CN111233458A - 一种磷酸钛铝锂固体电解质材料及其制备方法 - Google Patents

一种磷酸钛铝锂固体电解质材料及其制备方法 Download PDF

Info

Publication number
CN111233458A
CN111233458A CN202010095811.XA CN202010095811A CN111233458A CN 111233458 A CN111233458 A CN 111233458A CN 202010095811 A CN202010095811 A CN 202010095811A CN 111233458 A CN111233458 A CN 111233458A
Authority
CN
China
Prior art keywords
solid electrolyte
lithium
electrolyte material
titanium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010095811.XA
Other languages
English (en)
Other versions
CN111233458B (zh
Inventor
武开鹏
何盈春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202010095811.XA priority Critical patent/CN111233458B/zh
Publication of CN111233458A publication Critical patent/CN111233458A/zh
Application granted granted Critical
Publication of CN111233458B publication Critical patent/CN111233458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种磷酸钛铝锂固体电解质材料及其制备方法,制备方法具体包括:(1)将可溶性铝盐和沉淀剂按摩尔比为1:1.5‑2的比例混合溶于水,得到混合溶液;再将该混合溶液置于反应釜中加热,产物经过滤、洗涤,烘干,得到AlOOH前驱体;(2)将步骤(1)得到的AlOOH前驱体与锂盐、钛盐和磷盐,按照Li、Al、Ti、P的摩尔比(1+x):x:(2‑x):3混合配料,其中x=0.3‑0.5,然后加入乙醇介质球磨后,在干燥的空气气氛中经预烧和二次成型烧结,得到磷酸钛铝锂固体电解质材料。本发明工艺简单、合成温度较低、易于在工业上实施,并且制备得到的磷酸钛铝锂固体电解质材料纯度高、致密度好、锂离子电导率高。

Description

一种磷酸钛铝锂固体电解质材料及其制备方法
技术领域
本发明涉及固体电解质材料领域,具体涉及一种磷酸钛铝锂固体电解质材料及其制备方法。
背景技术
锂离子电池是一种二次电池(充电电池),其主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li在两个电极之间往返嵌入和脱嵌:充电时,Li从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。锂离子电池因具有质量轻、能量密度高、循环性能好、无记忆效应和绿色环保等优点,在移动通讯、电动车辆、国防科技等领域有着广泛的应用前景。
电解质是锂离子电池的重要构成部分,传统的锂离子电池采用液体电解质,具有易挥发、易泄露、抗冲击性能差等缺点,存在安全隐患。发展基于固体电解质的全固态锂离子电池可以解决液体电解质引起的安全隐患。聚合物和无机固体电解质是两类重要的固体电解质。其中,无机固体电解质因具有安全易制备、机械强度高、高室温晶粒电导率、高锂离子迁移率和优异的电化学稳定性等优点备受关注。
无机固体电解质按照结构可主要分为硫化物和氧化物两大体系,硫化物体系中的热门研究方向是LiS-PS体系,氧化物体系中研究比较彻底的包括NASICON(钠超离子导体)类型结构体系、LISICON(锂超离子导体)结构体系、钙钛矿结构体系以及石榴石结构体系。在众多氧化物固体电解质体系中,NASICON型锂离子导体Li1+xAlxTi2-x(PO4)3具有较高的锂离子电导率(10-3S·cm-1),较宽的电化学窗口、良好的热/化学稳定性和机械强度,是最具应用前景的全固态锂离子电池用电解质材料之一,目前被广泛研究。
目前,对Li1+xAlxTi2-x(PO4)3(x=0.3-0.5)锂离子导体的制备与电解质应用开展了较多的研究,现有该材料的制备方法主要包括固相烧结法[1-2]、液相沉淀法[3-4]、溶胶凝胶法[5-6]等,在这些制备方法中,固相烧结法和沉淀法工艺简单,较适用于工业上大批量生产,但是当采用固相烧结工艺制备Li1+xAlxTi2-x(PO4)3固体电解质时,所需的烧结温度多在1050℃以上,难免导致锂盐因高温挥发造成烧结产物中锂的损失,此外制备能耗也相对较高;而使用共沉淀法制备材料过程中难以控制钛盐的水解速率,往往很难控制其形貌;溶胶凝胶法合成条件温和,煅烧温度较低,但是工艺较为复杂,成本高,需处理好容易水解的钛盐,才能进行下一步反应,并且这几种方法所得产物的致密度和锂离子电导率往往不甚理想。
参考文献:
[1]B.Yang,X.Li,H.Guo,Z.Wang,W.Xiao.J Alloy Compd,643(2015)181-185.
