SEQ ID NO.10) BY artificial synthesis,
the amino acid sequence from the Sulfolobus acidocaldarius gene ggppssa was obtained from NCBI database, the nucleotide sequence of this gene (SEQ ID NO.11) was artificially synthesized by codon optimization,
constructing expression cassettes of the two genes,
the expression cassette for the thmg1 gene used Ppgk1 promoter and Tpgk1 terminator (SEQ ID NO.1 and SEQ ID NO.4),
the ggppssa gene expression cassette uses Ptdh1 promoter and Tref 1 terminator (SEQ ID NO.3 and SEQ ID NO.12), and a thamg 1 gene expression cassette and the ggppssa gene expression cassette are introduced into a saccharomyces cerevisiae delta site through a homologous recombination method to obtain a synthetic delta-tocotrienol recombinant saccharomyces cerevisiae strain 02 (see fig. 1).
1. Construction of modules
The homologous arms rDNA-up and rDNA-down are both from the genome of Saccharomyces cerevisiae BY 4742; the selectable marker gene URA3 was derived from plasmid pRS426 (purchased from addge, inc.
The genome of Saccharomyces cerevisiae BY4742 is used as a template, rDNaup-F (SEQ ID NO.13), rDNaup-R-Tcyc1(SEQ ID NO.14), Ttpi 1-rDNaudown-F (SEQ ID NO.15) and rDNaudown-R (SEQ ID NO.16) are used as primers, and the homologous arm rDNA-up (SEQ ID NO.17) and rDNA-down (SEQ ID NO.18) are amplified respectively;
respectively amplifying a promoter Ppgk1(SEQ ID NO.1) and a terminator Tcyc1(SEQ ID NO.6) by taking vte1-Tcyc1-F (SEQ ID NO.19), Tcyc1-R-rDNaup (SEQ ID NO.20), URA3-Ppgk1-F (SEQ ID NO.21) and Ppgk1-R-vte1(SEQ ID NO.22) as primers;
using Tpgk1-Ptef1-F (SEQ ID NO.23), Ptef1-R-hpt (SEQ ID NO.24), hpt-Ttpi1-F (SEQ ID NO.25), Ttpi1-R-rDNAdown (SEQ ID NO.26) as primers to respectively amplify a promoter Ptef1(SEQ ID NO.2) and a terminator Ttpi1(SEQ ID NO. 5);
the plasmid PRS426 is used as a template, Ppgk1-URA3-F (SEQ ID NO.27) and URA3-R-Ppgk1(SEQ ID NO.28) are used as primers, and a marker gene URA3(SEQ ID NO.29) is amplified, wherein the sequence is shown in a sequence table.
The PCR enzyme used in the present invention is Fast Pfu polymerase from holo-gold Biotechnology Ltd. A50. mu.L PCR amplification system was as follows: DNA template, 1. mu.L; 2.5. mu.L of each of the front lead (10. mu.M) and the rear lead (10. mu.M); dNTP (10mM), 5. mu.L; 5 Xpfu Buffer, 10. mu.L; fast Pfu polymerase, 1 μ L; finally, the solution is replenished to 50 mu L by double distilled water. An amplification program is set up on the PCR instrument. The amplification conditions were pre-denaturation at 95 ℃ for 2min (1 cycle); denaturation at 95 ℃ for 20sec, annealing at 55 ℃ for 20sec, and extension at 72 ℃ for 30s (35 cycles); extension at 72 ℃ for 5min (1 cycle).
The 7 amplified fragments are mixed with 5 fragments of artificially synthesized gene fragment hpd (SEQ ID NO.7), hpt gene (SEQ ID NO.8), nucleotide sequence of vte1 gene (SEQ ID NO.9), Ppgk1 promoter (SEQ ID NO.1) and Tpgk1 terminator (SEQ ID NO.4) and spliced into a large fragment by a BM seamless ligation kit (Bomader Biotech Co., Ltd.). The molar ratio of each fragment was 1:1, the total amount of fragments reached 1. mu.g, the ligation volume was as follows, 10. mu.L of DNA fragment, 10. mu.L of 2 × Seamless Cloning Mix. The ligation program was set up on the PCR instrument. The connection conditions were 50min at 50 ℃ and 10min at 16 ℃.
The fragments obtained by PCR, adjusted at a concentration of 500ng, were converted into competent yeast using the LiAc/salmon sperm DNA/PEG method. In the absence of uracil, individual colonies were grown on SC-drop agar plates (20g/L glucose, 2g/L amino acid mixture, 6.7g/L yeast nitrogen base without amino acids, 20g/L agar for solid plates). After incubation at 30 ℃ for 36h, colonies were cultured overnight in yeast protein ept glucose (YPD) medium (20g/L glucose, 20g/L peptone, 10g/L yeast extract, 20g/L agar solid medium) at 30 ℃ at 200 rpm. The recombinant strain VE01 was constructed.
Using a Saccharomyces cerevisiae BY4742 genome as a template, using deltaup-F (SEQ ID NO.30), deltaup-R-LEU (SEQ ID NO.31), Tref 1-deltadown-F (SEQ ID NO.32) and deltadown-R (SEQ ID NO.33) as primers to respectively amplify homologous arms delta-up (SEQ ID NO.34) and delta-down (SEQ ID NO. 35);
LEU-Ppgk1-F (SEQ ID NO.36), Ppgk1-R-thmgr (SEQ ID NO.37), thmg1-Tpgk1-F (SEQ ID NO.38) and Tpgk1-R (SEQ ID NO.39) are used as primers to respectively amplify a promoter Ppgk1(SEQ ID NO.1) and a terminator Tpgk1(SEQ ID NO. 4);
tpgk1-Ptdh1-F (SEQ ID NO.40), Ptdh1-R-ggppssa (SEQ ID NO.41), ggppssa-Tref 1-F (SEQ ID NO.42) and Tref 1-R-deltadown (SEQ ID NO.43) are used as primers to respectively amplify a promoter Ptdh1(SEQ ID NO.3) and a terminator Tref 1(SEQ ID NO. 12);
the plasmid PRS425 is used as a template, and deltaup-LEU-F (SEQ ID NO.44) and LEU-R-Ppgk1(SEQ ID NO.45) are used as primers to amplify a marker gene LEU (SEQ ID NO.46), and the sequence is shown in a sequence table.
The 7 fragments obtained by PCR amplification and the artificially synthesized gene thmg1 and ggppssa gene fragment are spliced into a large fragment by a BM seamless ligation kit (Bomader Biotechnology Co., Ltd.). The molar ratio of each fragment was 1:1, the total amount of fragments reached 1. mu.g, the ligation volume was as follows, 10. mu.L of DNA fragment, 10. mu.L of 2 × Seamless Cloning Mix. The ligation program was set up on the PCR instrument. The connection conditions were 50min at 50 ℃ and 10min at 16 ℃.