[2]X.Xu,Z.Wen,X.Yang,J.Zhang,Z.Gu.Solid State Ionics,177(2006)2611-2615.
[3]L.Huang,Z.Wen,M.Wu,X.Wu,Y.Liu,X.Wang.J Power Sources,196(2011)6943-6946.
[4]M.Kotobuki,B.Kobayashi,M.Koishi,T.Mizushima,N.Kakuta.MaterialsTechnology,29(2014)A93-A97.
[5]G.Kunshina,O.Gromov,E.Lokshin,V.Kalinnikov.Russian Journal ofInorganicChemistry,59(2014)424-430.
[6]Q.Ma,Q.Xu,C.L.Tsai,F.Tietz,O.Guillon.J Am Ceram Soc,99(2016)410-414.
发明内容
本发明的目的在于提供一种磷酸钛铝锂固体电解质材料的制备方法,解决现有传统技术制备得到的Li1+xAlxTi2-x(PO4)3固体电解质致密度和锂离子电导率不高,并且在制备过程中合成温度过高,容易导致锂的损失,能耗过大和工艺复杂的问题。
本发明的技术方案:
一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于,包括如下步骤:
(1)制备纳米AlOOH前驱体:以可溶性铝盐和沉淀剂为原料,将其按摩尔比为1:1.5-2的比例混合溶于水,得到混合溶液;再将该混合溶液置于反应釜中在180~220℃下反应10~20小时,产物经过滤、洗涤,烘干,得到AlOOH前驱体;
(2)制备磷酸钛铝锂固体电解质材料:将步骤(1)得到的AlOOH前驱体与锂盐、钛盐和磷盐,按照Li、Al、Ti、P的摩尔比(1+x):x:(2-x):3混合配料,其中x=0.3-0.5,然后加入乙醇介质球磨后,在干燥的空气气氛中经预烧和二次成型烧结,得到磷酸钛铝锂固体电解质材料。
优选的,步骤(1)中所述可溶性铝盐为硝酸铝、三氯化铝或铝酸钠中的一种或多种。
优选的,步骤(1)中所述沉淀剂为尿素或氨水中的一种或两种。
优选的,步骤(2)中所述锂盐为碳酸锂、硝酸锂或异丙醇中的一种或多种。
优选的,步骤(2)中所述钛盐为二氧化钛、四氯化钛、钛酸四乙酯或钛酸四丁酯中的一种或多种。
优选的,步骤(2)中所述磷盐为磷酸二氢铵、磷酸氢二铵或磷酸三乙酯中的一种或多种。
优选的,步骤(1)中所述可溶性铝盐和沉淀剂的摩尔比为1:1.5,反应条件为:200℃下反应12小时。
优选的,步骤(2)中所述Li、Al、Ti、P的摩尔比为1.3:0.3:1.7:3,所得产物的化学式为Li1.3Al0.3Ti1.7(PO4)3
优选的,步骤(2)中所述预烧的温度为700℃-950℃,保温时间为4-10小时,二次成型烧结温度为700℃-950℃,保温时间为4-10小时。
一种磷酸钛铝锂固体电解质材料,由权利要求1-9任一所述方法制备得到。
本发明的有益效果在于:
1、本发明提供了一种磷酸钛铝锂固体电解质材料的制备方法,采用两步法制备得到磷酸钛铝锂固体电解质材料,首先制备得到纳米草形貌结构的AlOOH铝前驱体,该AlOOH铝前驱体具有较高的表面活性,可使第二步的固相烧结过程在950℃这样较低的温度下进行,在节约烧结能耗的同时又能够有效阻止因高温造成的锂损失;此外,其纳米尺度的形貌结构,有助于球磨过程的均匀混料,易于获得微-纳米尺度的烧结产物,提升锂离子电导率;
2、本发明制备得到了磷酸钛铝锂固体电解质材料具有高致密度和离子电导率的特点,其致密度高达96.06%、锂离子电导率高达3.44×10-3S·cm-1
3、本发明工艺简单易控、合成温度较低、易于在工业上实施,所制备得到产物纯度高、致密度好、锂离子电导率高,适合用作全固态锂离子电池的电解质材料。
附图说明
图1为实施例1得到的AlOOH前驱体的SEM图;
图2为实施例1所得到的ALOOH前驱体的XRD图;
图3为实施例1得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质的SEM图;
图4为实施例1得到Li1.3Al0.3Ti1.7(PO4)3固体电解质的XRD图。
具体实施方式
本说明书中公开的所有特征,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
实施例1
将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。
实施例2
将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在180℃下反应20小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。
实施例3
将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在220℃下反应10小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。
实施例4
以硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于850℃烧结5小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结4小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。
实施例5
以硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于800℃烧结4小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在850℃条件下二次烧结10小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。
实施例6
以硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于950℃烧结10小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。
实施例7
将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在700℃条件下二次烧结4小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。
发明人对实施例1-7得到的固体电解质材料进行了致密度和锂离子导电率测试,测试方法如下,并将测试结果与传统方法制备得到的固体电解质进行了对比,结果见表1。
上述电解质材料的致密度和锂离子电导率可按如下常用的方法测量:
(1)致密度:以去离子水为浸没介质,借助“阿基米德排水法”测试样品的致密度;在计算过程中,Li1.3Al0.3Ti1.7(PO4)3的理论密度取值为2.94g cm-3
(2)将烧结后的Li1.3Al0.3Ti1.7(PO4)3电解质陶瓷样品研磨、抛光后,双面涂上导电银浆,烘干后,进行室温交流阻抗测试(精密阻抗分析仪,4294A),通过对测试数据进行分析计算,获得锂离子电导率。
表1实施例、以及传统制备方法所得材料的致密度和锂离子电导率
Figure BDA0002385202970000051
Figure BDA0002385202970000061
[7]L.Huang,Z.Wen,M.Wu,X.Wu,Y.Liu,X.Wang.J Power Sources,196(2011)6943-6946.
[8]Z.Wang,Z.Kou,C.Miao,W.Xiao.Ceram Int,45(2019)14469-14473.
[9]K.Kwatek,J.Nowiński.Solid State Ionics,302(2017)54-60.