The fragments obtained by PCR, adjusted at a concentration of 500ng, were converted into competent yeast using the LiAc/salmon sperm DNA/PEG method. In the absence of uracil, individual colonies were grown on SC-drop agar plates (20g/L glucose, 2g/L amino acid mixture, 6.7g/L yeast nitrogen base without amino acids, 20g/L agar for solid plates). After incubation at 30 ℃ for 36h, colonies were cultured overnight in yeast protein ept glucose (YPD) medium (20g/L glucose, 20g/L peptone, 10g/L yeast extract, 20g/L agar solid medium) at 30 ℃ at 200 rpm. The recombinant strain VE02 was constructed.
2. Fermentation process
Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder and the balance of water;
fermentation medium: 35.66g/L glucose, 24.46g/L peptone, 14.01g/L yeast extract powder and the balance of water.
Control group: the recombinant strain VE02 was inoculated into 5mL of seed medium 30oC at 200rpm for 20h, then the 5mL of medium was inoculated into 30mL of fresh seed medium, the density of the strain was adjusted to a final density of 0.1 at 30oC at 200rpm at OD600nm, and the final density was incubated for 72h, and the culture broth was taken for product analysis.
Experimental groups: inoculating the recombinant strain VE02 into 5mL of seed culture medium at 30oC for 200rpm, culturing for 20h, then transferring the 5mL of culture medium into 30mL of fresh fermentation culture medium, adjusting the bacterial density to make the final bacterial density at OD600nm at 0.1, 30oC for 200rpm, culturing for 72h, and taking the culture solution for product analysis.
3. Analysis of the product
Extraction and analysis of delta-tocotrienol: 30mL of the culture solution of the control group and the experimental group, respectively, were centrifuged at 4oC 8000rpm/min for 10 minutes to obtain cell pellets, and washed twice with double distilled water (ddH2O) to remove the residual medium. Then, 7ml of double distilled water was added to suspend the cells, followed by 7ml of acid-washed glass beads (0.4-0.6mm) and 15ml of analytical grade acetone. The supernatant was obtained by shaking at room temperature for 30 minutes with a vortex at 5000rpm and then centrifuging at 4 ℃ for 10 minutes at 8000 rpm. The supernatant was evaporated in a vacuum rotary evaporator and the residue dissolved in acetonitrile (1 mL). Analysis was performed by High Performance Liquid Chromatography (HPLC) using a Waters 2695HPLC instrument with a UV detector. The solution was filtered and injected into an RP18Lichrospher100 analytical column (5 μm, 150X4.6 mm, Merck, Germany) with delta-tocotrienol (purity 98% or more, Toronto research chemical, Canada) as a label. The mobile phase was acetonitrile containing 0.1% v/v trifluoroacetic acid (TFA), total flow rate 0.6mL/min, chromatogram at 292nm detection, column temperature 30oC, see FIG. 2, FIG. 3 and FIG. 4.
Analysis of precursor homogentisate and geranylgeranyl pyrophosphate: 1ml of the culture solution was taken for each of the control group and the experimental group, and centrifuged at 12000rpm for 10 minutes to obtain a supernatant. Diluted 10-fold with ddH2O and filtered using a 0.2 μm inorganic filter. Finally, the same HPLC analysis method as delta-tocotrienol, homogentisic acid (HGA) (purity 98% or more, Sigma-Aldrich, China) was used as the label. The geranylgeranyl pyrophosphate assay is performed by detecting geranylgeranyl pyrophosphate alcohol. We added 1ml of hexane to 1ml of the culture solutions of the control group and the experimental group, respectively, and mixed for 10 minutes at 5000rpm using a vortex. After centrifugation at 12000rpm for 10 minutes, the hexane layer was sampled and 1 μ l was injected by a FULI autosampler into FULI9790 GC equipped with a fused silica capillary column (30m × 0.25mm ID, 0.25mm DB-5MS, J & W Scientific, Folsom, CA). Standard GGOH (purity is more than or equal to 95%; Shanghai Aladdin, China) is used as a control.
4. Results
In this study, we first integrated the three essential genes (hpd, hpt and vte1) into the rDNA site of the genome of the starting strain Saccharomyces cerevisiae BY4742 to give strain VE 01. However, no delta-tocotrienol was detected and detection of the precursor showed that geranylgeranyl pyrophosphate (GGPP) was also not detected, only Homogentisate (HGA) was detected. In order to improve the yield of geranylgeranyl pyrophosphate, the thrmg 1 and ggppssa genes are integrated into the genome of the yeast strain VE01 through delta site integration to obtain a recombinant strain VE02, the recombinant strain VE02 is cultured in a seed culture medium to obtain 1.39mg/L of delta-tocotrienol, and in order to further improve the yield of the delta-tocotrienol, the yield of the delta-tocotrienol is improved (3.56mg/L) by optimizing the adjusted fermentation culture medium, and is about 2.6 times higher than that of the previous culture medium. In conclusion, 3.56mg/L of delta-tocotrienol was finally obtained.
Sequence listing
<110> Tianjin university
<120> delta-tocotrienol synthesized recombinant saccharomyces cerevisiae strain, construction method and application
<160> 46
<170> SIPOSequenceListing 1.0
<210> 1
<211> 713
<212> DNA
<213> Saccharomyces cerevisiae
<400> 1
taacatctgc ataataggca tttgcaagaa ttactcgtga gtaaggaaag agtgaggaac 60
tatcgcatac ctgcatttaa agatgccgat ttgggcgcga atcctttatt ttggcttcac 120
cctcatacta ttatcagggc cagaaaaagg aagtgtttcc ctccttcttg aattgatgtt 180
accctcataa agcacgtggc ctcttatcga gaaagaaatt accgtcgctc gtgatttgtt 240