由表1可见,较文献中报道的液相法、溶胶凝胶法和固相烧结法相比,本发明中实施例1条件下合成的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料的致密度和锂离子电导率均有大幅提升,特别是锂离子电导率,提升了1~4个数量级;由表1可知,实施例1为最佳实施例。
需要说明的是,选择本发明中不同的可溶性铝盐、沉淀剂、磷源、锂源、钛源时,也可以达到实施例1相似的效果。
实验例
一、扫描电镜图(SEM)
将实施例1中的所得到的AlOOH前驱体进行扫描,扫描电镜图(SEM)如图1所示。通过SEM电镜分析,得到的AlOOH前驱体呈现特殊的纳米草状形貌结构,单个颗粒长约2微米,厚度约为50纳米,呈现出较好的均匀性。
将实施例1中的所得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料进行扫描,扫描电镜图(SEM)如图3所示。通过SEM电镜分析,得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料颗粒之间排列紧密,大小均一,单个颗粒平均尺寸约为1微米,无明显孔洞和缝隙现象。
二、X射线衍射图谱(XRD)
将实施例1中所得到的AlOOH前驱体进行X射线衍射,X射线衍射图(XRD)如图2所示。其与标准卡片γ-AlOOH(JCPDS#21-1307)的特征衍射峰完全一致。特征峰(020),(120)和(031)甚是明显,表明前驱体产物晶体是完整的。此外,在XRD图谱没有观察到其他杂质相,表明产物是高纯度的γ-AlOOH。
将实施例1中所得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料进行X射线衍射,X射线衍射图(XRD)如图4所示,可以观察到样品的主要特征衍射峰与标准卡片一致(JCPDS#35-0754),衍射峰峰形尖锐,强度较高,无杂质峰,表明样品结晶性好、纯度高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:包括如下步骤:
(1)制备纳米AlOOH前驱体:将可溶性铝盐和沉淀剂按摩尔比为1:1.5-2的比例混合溶于水中,得到混合溶液;再将该混合溶液置于反应釜中在180~220℃下反应10-20小时,产物经过滤、洗涤,烘干,得到AlOOH前驱体;
(2)制备磷酸钛铝锂固体电解质材料:将步骤(1)得到的AlOOH前驱体与锂盐、钛盐和磷盐,按照Li、Al、Ti、P的摩尔比(1+x):x:(2-x):3混合配料,其中x=0.3-0.5,然后加入乙醇介质球磨后,在干燥的空气气氛中经预烧和二次成型烧结,得到磷酸钛铝锂固体电解质材料。
2.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(1)中所述可溶性铝盐为硝酸铝、三氯化铝或铝酸钠中的一种或多种。
3.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(1)中所述沉淀剂为尿素或氨水中的一种或两种。
4.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(2)中所述锂盐为碳酸锂、硝酸锂或异丙醇中的一种或多种。
5.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(2)中所述钛盐为二氧化钛、四氯化钛、钛酸四乙酯或钛酸四丁酯中的一种或多种。
6.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(2)中所述磷盐为磷酸二氢铵、磷酸氢二铵或磷酸三乙酯中的一种或多种。
7.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(1)中所述可溶性铝盐和沉淀剂的摩尔比为1:1.5,反应条件为:200℃下反应12小时。
8.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(2)中所述Li、Al、Ti、P的摩尔比为1.3:0.3:1.7:3,所得产物的化学式为Li1.3Al0.3Ti1.7(PO4)3
9.根据权利要求1所述的一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于:步骤(2)中所述预烧的温度为700℃-950℃,保温时间为4-10小时,二次成型烧结温度为700℃-950℃,保温时间为4-10小时。
10.一种磷酸钛铝锂固体电解质材料,其特征在于:由权利要求1-9任一所述方法制备得到。
CN202010095811.XA 2020-02-17 2020-02-17 一种磷酸钛铝锂固体电解质材料及其制备方法 Active CN111233458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010095811.XA CN111233458B (zh) 2020-02-17 2020-02-17 一种磷酸钛铝锂固体电解质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010095811.XA CN111233458B (zh) 2020-02-17 2020-02-17 一种磷酸钛铝锂固体电解质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111233458A true CN111233458A (zh) 2020-06-05
CN111233458B CN111233458B (zh) 2023-05-16

Family

ID=70874980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010095811.XA Active CN111233458B (zh) 2020-02-17 2020-02-17 一种磷酸钛铝锂固体电解质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111233458B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848151A (zh) * 2020-08-10 2020-10-30 西安航空学院 一种磷酸钛镁铝锂lamtp单相陶瓷吸波材料及其制备方法与应用
CN111987347A (zh) * 2020-06-22 2020-11-24 厦门永力鑫新能源科技有限公司 磷酸盐固体电解质及其固相合成方法、设备、固态电池
CN113644377A (zh) * 2021-07-08 2021-11-12 河北金力新能源科技股份有限公司 一种半固态磷酸钛锂铝凝胶电解质隔膜浆料及其制备方法和应用
CN113929447A (zh) * 2021-11-22 2022-01-14 合肥国轩高科动力能源有限公司 一种磷酸钛铝锂固态电解质材料的制备方法及应用
CN114551819A (zh) * 2021-07-16 2022-05-27 万向一二三股份公司 一种latp/高镍复合正极材料、正极片和电池
CN115744856A (zh) * 2022-10-20 2023-03-07 广州博粤新材料科技有限公司 一种磷酸盐固态电解质及其批量制备方法
CN116282007A (zh) * 2023-03-24 2023-06-23 西南科技大学 一种生物质碳微球材料的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085688A (ja) * 2003-09-10 2005-03-31 Toppan Forms Co Ltd プロトン導電体及びその製造方法、並びにプロトン導電体を用いたエレクトロクロミック素子
US20110311881A1 (en) * 2010-06-21 2011-12-22 Benicewicz Brian C Lithium sulfonate polyazole solid polymer electrolytes in polymer electrolyte lithium ion batteries and supercapacitors, and processes of fabrication
CN107492646A (zh) * 2017-08-11 2017-12-19 苏州思创源博电子科技有限公司 一种碳硅包覆的硫锂正极材料的制备方法
WO2019078897A1 (en) * 2017-10-20 2019-04-25 Quantumscape Corporation INTERFACIAL LAYER BOROHYDRIDE-SULFIDE IN A TOTALLY SOLID BATTERY
CN109721042A (zh) * 2018-12-20 2019-05-07 长江大学 一种全固态锂离子电解质材料及其制备方法
CN110197922A (zh) * 2018-02-26 2019-09-03 宁德新能源科技有限公司 隔离膜和锂离子电池
WO2019180845A1 (ja) * 2018-03-20 2019-09-26 日立化成株式会社 電解質組成物、電解質シート及び二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085688A (ja) * 2003-09-10 2005-03-31 Toppan Forms Co Ltd プロトン導電体及びその製造方法、並びにプロトン導電体を用いたエレクトロクロミック素子
US20110311881A1 (en) * 2010-06-21 2011-12-22 Benicewicz Brian C Lithium sulfonate polyazole solid polymer electrolytes in polymer electrolyte lithium ion batteries and supercapacitors, and processes of fabrication
CN107492646A (zh) * 2017-08-11 2017-12-19 苏州思创源博电子科技有限公司 一种碳硅包覆的硫锂正极材料的制备方法
WO2019078897A1 (en) * 2017-10-20 2019-04-25 Quantumscape Corporation INTERFACIAL LAYER BOROHYDRIDE-SULFIDE IN A TOTALLY SOLID BATTERY
CN110197922A (zh) * 2018-02-26 2019-09-03 宁德新能源科技有限公司 隔离膜和锂离子电池
WO2019180845A1 (ja) * 2018-03-20 2019-09-26 日立化成株式会社 電解質組成物、電解質シート及び二次電池
CN109721042A (zh) * 2018-12-20 2019-05-07 长江大学 一种全固态锂离子电解质材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘弟伟: "β-Al2O3固态电解质材料的制备和性能研究" *
刘弟伟: "β-Al2O3固态电解质材料的制备和性能研究", 中国优秀硕士学位论文全文数据库工程科技I辑 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987347A (zh) * 2020-06-22 2020-11-24 厦门永力鑫新能源科技有限公司 磷酸盐固体电解质及其固相合成方法、设备、固态电池
CN111848151A (zh) * 2020-08-10 2020-10-30 西安航空学院 一种磷酸钛镁铝锂lamtp单相陶瓷吸波材料及其制备方法与应用
CN113644377A (zh) * 2021-07-08 2021-11-12 河北金力新能源科技股份有限公司 一种半固态磷酸钛锂铝凝胶电解质隔膜浆料及其制备方法和应用
CN114551819A (zh) * 2021-07-16 2022-05-27 万向一二三股份公司 一种latp/高镍复合正极材料、正极片和电池
CN114551819B (zh) * 2021-07-16 2023-06-09 万向一二三股份公司 一种latp/高镍复合正极材料、正极片和电池
CN113929447A (zh) * 2021-11-22 2022-01-14 合肥国轩高科动力能源有限公司 一种磷酸钛铝锂固态电解质材料的制备方法及应用
CN115744856A (zh) * 2022-10-20 2023-03-07 广州博粤新材料科技有限公司 一种磷酸盐固态电解质及其批量制备方法
CN115744856B (zh) * 2022-10-20 2024-05-28 广州博粤新材料科技有限公司 一种磷酸盐固态电解质及其批量制备方法
CN116282007A (zh) * 2023-03-24 2023-06-23 西南科技大学 一种生物质碳微球材料的制备方法及应用