tgcaaaaaga acaaaactga aaaaacccag acacgctcga cttcctgtct tcctattgat 300
tgcagcttcc aatttcgtca cacaacaagg tcctagcgac ggctcacagg ttttgtaaca 360
agcaatcgaa ggttctggaa tggcgggaaa gggtttagta ccacatgcta tgatgcccac 420
tgtgatctcc agagcaaagt tcgttcgatc gtactgttac tctctctctt tcaaacagaa 480
ttgtccgaat cgtgtgacaa caacagcctg ttctcacaca ctcttttctt ctaaccaagg 540
gggtggttta gtttagtaga acctcgtgaa acttacattt acatatatat aaacttgcat 600
aaattggtca atgcaagaaa tacatatttg gtcttttcta attcgtagtt tttcaagttc 660
ttagatgctt tctttttctc ttttttacag atcatcaagg aagtaattat cta 713
<210> 2
<211> 422
<212> DNA
<213> Saccharomyces cerevisiae
<400> 2
cccacacacc atagcttcaa aatgtttcta ctcctttttt actcttccag attttctcgg 60
actccgcgca tcgccgtacc acttcaaaac acccaagcac agcatactaa attacccctc 120
tttcttcctc tagggtgtcg ttaattaccc gtactaaagg tttggaaaag aaaaaagaga 180
ccgcctcgtt tctttttctt cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt 240
tcttgaaaat tttttttttt gatttttttc tctttcgatg acctcccatt gatatttaag 300
ttaataaatg gtcttcaatt tctcaagttt cagtttcatt tttcttgttc tattacaact 360
ttttttactt cttgctcatt agaaagaaag catagcaatc taatctaagt tttaattaca 420
aa 422
<210> 3
<211> 688
<212> DNA
<213> Saccharomyces cerevisiae
<400> 3
ccatatggag gataagttgg gctgagcttc tgatccaatt tattctatcc attagttgct 60
gatatgtccc accagccaac acttgatagt atctactcgc cattcacttc cagcagcgcc 120
agtagggttg ttgagcttag taaaaatgtg cgcaccacaa gcctacatga ctccacgtca 180
catgaaacca caccgtgggg ccttgttgcg ctaggaatag gatatgcgac gaagacgctt 240
ctgcttagta accacaccac attttcaggg ggtcgatctg cttgcttcct ttactgtcac 300
gagcggccca taatcgcgct ttttttttaa aaggcgcgag acagcaaaca ggaagctcgg 360
gtttcaacct tcggagtggt cgcagatctg gagactggat ctttacaata cagtaaggca 420
agccaccatc tgcttcttag gtgcatgcga cggtatccac gtgcagaaca acatagtctg 480
aagaaggggg ggaggagcat gttcattctc tgtagcagta agagcttggt gataatgacc 540
aaaactggag tctcgaaatc atataaatag acaatatatt ttcacacaat gagatttgta 600
gtacagttct attctctctc ttgcataaat aagaaattca tcaagaactt ggtttgatat 660
ttcaccaaca cacacaaaaa acagtact 688
<210> 4
<211> 232
<212> DNA
<213> Saccharomyces cerevisiae
<400> 4
atcaattttt ttcttttctc tttccccatc ctttacgcta aaataatagt ttattttatt 60
ttttgaatat tttttattta tatacgtata tatagactat tatttatctt ttaatgatta 120
ttaagatttt tattaaaaaa aaattcgctc ctcttttaat gcctttatgc agtttttttt 180
tcccattcga tatttctatg ttcgggttca gcgtatttta agtttaataa ct 232
<210> 5
<211> 399
<212> DNA
<213> Saccharomyces cerevisiae
<400> 5
attaatataa ttatataaaa atattatctt cttttcttta tatctagtgt tatgtaaaat 60
aaattgatga ctacggaaag cttttttata ttgtttcttt ttcattctga gccacttaaa 120
tttcgtgaat gttcttgtaa gggacggtag atttacaagt gatacaacaa aaagcaaggc 180
gctttttcta ataaaaagaa gaaaagcatt taacaattga acacctctat atcaacgaag 240
aatattactt tgtctctaaa tccttgtaaa atgtgtacga tctctatatg ggttactcat 300
aagtgtaccg aagactgcat tgaaagttta tgttttttca ctggaggcgt cattttcgcg 360
ttgagaagat gttcttatcc aaatttcaac tgttatata 399
<210> 6
<211> 221
<212> DNA
<213> Saccharomyces cerevisiae
<400> 6
aaaaagcctt cgagcgtccc aaaaccttct caagcaaggt tttcagtata atgttacatg 60
cgtacacgcg tctgtacaga aaaaaaagaa aaatttgaaa tataaataac gttcttaata 120
ctaacataac tataaaaaaa taaataggga cctagacttc aggttgtcta actccttcct 180
tttcggttag agcggatgtg gggggagggc gtgaatgtaa g 221
<210> 7
<211> 2021
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
taacatctgc ataataggca tttgcaagaa ttactcgtga gtaaggaaag agtgaggaac 60
tatcgcatac ctgcatttaa agatgccgat ttgggcgcga atcctttatt ttggcttcac 120
cctcatacta ttatcagggc cagaaaaagg aagtgtttcc ctccttcttg aattgatgtt 180
accctcataa agcacgtggc ctcttatcga gaaagaaatt accgtcgctc gtgatttgtt 240
tgcaaaaaga acaaaactga aaaaacccag acacgctcga cttcctgtct tcctattgat 300
tgcagcttcc aatttcgtca cacaacaagg tcctagcgac ggctcacagg ttttgtaaca 360
agcaatcgaa ggttctggaa tggcgggaaa gggtttagta ccacatgcta tgatgcccac 420
tgtgatctcc agagcaaagt tcgttcgatc gtactgttac tctctctctt tcaaacagaa 480
ttgtccgaat cgtgtgacaa caacagcctg ttctcacaca ctcttttctt ctaaccaagg 540
gggtggttta gtttagtaga acctcgtgaa acttacattt acatatatat aaacttgcat 600
aaattggtca atgcaagaaa tacatatttg gtcttttcta attcgtagtt tttcaagttc 660
ttagatgctt tctttttctc ttttttacag atcatcaagg aagtaattat ctacttttta 720
caacaaatat aaaacaatgg ctgacatctt cgaaaaccca atgggtttga tgggtttcga 780
atttatcgaa ttggcttctc caactccagg tgttttggaa ccagtttttc aaatattggg 840
cttcactaag gttgcgactc acagatctaa ggacgttcac ttgtaccgtc aaggtggtat 900
caacttgatc ttgaacaacg aaccaaagtc tatcgcttct tacttcgctg ctgaacacgg 960
tccatctgtt tgtggtatgg ctttcagagt tagaaacgct cacgaagcgt acgctagagc 1020
tttggaattg ggtgctcaac cagttgaaat cgaaactggt ccaatggaat tgagattgcc 1080
agctatcaag ggtatcggtg gtgctccatt gtacttgatc gacagattcg aagaaggttc 1140
ttctatctac gacatcgact tcaacttcat cgaaggtgtt gacagaaacc cagttggcgc 1200
gggtctcaag atcatcgacc acttgactca caacgtttac agaggtagaa tggcttactg 1260
ggctggtttc tacgaaaagt tgttcaactt cagagaaatc agatacttcg acatcaaggg 1320
tgaatacact ggtttgactt ctaaggctat gactgctcca gacggtatga tcagaatccc 1380
attgaacgaa gaatcttcta agggtgctgg tcaaatcgaa gaatttttga tgcaattcaa 1440
cggtgaaggt atccaacacg ttgctttctt gactgacgac ttgttgaaga cttgggacgc 1500
tttgaagggt ttgggtatga gattcatgac tgctccacca caaacttact acgaaatgtt 1560
ggaagaaaga ttgccaggtc acggtgaacc agttgaccaa ttgcaagcta gaggtatctt 1620
gttggacggt gcttctcaac caggtgacaa gagattgttg ttgcaaatct tctctgaaac 1680
tttgttgggt ccagttttct tcgaatttat ccaaagaaag ggtgacgacg gtttcggtga 1740
aggtaaattg aattgaattg aaatcgatag atcaattttt ttcttttctc tttccccatc 1800
ctttacgcta aaataatagt ttattttatt ttttgaatat tttttattta tatacgtata 1860
tatagactat tatttatctt ttaatgatta ttaagatttt tattaaaaaa aaattcgctc 1920
ctcttttaat gcctttatgc agtttttttt tcccattcga tatttctatg ttcgggttca 1980
gcgtatttta agtttaataa ctcgaaaatt ctgcgttcgt t 2021
<210> 8
<211> 540
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atggatcgtt ggtttgtgtg gtgttgcttc tttggctatc gcttggggtt tgggtttgtg 60
gttgggtttg actgttggta tctctttgat catcggtact gcttactctg ttccaccagt 120
tagattgaag agattctctt tgttggctgc tttgtgtatc ttgactgtta gaggtatcgt 180
tgttaacttg ggtttgttct tgttcttcag aatcggtttg ggttacccac caactttgat 240
cactccaatc tgggttttga ctttgttcat cttggttttc actgttgcta tcgctatctt 300
caaggacgtt ccagacatgg aaggtgacag acaattcaag atccaaactt tgactttgca 360
aatcggtaag caaaacgttt tcagaggtac tttgatcttg ttgactggtt gttacttggc 420
tatggctatc tggggtttgt gggctgctat gccattgaac actgctttct tgatcgtttc 480
tcacttgtgt ttgttggctt tgttgtggtg gagatctcgt gacgttcact tggaatctaa 540
<210> 9
<211> 1473
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
atgtacatgg aaatccgttc gttgatcgta agcatgaacc caaacttgtc ttctttcgaa 60
ttgtctcgtc cagtttctcc attgactaga tctttggttc cattcagatc tactaagttg 120
gttccaagat ctatctctcg tgtttctgct tctatctcta ctccaaactc tgaaactgac 180
aagatctctg ttaagccagt ttacgttcca acttctccaa acagagaatt gagaactcca 240
cactctggtt accacttcga cggtactcca agaaagttct tcgaaggttg gtacttcaga 300
gtttctatcc cagaaaagcg tgagtctttc tgcttcatgt actcggttga aaacccagct 360
ttcagacaat ctttgtctcc attggaagtt gctttgtacg gtccaagatt cactggtgtt 420
ggtgctcaaa tcttgggtgc taacgacaag tacttgtgtc aatacgaaca agactctcac 480
aacttctggg gtgacagaca cgaattggtt ttgggtaaca ctttctctgc tgttccaggt 540
gctaaggctc caaacaagga agttccacca gaagaattta acagaagagt ttcggaaggc 600
ttccaagcta ctccattctg gcaccaaggt cacatctgtg acgacggtag aactgactac 660
gctgaaactg ttaagtctgc tagatgggaa tactctacta gaccagttta cggttggggt 720
gacgttggtg ctaagcaaaa gtctactgcg ggttggccag cggcgttccc agttttcgag 780
ccacactggc aaatctgtat ggcgggcggc ttgtctactg gttggatcga atggggtggt 840
gaaagattcg aatttagaga cgctccatct tactctgaaa agaactgggg tggtggtttc 900
ccaagaaagt ggttctgggt tcaatgtaac gttttcgaag gtgctactgg tgaagttgct 960
ttgactgctg gtggtggttt gagacaattg ccaggtttga ctgaaactta cgaaaacgct 1020
gctttggttt gtgttcacta cgacggtaag atgtacgaat ttgttccatg gaacggtgtt 1080
gttagatggg aaatgtctcc atggggttac tggtacatca ctgctgaaaa cgaaaaccac 1140
gttgttgaat tggaagctag aactaacgaa gctggtactc cattgagagc gccaactact 1200
gaggtaggtc tcgctactgc ttgcagagac tcttgttacg gtgaattgaa gttgcaaatc 1260
tgggaaagat tgtacgacgg ttctaagggt aaggttatct tggaaactaa gtcttctatg 1320
gctgctgttg aaatcggtgg tggtccatgg ttcggtactt ggaagggtga cacttctaac 1380
actccagaat tgttgaagca agctctccaa gttccattgg acttggagtc ggctctcggt 1440
ttggttccat tcttcaagcc accaggtttg taa 1473
<210> 10
<211> 1578
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atggaccaat tggttaagac tgaagttact aagaagtctt tcactgctcc agttcaaaag 60
gcttctactc cagttttgac taacaagact gttatctctg gttctaaggt taagtctttg 120
tcttctgctc aatcttcttc ttctggtcca tcttcttctt ctgaagaaga cgactctcgt 180
gacatcgaat ctttggacaa gaagatcaga ccattggaag aattggaagc tctcttgtct 240
tctggtaaca ctaagcaatt gaagaacaag gaagttgctg ctttggttat ccacggtaag 300
ttgccattgt acgctttgga aaagaagttg ggtgacacta ctagagctgt tgctgttaga 360
agaaaggctt tgtctatctt ggctgaagct ccagttttgg cttctgacag attgccatac 420
aagaactacg actacgacag agttttcggt gcttgttgtg aaaacgttat cggttacatg 480
ccattgccag ttggtgttat cggtccattg gttatcgacg gtacttctta ccacatccca 540
atggctacta ctgaaggttg tttggttgct tctgctatga gaggttgtaa ggctatcaac 600
gctggtggtg gcgctactac tgtgctcact aaggacggta tgactagagg tccagttgtt 660
agattcccaa ctttgaagag atctggtgct tgtaagatct ggttggactc tgaagaaggt 720
caaaacgcta tcaagaaggc tttcaactct acttctcgtt tcgctagatt gcaacacatc 780
caaacttgtt tggctggtga cttgttgttc atgagattca gaactactac tggtgacgct 840
atgggtatga acatgatctc taagggtgtt gagtacagct tgaagcaaat ggttgaagaa 900
tacggttggg aagacatgga agttgtttct gtttctggta actactgtac tgacaagaag 960
ccagctgcta tcaactggat cgaaggtaga ggtaagtctg ttgttgctga agctactatc 1020
ccaggtgacg ttgttagaaa ggttttgaag tctgacgttt ctgctttggt tgaattgaac 1080
atcgctaaga acttggttgg ttctgctatg gctggttctg ttggtggttt caacgctcac 1140
gctgctaact tggttactgc tgttttcttg gctttgggtc aagacccagc tcaaaacgtt 1200
gaatcttcta actgtatcac tttgatgaag gaagttgacg gtgacttgag aatctctgtt 1260
tctatgccat ctatcgaagt tggtactatc ggtggtggca ctgtcctcga accacaaggt 1320
gctatgttgg acttgttggg tgttagaggt ccacacgcta ctgctccagg tactaacgct 1380
agacaattgg ctagaatcgt tgcttgtgct gttttggctg gtgaattgtc tttgtgtgct 1440
gctttggctg ctggtcactt ggttcaatct cacatgactc acaacagaaa gccagctgaa 1500
ccaactaagc caaacaactt ggacgctact gacatcaaca gattgaagga cggttctgtt 1560
acttgtatca agtcttaa 1578
<210> 11
<211> 993
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
atgtcttact tcgacaacta cttcaacgaa atcgttaact ctgttaacga catcatcaag 60
tcttacatct ctggtgacgt tccaaagttg tacgaagcta gttaccactt gttcacttct 120
ggtggtaaga gattgagacc attgatcttg actatctctt ctgacttgtt cggtggtcaa 180
agagaaagag cttactacgc tggtgctgct atcgaagttt tgcacacttt cactttggtt 240
cacgacgaca tcatggacca agacaacatc agaagaggtt tgccaactgt tcacgttaag 300
tacggtttgc cattggctat cttggctggt gacttgttgc acgctaaggc tttccaattg 360
ttgactcaag ctctccgtgg tctcccatct gaaactatca tcaaggcttt cgacatcttc 420
actagatcta tcatcatcat ctctgaaggt caagctgttg acatggaatt tgaagacaga 480
atcgacatca aggaacaaga atacttggac atgatctctc gtaagactgc tgctttgttc 540
tctgcttctt cttctatcgg tgctttgatc gctggtgcta acgacaacga cgttagattg 600
atgtctgact tcggtactaa cttgggtatc gctttccaaa tcgttgacga catcttgggt 660
ttgactgctg acgaaaagga attgggtaag ccagttttct ctgacatcag agaaggtaag 720
aagactatcc tcgttatcaa gactctcgaa ttgtgtaagg aagacgaaaa gaagatcgtt 780
ttgaaggctt tgggtaacaa gtctgcttct aaggaagaat tgatgtcttc tgctgacatc 840
atcaagaagt actctttgga ctacgcttac aacttggctg aaaagtacta caagaacgct 900
atcgactctt tgaaccaagt ttcttctaag tctgacatcc caggtaaggc tttgaagtac 960
ttggctgaat ttactatcag aagaagaaag taa 993
<210> 12
<211> 471
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
atcttttata tttaaatctt atctattagt taattttttg taatttatcc ttatatatag 60
tctggttatt ctaaaatatc atttcagtat ctaaaaattc ccctcttttt tcagttatat 120
cttaacaggc gacagtccaa atgttgattt atcccagtcc gattcatcag ggttgtgaag 180
cattttgtca atggtcgaaa tcacatcagt aatagtgcct cttacttgcc tcatagaatt 240
tctttctctt aacgtcaccg tttggtcttt tatagtttcg aaatctatgg tgataccaaa 300
tggtgttccc aattcatcgt tacgggcgta ttttttacca attgaagtat tggaatcgtc 360
aattttaaag tatatctctc ttttacgtaa agcctgcgag atcctcttaa gtatagcggg 420
gaagccatcg ttattcgata ttgtcgtaac aaatactttg atcggcgcta t 471
<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
tcgctttacc tcataaaact g 21
<210> 14
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
aaaagccttc gagcgtccca aacttgaaat tgctggcctt 40
<210> 15
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
ccaaatttca actgttatat aactccaaag agtatcactc acta 44
<210> 16
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
agaccttaac ctactaaata gt 22
<210> 17
<211> 1188
<212> DNA
<213> Saccharomyces cerevisiae
<400> 17
tcgctttacc tcataaaact gatacgagct tctgctatcc tgagggaaac ttcggcagga 60
accagctact agatggttcg attagtcttt cgcccctata cccaaattcg acgatcgatt 120
tgcacgtcag aaccgctacg agcctccacc agagtttcct ctggcttcac cctattcagg 180
catagttcac catctttcgg gtcccaacag ctatgctctt actcaaatcc atccgaagac 240
atcaggatcg gtcgattgtg cacctcttgc gaggccccaa cctacgttca ctttcattac 300
gcgtatgggt tttacaccca aacactcgca tagacgttag actccttggt ccgtgtttca 360
agacgggcgg catataacca ttatgccagc atccttgact tacgtcgcag tcctcagtcc 420
cagctggcag tattcccaca ggctataata cttaccgagg caagctacat tcctatggat 480
ttatcctgcc accaaaactg atgctggccc agtgaaatgc gagattcccc tacccacaag 540
gagcagaggg cacaaaacac catgtctgat caaatgccct tccctttcaa caatttcacg 600
tactttttca ctctcttttc aaagttcttt tcatctttcc atcactgtac ttgttcgcta 660
tcggtctctc gccaatattt agctttagat ggaatttacc acccacttag agctgcattc 720
ccaaacaact cgactcttcg aaggcacttt acaaagaacc gcactcctcg ccacacggga 780
ttctcaccct ctatgacgtc ctgttccaag gaacatagac aaggaacggc cccaaagttg 840
ccctctccaa attacaactc gggcaccgaa ggtaccagat ttcaaatttg agcttttgcc 900
gcttcactcg ccgttactaa ggcaatcccg gttggtttct tttcctccgc ttattgatat 960
gcttaagttc agcgggtact cctacctgat ttgaggtcaa actttaagaa cattgttcgc 1020
ctagacgctc tcttcttatc gataacgttc caatacgctc agtataaaaa aagattagcc 1080
gcagttggta aaacctaaaa cgaccgtact tgcattatac ctcaagcacg cagagaaacc 1140
tctctttgga aaaaaaacat ccaatgaaaa ggccagcaat ttcaagtt 1188
<210> 18
<211> 1036
<212> DNA
<213> Saccharomyces cerevisiae
<400> 18
actccaaaga gtatcactca ctaccaaaca gaatgtttga gaaggaaatg acgctcaaac 60
aggcatgccc cctggaatac caaggggcgc aatgtgcgtt caaagattcg atgattcacg 120
gaattctgca attcacatta cgtatcgcat ttcgctgcgt tcttcatcga tgcgagaacc 180
aagagatccg ttgttgaaag tttttaatat tttaaaattt ccagttacga aaattcttgt 240
ttttgacaaa aatttaatga atagataaaa ttgtttgtgt ttgttacctc tgggccccga 300
ttgctcgaat gcccaaagaa aaagttgcaa agatatgaaa actccacagt gtgttgtatt 360
gaaacggttt taattgtcct ataacaaaag cacagaaatc tctcaccgtt tggaatagca 420
agaaagaaac ttacaagcct agcaagaccg cgcacttaag cgcaggcccg gctggactct 480
ccatctcttg tcttcttgcc cagtaaaagc tctcatgctc ttgccaaaac aaaaaaatcc 540
attttcaaaa ttattaaatt tctttaatga tccttccgca ggttcaccta cggaaacctt 600
gttacgactt ttagttcctc taaatgacca agtttgtcca aattctccgc tctgagatgg 660
agttgccccc ttctctaagc agatcctgag gcctcactaa gccattcaat cggtactagc 720
gacgggcggt gtgtacaaag ggcagggacg taatcaacgc aagctgatga cttgcgctta 780
ctaggaattc ctcgttgaag agcaataatt acaatgctct atccccagca cgacggagtt 840
tcacaagatt accaagacct ctcggccaag gttagactcg ctggctccgt cagtgtagcg 900
cgcgtgcggc ccagaacgtc taagggcatc acagacctgt tattgcctca aacttccatc 960
ggcttgaaac cgatagtccc tctaagaagt ggataaccag caaatgctag caccactatt 1020
tagtaggtta aggtct 1036
<210> 19
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
cttcaagcca ccaggtttgt aaaaaaagcc ttcgagcgtc c 41
<210> 20
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
actatttagt aggttaaggt ctacatgtaa ttagttatgt cac 43
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
tatcagggcg atggcccact actaacatct gcataatagg catt 44
<210> 22
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
cgaacggatt tccatgtaca tgtgttttat atttgttgta a 41
<210> 23
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
gtattttaag tttaataact cccacacacc atagcttcaa aatg 44
<210> 24
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
gaacgcttgg atagtagcca ttttgtaatt aaaacttaga ttag 44
<210> 25
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
cttctctaac actatcttct aatttttcta ataaaaagaa gaa 43
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
gtgagtgata ctctttggag ttatataaca gttgaaattt g 41
<210> 27
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
ttacaacaaa tataaaacac ttcaattcat catttttttt ttattc 46
<210> 28
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
gcctattatg cagatgttag tagtgggcca tcgccctgat aga 43
<210> 29
<211> 1375
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
ttcaattcat catttttttt ttattctttt ttttgatttc ggtttctttg aaattttttt 60
gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg agcacagact tagattggta 120
tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc cagtattctt aacccaactg 180
cacagaacaa aaacctgcag gaaacgaaga taaatcatgt cgaaagctac atataaggaa 240
cgtgctgcta ctcatcctag tcctgttgct gccaagctat ttaatatcat gcacgaaaag 300
caaacaaact tgtgtgcttc attggatgtt cgtaccacca aggaattact ggagttagtt 360
gaagcattag gtcccaaaat ttgtttacta aaaacacatg tggatatctt gactgatttt 420
tccatggagg gcacagttaa gccgctaaag gcattatccg ccaagtacaa ttttttactc 480
ttcgaagaca gaaaatttgc tgacattggt aatacagtca aattgcagta ctctgcgggt 540
gtatacagaa tagcagaatg ggcagacatt acgaatgcac acggtgtggt gggcccaggt 600
attgttagcg gtttgaagca ggcggcagaa gaagtaacaa aggaacctag aggccttttg 660
atgttagcag aattgtcatg caagggctcc ctatctactg gagaatatac taagggtact 720
gttgacattg cgaagagcga caaagatttt gttatcggct ttattgctca aagagacatg 780
ggtggaagag atgaaggtta cgattggttg attatgacac ccggtgtggg tttagatgac 840
aagggagacg cattgggtca acagtataga accgtggatg atgtggtctc tacaggatct 900
gacattatta ttgttggaag aggactattt gcaaagggaa gggatgctaa ggtagagggt 960
gaacgttaca gaaaagcagg ctgggaagca tatttgagaa gatgcggcca gcaaaactaa 1020
aaaactgtat tataagtaaa tgcatgtata ctaaactcac aaattagagc ttcaatttaa 1080
ttatatcagt tattacccta tgcggtgtga aataccgcac agatgcgtaa ggagaaaata 1140
ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa 1200
atcagctcat tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa 1260
tagaccgaga tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac 1320
gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actac 1375
<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
tgttggaata gaaatcaact atc 23
<210> 31
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
gtattcccac agttaagctt atgtttatat tcattgatcc tat 43
<210> 32
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
ccccacacac catagcttca aataaaatga tgataataat attta 45
<210> 33
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
ccatgagaaa tgggtgaatg ttgag 25
<210> 34
<211> 167
<212> DNA
<213> Saccharomyces cerevisiae
<400> 34
tgttggaata gaaatcaact atcatctact aactagtatt tacattacta gtatattatc 60
atatacggtg ttagaagatg acgcaaatga tgagaaatag tcatctaaat tagtggaagc 120
tgaaacgcaa ggattgataa tgtaatagga tcaatgaata taaacat 167
<210> 35
<211> 170
<212> DNA
<213> Saccharomyces cerevisiae
<400> 35
ataaaatgat gataataata tttatagaat tgtgtagaat tgcagattcc cttttatgga 60
ttcctaaatc cttgaggaga acttctagta tattctgtat acctaatatt atagccttta 120
tcaacaatgg aatcccaaca attatctcaa cattcaccca tttctcatgg 170
<210> 36
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 36
gtgaatgctg gtcgctatac tgtaacatct gcataatagg c 41
<210> 37
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 37
gtcttaacca attggtccat gtgttttata tttgttgta 39
<210> 38
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 38
gttacttgta tcaagtctta atttttttct tttctctttc cccattat 48
<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 39
aaacaacgaa cgcagaattt 20
<210> 40
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 40
aaattctgcg ttcgttgttt tgtatatgct catttacact c 41
<210> 41
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 41
gtagttgtcg aagtaagaca tttttgtgtg taaatttagt gaag 44
<210> 42
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 42
ctatcagaag aagaaagtaa ggagattgat aagacttttc ta 42
<210> 43
<211> 45
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 43
aaatattatt atcatcattt tatatagcgc cgatcaaagt atttg 45
<210> 44
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 44
taggatcaat gaatataaac ataagcttaa ctgtgggaat ac 42
<210> 45
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 45
gcctattatg cagatgttac agtatagcga ccagcattca cata 44
<210> 46
<211> 1724
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 46
aagcttaact gtgggaatac tcaggtatcg taagatgcaa gagttcgaat ctcttagcaa 60
ccattatttt tttcctcaac ataacgagaa cacacagggg cgctatcgca cagaatcaaa 120
ttcgatgact ggaaattttt tgttaatttc agaggtcgcc tgacgcatat acctttttca 180
actgaaaaat tgggagaaaa aggaaaggtg agaggccgga accggctttt catatagaat 240
agagaagcgt tcatgactaa atgcttgcat cacaatactt gaagttgaca atattattta 300
aggacctatt gttttttcca ataggtggtt agcaatcgtc ttactttcta acttttctta 360
ccttttacat ttcagcaata tatatatata tttcaaggat ataccattct aatgtctgcc 420
cctatgtctg cccctaagaa gatcgtcgtt ttgccaggtg accacgttgg tcaagaaatc 480
acagccgaag ccattaaggt tcttaaagct atttctgatg ttcgttccaa tgtcaagttc 540
gatttcgaaa atcatttaat tggtggtgct gctatcgatg ctacaggtgt cccacttcca 600
gatgaggcgc tggaagcctc caagaaggtt gatgccgttt tgttaggtgc tgtgggtggt 660
cctaaatggg gtaccggtag tgttagacct gaacaaggtt tactaaaaat ccgtaaagaa 720
cttcaattgt acgccaactt aagaccatgt aactttgcat ccgactctct tttagactta 780
tctccaatca agccacaatt tgctaaaggt actgacttcg ttgttgtcag agaattagtg 840
ggaggtattt actttggtaa gagaaaggaa gacgatggtg atggtgtcgc ttgggatagt 900
gaacaataca ccgttccaga agtgcaaaga atcacaagaa tggccgcttt catggcccta 960
caacatgagc caccattgcc tatttggtcc ttggataaag ctaatgtttt ggcctcttca 1020
agattatgga gaaaaactgt ggaggaaacc atcaagaacg aattccctac attgaaggtt 1080
caacatcaat tgattgattc tgccgccatg atcctagtta agaacccaac ccacctaaat 1140
ggtattataa tcaccagcaa catgtttggt gatatcatct ccgatgaagc ctccgttatc 1200
ccaggttcct tgggtttgtt gccatctgcg tccttggcct ctttgccaga caagaacacc 1260
gcatttggtt tgtacgaacc atgccacggt tctgctccag atttgccaaa gaataaggtt 1320
gaccctatcg ccactatctt gtctgctgca atgatgttga aattgtcatt gaacttgcct 1380
gaagaaggta aggccattga agatgcagtt aaaaaggttt tggatgcagg tatcagaact 1440
ggtgatttag gtggttccaa cagtaccacc gaagtcggtg atgctgtcgc cgaagaagtt 1500
aagaaaatcc ttgcttaata atcagtactg acaataaaaa gattcttgtt ttcaagaact 1560
tgtcatttgt atagtttttt tatattgtag ttgttctatt ttaatcaaat gttagcgtga 1620
tttatatttt ttttcgcctc gacatcatct gcccagatgc gaagttaagt gcgcagaaag 1680
taatatcatg cgtcaatcgt atgtgaatgc tggtcgctat actg 1724

Claims (3)

1. The construction method of the recombinant saccharomyces cerevisiae strain for synthesizing the delta-tocotrienol is characterized by comprising the following steps of: integrating exogenous genes hpd, hpt and vte1 into a genome rDNA locus of a saccharomyces cerevisiae BY4742 strain to obtain a recombinant strain VE 01; integrating a thmg1 gene and a ggppssa gene at a delta site of a recombinant strain VE01 genome to obtain a recombinant strain VE 02; the nucleotide sequence of the hpd gene is shown as SEQ ID NO. 7; the nucleotide sequence of the hpt gene is shown as SEQ ID NO. 8; the nucleotide sequence of the vte1 gene is shown as SEQ ID NO. 9; the nucleotide sequence of the thmg1 gene is shown in SEQ ID NO. 10; the nucleotide sequence of the ggppssa gene is shown as SEQ ID NO. 11.
2. A synthetic delta-tocotrienol recombinant saccharomyces cerevisiae strain constructed by the method of claim 1.
3. Use of a recombinant strain of saccharomyces cerevisiae for the synthesis of δ -tocotrienols according to claim 2 for the production of δ -tocotrienols characterized by the steps of: culturing and fermenting the recombinant delta-tocotrienol-synthesizing saccharomyces cerevisiae strain VE02 of claim 2 in a fermentation medium to obtain delta-tocotrienol, wherein the formula of the fermentation medium is 35.66g/L glucose, 24.46g/L peptone, 14.01g/L yeast extract powder and the balance water.
CN201911424045.0A 2019-12-31 2019-12-31 Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application Active CN111235044B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911424045.0A CN111235044B (en) 2019-12-31 2019-12-31 Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911424045.0A CN111235044B (en) 2019-12-31 2019-12-31 Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application

Publications (2)

Publication Number Publication Date
CN111235044A CN111235044A (en) 2020-06-05
CN111235044B true CN111235044B (en) 2022-01-04

Family

ID=70864775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911424045.0A Active CN111235044B (en) 2019-12-31 2019-12-31 Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application

Country Status (1)

Country Link
CN (1) CN111235044B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755356A (en) * 2021-10-19 2021-12-07 浙江大学 Gene engineering bacterium for extracellularly secreting tocotrienol and application thereof
CN113930351B (en) * 2021-11-03 2022-11-29 陕西海斯夫生物工程有限公司 Application of GGH gene in increasing yield of tocopherol, recombinant yarrowia lipolytica for high yield of tocotrienol and application of recombinant yarrowia lipolytica
CN116411013A (en) * 2023-02-24 2023-07-11 江南大学 Method for synthesizing delta-tocotrienol from saccharomyces cerevisiae through metabolic engineering modification

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977674A (en) * 1995-07-07 1997-03-25 Kawashima Takaaki Medicinal dry yeast-containing functional composition
WO2007120423A2 (en) * 2006-03-20 2007-10-25 Microbia Precision Engineering Production of quinone derived compounds in oleaginous yeast and fungi
KR20120085978A (en) * 2011-01-25 2012-08-02 정인택 Diet food for individual constitution
CN103820475A (en) * 2013-11-11 2014-05-28 天津大学 Geranylgeranyl pyrophosphate synthetase gene in Lycium chinense Miller, and encoded protein and application thereof
WO2015014969A1 (en) * 2013-07-31 2015-02-05 Dsm Ip Assets B.V. Steviol glycosides
CN107426994A (en) * 2015-02-03 2017-12-01 伊顿研究有限公司 High-efficiency activated dose of encapsulating
WO2018204764A1 (en) * 2017-05-05 2018-11-08 Camp4 Therapeutics Corporation Identification and targeted modulation of gene signaling networks
CN110195023A (en) * 2019-06-27 2019-09-03 天津大学 A kind of Wine brewing yeast strain and its application
CN110272406A (en) * 2018-03-16 2019-09-24 棕榈营养食品私人有限公司 The preparation method of vitamin E concentrate
CN110423732A (en) * 2019-08-14 2019-11-08 浙江大学 A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977674A (en) * 1995-07-07 1997-03-25 Kawashima Takaaki Medicinal dry yeast-containing functional composition
WO2007120423A2 (en) * 2006-03-20 2007-10-25 Microbia Precision Engineering Production of quinone derived compounds in oleaginous yeast and fungi
KR20120085978A (en) * 2011-01-25 2012-08-02 정인택 Diet food for individual constitution
WO2015014969A1 (en) * 2013-07-31 2015-02-05 Dsm Ip Assets B.V. Steviol glycosides
CN103820475A (en) * 2013-11-11 2014-05-28 天津大学 Geranylgeranyl pyrophosphate synthetase gene in Lycium chinense Miller, and encoded protein and application thereof
CN107426994A (en) * 2015-02-03 2017-12-01 伊顿研究有限公司 High-efficiency activated dose of encapsulating
WO2018204764A1 (en) * 2017-05-05 2018-11-08 Camp4 Therapeutics Corporation Identification and targeted modulation of gene signaling networks
CN110272406A (en) * 2018-03-16 2019-09-24 棕榈营养食品私人有限公司 The preparation method of vitamin E concentrate
CN110195023A (en) * 2019-06-27 2019-09-03 天津大学 A kind of Wine brewing yeast strain and its application
CN110423732A (en) * 2019-08-14 2019-11-08 浙江大学 A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
De Novo High-Titer Production of Delta-Tocotrienol in Recombinant Saccharomyces cerevisiae;Hong Sun等;《J. Agric. Food Chem.》;20200625;第68卷;第7710-7717页 *
Preeclamptic cord blood hemolysis and the effect of Monascus purpureus and Saccharomyces cerevisiae in modulating preeclamptic stress;Ekambaram P等;《Bratisl Lek Listy》;20130829;第114卷(第9期);第508-513页 *
生物合成δ-生育三烯酚的酿酒酵母菌株构建;杨景丽;《中国学位论文全文数据库》;20210715;正文部分 *
维生素E生物合成的相关进展;杨景丽等;《科学通报》;20201211;第65卷(第35期);第4037-4046页 *
酿酒酵母中异源合成维生素E(生育三烯酚)的研究;沈斌;《中国学位论文全文数据库》;20191211;正文部分 *

Also Published As

Publication number Publication date
CN111235044A (en) 2020-06-05

Similar Documents

Publication Publication Date Title
CN111235044B (en) Recombinant saccharomyces cerevisiae strain for synthesizing delta-tocotrienol, construction method and application
CN110106209B (en) Method for positioning and synthesizing terpenoid by using yarrowia lipolytica pathway
CN111205993B (en) Recombinant yeast for producing ursolic acid and oleanolic acid as well as construction method and application thereof
CN110423732B (en) Enzyme expressed in saccharomyces cerevisiae, genetic engineering bacteria for high yield of alpha-and gamma-tocotrienols and construction method thereof
CN106367361B (en) A kind of saccharomyces cerevisiae engineered yeast strain and its construction method, application
CN110484572B (en) Method for increasing yield of saccharomyces cerevisiae nerolidol
US9828617B2 (en) Genes and processes for the production of clavine-type alkaloids
CN113265344B (en) Genetic engineering bacterium for selectively producing retinol and construction method and application thereof
CN115029257B (en) Recombinant yarrowia lipolytica for producing beta-carotene and construction method and application thereof
CN111073902A (en) CRISPR/dCas9 vector for improving expression level of gliotoxin biosynthesis gene and construction method and application thereof
CN113832044A (en) Recombinant yarrowia lipolytica, construction method and application thereof
CN114561311B (en) Construction and application of saccharomyces cerevisiae strain capable of extracellular transport of retinol and retinol
CN110804561B (en) Saccharomyces cerevisiae with high yield of C6-C10 ethyl ester and construction method and application thereof
CN111088254B (en) Endogenous carried exogenous gene efficient controllable expression system
CN111088175A (en) Yarrowia lipolytica for producing bisabolene and construction method and application thereof
CN108866117B (en) Method for synthesizing 3-hydroxypropionic acid by using photosynthetic bacteria, corresponding recombinant cell and application thereof
KR20190079575A (en) Recombinant yeast with artificial cellular organelles and producing method for isoprenoids with same
CN117229934A (en) Genetically engineered bacterium for synthesizing carotenoid, construction method and application thereof
CN116396876A (en) Saccharomyces cerevisiae engineering bacteria for producing ginsenoside Rd and construction method thereof
CN114107079B (en) Oil-resistant saccharomyces cerevisiae genetically engineered bacteria and construction method thereof
CN109929853B (en) Application of thermophilic bacteria source heat shock protein gene
CN114774447B (en) Method for improving heat resistance of yarrowia lipolytica and method for synthesizing mannitol by fermentation
CN111778222B (en) NRPS-PKS hybrid protein capable of producing flavonoid compounds in fungi and encoding gene and application thereof
CN114606146B (en) Yeast for producing D-limonene and application thereof
CN114806911B (en) Method for synthesizing alpha-bisabolene by utilizing yarrowia lipolytica mitochondrial pathway localization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 300452 Binhai Industrial Research Institute Campus of Tianjin University, No. 48 Jialingjiang Road, Binhai New Area, Tianjin

Patentee after: Tianjin University

Address before: 300350 Haijing garden, Haihe Education Park, Jinnan, Tianjin, 135, Tianjin University.

Patentee before: Tianjin University

CP02 Change in the address of a patent holder