Also Published As

Publication number Publication date
CN111233458B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN111233458B (zh) 一种磷酸钛铝锂固体电解质材料及其制备方法
Liang et al. Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries
Sandhya et al. Lithium titanate as anode material for lithium-ion cells: a review
Cheng et al. General synthesis of carbon-coated nanostructure Li 4 Ti 5 O 12 as a high rate electrode material for Li-ion intercalation
Jiang et al. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material
CN109721042A (zh) 一种全固态锂离子电解质材料及其制备方法
Yi et al. Synthesis of LiNi0. 5Mn1. 5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery
Wu et al. Low-temperature synthesis of nano-micron Li4Ti5O12 by an aqueous mixing technique and its excellent electrochemical performance
Sun et al. Hierarchical waxberry-like LiNi 0.5 Mn 1.5 O 4 as an advanced cathode material for lithium-ion batteries with a superior rate capability and long-term cyclability
US11342581B2 (en) Ceramic powder material, method for producing ceramic powder material, and battery
CN105932251B (zh) 一种金属氧化物包覆锂离子电池正极材料的制备方法及其应用
Zhang et al. Simple solution-combustion synthesis of Fe2TiO5 nanomaterials with enhanced lithium storage properties
Chen et al. Enhanced cycling stability of Mg–F co-modified LiNi0. 6Co0. 2Mn0. 2–yMgyO2–zFz for lithium-ion batteries
KR101795977B1 (ko) 용액 함침시킨 다공성 티탄 화합물을 사용한 티탄 산화물의 제조 방법
Du et al. Ni0. 6Co0. 2Mn0. 2 (OH) 2 with dispersed hexagonal slabs enables synthesis of single crystal LiNi0. 6Co0. 2Mn0. 2O2 with enhanced electrochemical performance for lithium-ion batteries
Yang et al. Electrochemical performance of Li-rich oxide composite material coated with Li0. 75La0. 42TiO3 ionic conductor
Li et al. Ti2Nb10O29@ C hollow submicron ribbons for superior lithium storage
Liu et al. Synthesis of nanosize quasispherical MgFe 2 O 4 and study of electrochemical properties as anode of lithium ion batteries
Qiu et al. Sol‐gel Synthesis and Electrochemical Performance of Li4− xMgxTi5− xZrxO12 Anode Material for Lithium‐ion Batteries
Guo et al. Enhanced electrochemical performance of LiMn 2 O 4 by SiO 2 modifying via electrostatic attraction forces method
Li et al. Synthesis and electrochemical performances of high-voltage LiNi 0.5 Mn 1.5 O 4 cathode materials prepared by hydroxide co-precipitation method
Liu et al. Uniformly sodium ions doped LiNi0. 84Co0. 11Mn0. 05O2 cathode material with high performance for lithium-ion batteries
WO2020153409A1 (ja) チタン酸化物、チタン酸化物の製造方法、およびチタン酸化物を含む電極活物質を用いたリチウム二次電池
Zhang et al. One-step liquid-phase reaction to synthesize LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode material
Gu et al. Two-dimensional layered lithium lanthanum titanium oxide/graphene-like composites as electrodes for lithium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant