CN111232223B - 推进发动机热管理系统 - Google Patents

推进发动机热管理系统 Download PDF

Info

Publication number
CN111232223B
CN111232223B CN201911190315.6A CN201911190315A CN111232223B CN 111232223 B CN111232223 B CN 111232223B CN 201911190315 A CN201911190315 A CN 201911190315A CN 111232223 B CN111232223 B CN 111232223B
Authority
CN
China
Prior art keywords
fan
propulsion engine
air flow
flow path
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911190315.6A
Other languages
English (en)
Other versions
CN111232223A (zh
Inventor
凯文·爱德华·辛德利特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN111232223A publication Critical patent/CN111232223A/zh
Application granted granted Critical
Publication of CN111232223B publication Critical patent/CN111232223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/24Hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/006Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being used to cool structural parts of the aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/16Aircraft characterised by the type or position of power plants of jet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

用于航空运载器的推进发动机限定径向方向和冷却空气流路。推进发动机包括:电源;和风扇,其包括风扇叶片,风扇叶片能够通过电源旋转并且大致沿径向方向延伸,风扇叶片限定入口、出口以及冷却空气通道,冷却空气通道在入口和出口之间延伸并且与冷却空气流路气流连通,入口沿径向方向从出口向内定位,以提供通过冷却空气流路的冷却气流。

Description

推进发动机热管理系统
技术领域
本主题大体涉及一种具有热管理系统的航空运载器的推进发动机,以及包括一个或多个这样的推进发动机的推进系统。
背景技术
已经提出了用于航空运载器(例如飞机)的分布式电力推进系统,其中沿着例如飞行器机翼的长度和/或在飞行器的尾翼布置了多个电力推进器。可以提供中央电源以产生或存储电力,并且分配总线可以将电力分配给多个电力推进器中的每一个。这些电力推进系统中的一些可以利用一个或多个翼下燃气涡轮发动机来产生电力,或者可替代地可以具有专用的涡轮轴发动机来产生电力。
无论如何,电力推进器在运行期间产生必须排除的热量。所提出的系统通常利用使液相热流体循环到多个电力推进器中的每一个的热总线,以从多个电力推进器中收集热量,并通过一个或多个散热器来排除这样的热量。然而,这样的系统通常需要较长的导管长度,大量的热传递流体和附件系统,这一起增加了重量,成本和复杂性。
因此,具有降低的复杂性,重量和/或成本的分布式电力推进系统的热管理系统将是有用的。
发明内容
本发明的各方面和优点将在下面的描述中部分地阐述,或者可以从该描述中显而易见,或者可以通过实施本发明而获知。
在本公开的一个示例性实施例中,提供了一种航空运载器的推进发动机,其限定径向方向和空气流路。推进发动机包括:电源;和风扇,风扇包括风扇叶片,该风扇叶片能够通过电源旋转并且大致沿径向方向延伸,该风扇叶片限定入口,出口以及在入口和出口之间延伸并与空气流路气流连通的空气通道,入口沿径向方向从出口向内定位,以提供通过空气流路的气流。
在某些示例性实施例中,电源是包括转子和定子的电机,其中空气流路是与电机热连通的冷却空气流路,并且其中风扇叶片附接到电机的转子。
在某些示例性实施例中,风扇的风扇叶片沿径向方向限定内端和外端,其中,入口限定在内端处,并且其中,出口限定在外端处。
例如,在某些示例性实施例中,电源是包括转子和定子的电机,其中,风扇叶片的内端联接到电机的转子,并且其中,风扇被构造为诱导气流通过空气流路。
在某些示例性实施例中,推进发动机包括罩,其中电源位于罩内,并且其中风扇叶片的入口也位于罩内。
例如,在某些示例性实施例中,罩限定开口,其中空气流路在第一端和第二端之间延伸,其中第一端与罩的开口气流连通,并且其中第二端与风扇叶片的入口气流连通。
例如,在某些示例性实施例中,罩的开口位于风扇的风扇叶片的后方。
在某些示例性实施例中,电源是包括转子和定子的电机,其中,推进发动机的空气流路是至少部分地由电机限定的冷却空气流路,并且与电机的定子热连通。
在某些示例性实施例中,电源是包括转子和定子的电机,其中风扇的风扇叶片沿径向方向限定内端和外端,其中入口限定在内端处,其中,出口限定在外端处,其中,风扇叶片的外端联接至电机的转子,并且其中,风扇构造成将气流提供给电机的空气流路。
在某些示例性实施例中,推进发动机是电风扇,并且其中电源是电动机。
在某些示例性实施例中,电源是电机,其中,推进发动机是包括风扇区段和涡轮机的燃气涡轮发动机,并且其中风扇区段包括风扇和电机。
在某些示例性实施例中,风扇叶片是风扇的多个风扇叶片中的第一风扇叶片,其中,风扇的多个风扇叶片中的每一个风扇叶片限定相应的入口、相应的出口和在相应的入口和相应的出口之间延伸的相应的空气通道,并且其中,多个风扇叶片的相应的空气通道中的每个空气通道与空气流路气流连通。
在某些示例性实施例中,航空运载器是飞机,直升机或无人驾驶飞行器。
在本公开的一个示例性实施例中,提供了一种航空运载器。航空运载器包括:机身;联接到机身并从机身延伸的机翼;和推进系统,其包括一个或多个推进发动机,一个或多个推进发动机联接至机身,机翼或两者,一个或多个推进发动机中的每一个限定冷却空气流路。一个或多个推进发动机中的每一个推进发动机包括:电源;和风扇,风扇包括风扇叶片,该风扇叶片能够通过相应的电源旋转并且大致沿径向方向延伸,风扇叶片限定入口,出口以及在入口和出口之间延伸并与相应的冷却空气流路气流连通的冷却空气通道,入口沿径向方向从出口向内定位,以提供通过冷却空气流路的冷却气流。
在某些示例性实施例中,一个或多个推进发动机包括至少两个推进发动机。
在某些示例性实施例中,每个推进发动机的风扇的风扇叶片沿径向方向限定内端和外端,其中,入口限定在内端处,并且其中,出口限定在外端处。
例如,在某些示例性实施例中,风扇叶片的内端联接至电源,并且其中,风扇被构造为诱导冷却气流通过冷却空气流路。
在某些示例性实施例中,每个推进发动机包括罩,其中每个推进发动机的电源位于罩内,并且其中每个推进发动机的风扇的风扇叶片的入口也位于罩内。
例如,在某些示例性实施例中,每个推进发动机的罩限定开口,其中每个推进发动机的冷却空气流路在第一端和第二端之间延伸,其中第一端与相应的罩的开口气流连通,并且其中第二端与相应的风扇叶片的入口气流连通。
在某些示例性实施例中,每个推进发动机的风扇的风扇叶片沿径向方向限定内端和外端,其中,入口限定在内端处,其中出口限定在外端处,其中,风扇叶片的外端联接到相应的推进发动机的电源,并且其中相应的推进发动机的风扇构造成将冷却气流提供到相应的推进发动机的冷却空气流路。
参考以下描述和所附权利要求,将更好地理解本发明的这些和其他特征,方面和优点。结合在本说明书中并构成本说明书一部分的附图示出了本发明的实施例,并且与说明书一起用于解释本发明的原理。
附图说明
在说明书中阐述了针对本领域的普通技术人员的本发明的完整而可行的公开,包括其最佳模式,其参考附图,其中:
图1是根据本公开的各种示例性实施例的飞行器的俯视图。
图2是根据本公开的实施例的推进发动机的示意性侧视图。
图3是根据本公开的实施例的图2的推进发动机的冷却空气流路的特写示意图。
图4是根据本公开的另一实施例的推进发动机的示意性侧视图。
图5是根据本公开的又一个实施例的推进发动机的示意性侧视图。
图6是根据本公开的示例性方面的燃气涡轮发动机的示意性剖视图。
具体实施方式
现在将详细参考本发明的当前实施例,其一个或多个示例在附图中示出。详细描述使用数字和字母标记来指代附图中的特征。在附图和描述中相同或相似的标记已经用于指代本发明的相同或相似的部分。
词语“示例性”在本文中用来表示“用作示例,实例或说明”。本文中被描述为“示例性”的任何实施方式不一定被解释为比其他实施方式优选或有利。
如本文中所使用的,术语“第一”,“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且不旨在表示各个部件的位置或重要性。
术语“前方”和“后方”是指发动机或运载器内的相对位置,并且是指发动机或运载器的正常操作姿态。例如,对于发动机,前是指更靠近发动机进气口的位置,而后是指更靠近发动机喷嘴或排气口的位置。
术语“上游”和“下游”是指相对于流体路径中的流体流动的相对方向。例如,“上游”是指流体从其流动的方向,而“下游”是指流体向其流动的方向。
除非另有说明,否则术语“联接”,“固定”,“附接到”等是指直接联接,固定或附接,以及通过一个或多个中间部件或特征的间接联接,固定或附接。
除非上下文另外明确指出,否则单数形式“一”,“一种”和“该”包括复数形式。
如本文在整个说明书和权利要求书中所使用的,近似语言用于修饰可以允许变化的任何定量表示,而不会导致与之相关的基本功能的变化。因此,由诸如“大约”,“近似”和“基本上”的一个或多个术语修饰的值不限于所指定的精确值。在至少一些情况下,近似语言可以对应于用于测量值的仪器的精度,或用于构造或制造部件和/或系统的方法或机器的精度。例如,近似语言可以指的是在10%的范围内。
在此以及整个说明书和权利要求书中,范围限制被组合和互换,除非上下文或语言另有指示,否则这些范围被识别并且包括其中包含的所有子范围。例如,本文公开的所有范围包括端点,并且端点可彼此独立地组合。
现在参考附图,其中在所有附图中,相同的数字表示相同的元件,图1提供了示例性飞行器10的俯视图,该飞行器10可以结合本发明的各种实施例。如图1所示,飞行器10限定了延伸穿过其中的纵向中心线14,纵向方向L1,横向方向L2,前端16和后端18。此外,飞行器10包括从飞行器10的前端16朝向飞行器10的后端18纵向延伸的机身12,以及一对机翼20。这样的机翼20中的第一个机翼从机身12的左舷侧22相对于纵向中心线14横向向外延伸,这样的机翼20中的第二个机翼从机身12的右舷侧24相对于纵向中心线14横向向外延伸。用于所示示例性实施例的每个机翼20包括一个或多个前缘襟翼26和一个或多个后缘襟翼28。飞行器10还包括:垂直稳定翼,其具有用于偏航控制的方向舵襟翼(未示出);以及一对水平稳定翼34,每个水平稳定翼34具有用于俯仰控制的升降舵襟翼36。机身12另外包括外表面或表皮38。然而,应当理解,在本公开的其他示例性实施例中,飞行器10可以附加地或可替代地包括可以或可以不沿着垂直方向或水平/横向方向L2直接延伸的稳定翼的任何其他合适的构造。
图1的示例性飞行器10还包括推进系统100,在本文中被称为“系统100”。示例性系统100包括一个或多个推进发动机102,并且更具体地包括多个推进发动机102(例如在两个与二十个之间)。例如,所描绘的实施例包括以翼下构造沿着一对机翼20中的每一个布置的多个推进发动机102、和以边界层摄取构造布置在飞行器10的后端18的推进发动机102,使得推进发动机102在后端18处被并入尾部区段或与尾部区段混合。
另外,推进系统100还包括电源104和配电总线106。对于所示实施例,电源104是构造成产生和/或存储电力的中央电源。例如,电源104可包括一个或多个燃气涡轮发动机,例如被构造为使相应的一个或多个发电机旋转的一个或多个涡轮轴发动机。另外地或可替代地,电源104可以包括用于存储电力的装置,例如一个或多个电池。配电总线106电联接到多个推进发动机102和电源104中的每一个,使得配电总线106可以将电力从电源104提供给多个推进发动机102中的每一个。
然而,应当理解,在其他实施例中,电力推进系统100可以以任何其他合适的方式构造。例如,在其他实施例中,推进系统100可以具有任何其他合适数量和/或布置的推进发动机102。例如,在其他示例性实施例中,一个或多个推进发动机102可包括固定推进发动机(例如所示的),旋转推进发动机(例如在垂直起降飞行器中),翼下安装的推进发动机(例如所示的),容纳在机身12或机翼20中的推进发动机等。此外,推进系统100可以具有任何其他合适的电源104。例如,在其他实施例中,推进系统100可以利用例如一个或多个翼下安装的燃气涡轮发动机来产生用于飞行器10的推力,以及驱动一个或多个电机来产生用于电力推进发动机102的电力。此外,尽管对于所示的实施例,推进系统100被描绘为被构造为飞机的飞行器10,但是在其他实施例中,可以使用任何其他合适的航空运载器。例如,在其他实施例中,推进系统100可替代地可与直升机或其他垂直起降飞行器,无人飞行器等一起操作。
现在参考图2,示出了根据本公开的示例性实施例的用于航空运载器的推进发动机102。对于所描绘的实施例,推进发动机102被构造为电风扇,如从下面的讨论中将认识到的。
图2的示例性推进发动机102可以被结合到例如以上参考图1描述的示例性推进系统100和飞行器10中。然而,可替代地,图2的推进发动机102可以被结合到任何其他合适的推进系统和/或运载器中。
推进发动机102限定轴向方向A,沿着轴向方向A延伸的中心轴线108,径向方向R和周向方向C。此外,推进发动机102通常包括电机110(对于所示的实施例,电机110通常可以作为电动机操作),风扇112和罩114。
电机110包括转子116和定子118,其中转子116可相对于定子118在周向方向C上绕轴线108旋转。此外,对于所示的实施例,转子116和定子118被封装在电机壳体120内,而电机壳体120被封装在罩114内。电机110可以构造成从例如包括示例性推进发动机102的推进系统的电源(未示出;参见例如图1的推进系统100的电源104)接收电力。此外,尽管对于所示实施例,电机110被构造为“转轮内(in-runner)”电机110,其中转子116位于定子118的径向内侧,但是在其他实施例中,电机110可以替代地被构造为“转轮外(out-runner)”电机110,其中转子116位于定子118的径向外侧。电机110可以利用任何合适的电机/电动机技术。例如,电机110可以被构造为永磁电机,电磁电机,异步电机,同步电机,交流电机,直流电机,感应电机,有刷或无刷电机等。
仍然参照图2,风扇112通常包括附接到电机110的转子116并大致沿径向方向R延伸的风扇叶片122。更具体地,风扇112还包括盘124和风扇轴126,其中风扇叶片122联接到盘124,并且盘124联接到风扇轴126。风扇轴126又联接至电机110的转子116。以这种方式,电机110的转子116的旋转可以相应地旋转风扇112的风扇叶片122,驱动风扇112并且为电力推进发动机102提供动力。
如下面将更详细解释的,风扇叶片122沿着径向方向R限定了内端128和外端130。如本文所用,术语“内端”是指风扇叶片122的内百分之二十五(25%)(基于风扇叶片122的总跨度),并且术语“外端”是指风扇叶片122的外百分之二十五(25%)(再次基于风扇叶片122的总跨度)。
应当理解,在推进发动机102的操作期间,电机110可产生一定量的热量,该热量需要至少部分地被主动排出,以防止对推进发动机102的任何损坏或使对推进发动机102的任何损坏的可能性最小化。因此,推进发动机102限定了与电机110热连通的冷却空气流路132。此外,风扇112的风扇叶片122限定入口134,出口136和冷却空气通道138,该冷却空气通道138在入口134和出口136之间延伸、并且与推进发动机102的冷却空气流路132气流连通。风扇叶片122的入口134沿径向方向R从风扇叶片122的出口136向内定位,以提供通过推进发动机102的冷却空气流路132的冷却气流146(见图3),如在下面更详细地说明的。更特别地,对于所示的实施例,入口134在罩114内被限定在风扇叶片122的内端128,而出口136被限定在外端130。然而,在其他实施例中,入口134和出口136可以基于例如期望通过冷却空气流路132的气流量而被限定在其他位置,如也将在下面更详细地说明的。
现在还参考图3,其提供了图2的示例性推进发动机102的冷却空气流路132的特写示意图,应当理解,所示的示例性推进发动机102的罩114限定了开口140。对于所示的实施例,罩114的开口140位于风扇112的风扇叶片122的后方。此外,罩114包括入口勺142,用于将来自风扇112的气流144引导通过罩114中的开口140、并作为冷却气流146进入冷却空气流路132。此外,如虚线所示,在至少某些示例性实施例中,推进发动机102可包括流量调节装置145,例如阀,百叶窗或其他合适的装置,以选择性地允许(或限制)气流穿过冷却空气流路132。流量调节装置145可以与控制器一起操作,以例如在相对低动力操作模式期间限制通过冷却空气流路132的气流,在相对低动力操作模式中,需要从电动机110排出的热量更少,这可以减少寄生的泵送损失,如从下面的讨论中将理解的。此外,尽管罩114包括用于所示实施例的入口勺142,但是在其他实施例中,罩可以替代地包括格栅,百叶窗,前述的任意组合等等。
还如图所示,推进发动机102的冷却空气流路132在第一端148(即,对于所示实施例的入口)和第二端150(即,对于所示实施例的出口)之间延伸。冷却空气流路132的第一端148与罩114的开口140气流连通,并且冷却空气流路132的第二端150与风扇叶片122的入口134气流连通。此外,如上所述,冷却空气流路132与电机110热连通。更具体地,对于所示的实施例,推进发动机102的冷却空气流路132至少部分地由电机110限定,并且与电机110的定子118热连通。更具体地说,还对于所示的实施例,冷却空气流路132延伸穿过电机壳体120并延伸到电机110的定子118上。
尽管示出了罩114中的单个开口140和单个冷却空气流路132,但是在某些实施例中,罩114可限定沿周向方向C间隔开的多个开口140,并且冷却空气流路132可包括沿周向方向C类似地间隔开的多个冷却空气流路132。此外,将理解的是,推进发动机102在冷却空气流路132的第二端150处包括静止到旋转气流构件152,用于使冷却气流146在周向方向C上旋转(以匹配风扇叶片122的旋转),并向风扇叶片122的入口134提供这种冷却气流146。例如,该静止到旋转气流构件152可以是诱导器,可以包括多个定子轮叶,和/或可以具有任何其他合适的结构。
总体上参考回图2,将理解,风扇叶片122是风扇112的多个风扇叶片122中的第一风扇叶片122。多个风扇叶片122中的每个可大致沿周向方向C间隔开,并且在相应的内端128处附接到盘124。风扇112的多个风扇叶片122中的每一个限定相应的入口134,相应的出口136以及在相应的入口134和出口136之间延伸的相应的冷却空气通道138。此外,多个风扇叶片122的相应的冷却空气通道138中的每个与电机110的冷却空气流路132气流连通。然而,值得注意的是,在其他实施例中,风扇112的多个风扇叶片122中的仅某些风扇叶片可以限定所描述的入口134,出口136和冷却空气通道138。
在图2和图3所示的示例性推进发动机102的操作期间,多个风扇叶片122可以通过电机110以相对高的转速绕着轴线108在周向方向C上旋转。假定每个风扇叶片122的出口136沿径向方向R位于每个风扇叶片122的入口134的外侧,则风扇112可以充当离心气流泵,从而将冷却气流146引入通过冷却空气流路132(从开口140),通过入口134和冷却气流通道138到达出口136。以这种方式,其中,推进发动机102的冷却空气流路132通过风扇叶片122定位在冷却空气通道138的上游,风扇112被构造为在操作期间诱导冷却气流146通过推进发动机102的冷却空气流路132。这可以允许在推进发动机102的操作期间冷却电机110,而不需要用于推进发动机102的单独的基于液体热传递流体的热传递总线(以及相关的重量,复杂性和/或成本),或至少不需要用于推进发动机102的较小的热传递总线。当作为例如包括多个单独的电力推进器的分布式电力推进系统的一部分被包括在内时,这可以允许更轻的整体推进系统。
如上所述,应当理解,尽管每个风扇叶片122的出口136被限定在径向外端130处,并且每个风扇叶片122的入口134被限定在径向内端128处,但是在其他实施例中,出口136和/或入口134可以定位在任何其他合适的位置,只要入口134沿径向方向R位于出口136的内侧即可。改变入口134和出口136的间隔距离可以通过改变通过冷却空气通道138的压力差量来改变在操作期间通过推进发动机102的冷却空气流路132的冷却气流146的量。因此,这可以改变电机110的冷却量。在一个或多个这些实施例中,推进发动机102可被构造成提供通过每个风扇叶片122的冷却空气通道138的至少大约0.5磅/秒的冷却气流146,以及通过每个风扇叶片122的冷却空气通道138的高达大约五(5)磅/秒的冷却气流146。然而,在其他实施例中,可以提供任何其他合适的气流量。
将进一步认识到,在本公开的其他实施例中,推进发动机102可具有任何其他合适的构造。例如,尽管对于图2和图3的实施例,电机110位于风扇112的后方/下游,但是在其他实施例中,电机110可具有任何其他合适的构造。例如,简要地参考图4,提供了根据本公开的另一示例性实施例的推进发动机102的示意图。图4的推进发动机102以与图2和图3的推进发动机102基本相同的方式构造。然而,对于图4的实施例,电机位于推进发动机102的风扇112的前方/上游。值得注意的是,利用这种构造,冷却空气流路132的第一端148进一步位于风扇112的前方/上游,并且进一步位于电机110的前方。
此外,在还有的其他示例性实施例中,现在参考图5,提供了根据本公开的另一示例性实施例的推进发动机102。可以以与图2和图3的示例性推进发动机102基本相同的方式来构造图5的示例性推进发动机102。
例如,图5的示例性推进发动机102通常包括具有转子116和定子118的电机110,具有附接至电机110的转子116并且大致沿径向方向R延伸的风扇叶片122的风扇112,和罩114。另外,推进发动机102限定与电机110热连通的冷却空气流路132,并且风扇叶片122限定入口134,出口136以及在入口134和出口136之间延伸的冷却空气通道138,其中冷却空气通道138与推进发动机102的冷却空气流路132气流连通。
此外,风扇112的风扇叶片122附接到电机110的转子116,并且大致沿径向方向R在内端128和外端130之间延伸。风扇112的风扇叶片122的内端128至少部分地封装在罩114内。然而,对于所示的实施例,风扇叶片122在内端128处不联接至电机110的转子116,而是风扇叶片122的外端130联接至电机110的转子116。以这种方式,将理解的是,电机110通常被构造为轮辋马达(rim motor)。更具体地,对于所示实施例,推进发动机102还包括外机舱154。电机110的定子118联接到外机舱154或以其他方式定位在外机舱154内。电机110的转子116联接至风扇叶片122的外端130,或者更确切地说,联接至风扇112的多个风扇叶片122的外端130。以这种方式,电机110可以通过旋转多个风扇叶片122的外端130来驱动风扇112。
值得注意的是,利用这种构造,风扇叶片122的出口136再次限定在风扇叶片122的外端130处,并且风扇112构造成通过冷却空气通道138提供冷却气流146到电机110的冷却空气流路132。值得注意的是,冷却空气流路132通常在第一端148与第二端150之间延伸,第一端148在风扇叶片122的后方和定子118的后方、与外机舱154中的第一开口156气流连通,第二端150在风扇叶片122的前方和定子118的前方、与外机舱154中的第二开口158气流连通。外机舱154中的第一开口156和第二开口158被限定在外机舱154的内表面160上。然而,如以虚线所示,在其他实施例中,第二开口158可以替代地被限定在外机舱154的外表面162上(或其他地方)。此外,在其他实施例中,冷却空气流路132可以以任何其他合适的方式延伸。
将进一步认识到,在其他示例性实施例中,推进发动机102可以是任何其他合适的推进发动机102。例如,现在参考图6,推进发动机102可以是燃气涡轮发动机。更具体地,对于图6的实施例,推进发动机102被构造为高旁通涡轮风扇喷气发动机200,在本文中被称为“涡轮风扇200”。
如图6所示,涡轮风扇200限定了轴向方向A(平行于供参考的纵向中心线201延伸),径向方向R和周向方向(绕轴向方向A延伸;未在图6中示出)。通常,涡轮风扇200包括风扇区段202和布置在风扇区段202下游的涡轮机204。
简要地,所示的示例性涡轮机204通常包括限定环形入口208的基本管状的外壳体206。外壳体206以串行流动关系包围:压缩机区段,其包括增压或低压(LP)压缩机210和高压(HP)压缩机212;燃烧区段214;涡轮区段,其包括高压(HP)涡轮216和低压(LP)涡轮218;和喷射排气喷嘴区段220。高压(HP)轴或线轴222将HP涡轮216驱动地连接到HP压缩机212。低压(LP)轴或线轴224将LP涡轮218驱动地连接到LP压缩机210。
对于所示实施例,风扇区段202包括具有多个风扇叶片228的风扇226,该多个风扇叶片228以间隔开的方式联接至盘230。盘230被可旋转的前毂236覆盖。如图所示,风扇叶片228从盘230大体上沿径向方向R向外延伸。另外,示例性风扇区段202包括环形风扇壳体或外机舱238,其周向地围绕风扇226和/或涡轮机204的至少一部分。机舱238由多个周向间隔开的出口导向轮叶240相对于涡轮机204被支撑。
值得注意的是,图6的涡轮风扇200可以结合上面参考图2至5所述的一个或多个示例性推进发动机102的方面。例如,如上所述,涡轮风扇200的示例性风扇区段202包括具有相应的多个风扇叶片228的风扇226。此外,风扇区段202的风扇226包括电机110。电机110被构造为轮辋马达,类似于以上参考图5描述的示例性风扇112和电机110。另外,风扇226的多个风扇叶片228各自限定了冷却气流通道138,该冷却气流通道138在入口134与出口136之间延伸并且与推进发动机/涡轮风扇200的冷却空气流路132(在图6中未示出)气流连通,用于在操作期间向冷却空气流路132提供冷却气流。因此,这种构造可以在推进发动机102的操作期间提供电机110的冷却,而无需用于电机110的单独的、相对复杂的热管理系统。
值得注意的是,电机110可以在涡轮风扇200的操作期间驱动风扇226。以这种方式,可以以与涡轮机204(例如涡轮机204的LP轴224)不同的转速来驱动风扇226。尽管未示出,但是在某些实施例中,涡轮机204(例如涡轮机204的LP轴224)可以进一步驱动单独的电机(可用作发电机),以从涡轮机204提取动力并驱动风扇226。
然而,应当理解,图6所示的示例性涡轮风扇发动机200仅作为示例提供,并且在其他示例性实施例中,涡轮风扇发动机200可具有任何其他合适的构造。例如,在其他示例性实施例中,涡轮风扇发动机200可以被构造为涡轮螺旋桨发动机,涡轮喷气发动机,不同构造的涡轮风扇发动机或任何其他合适的燃气涡轮发动机。
此外,尽管在整个本申请中,冷却空气通道138被描述为用于在电机110上引入冷却气流,但是在其他实施例中,冷却空气通道138可以附加地或替代地用于在燃气涡轮发动机,电力推进发动机或其组合的任何其他合适的部件上诱导冷却气流。例如,冷却空气通道138可用于在齿轮箱,润滑油系统,或燃气涡轮发动机、电力推进发动机、混合动力发动机等的任何其他部件或系统上产生冷却气流/产生通过齿轮箱,润滑油系统,或燃气涡轮发动机、电力推进发动机、混合动力发动机等的任何其他部件或系统的冷却气流。
此外,尽管冷却空气通道138被描述为在操作期间提供通过冷却空气流路132的冷却气流146,但是在其他实施例中,本文所述的构造可以不必用于冷却(例如,冷却空气通道138可以简单地是用于提供通过空气流路的气流的空气通道)。在这样的示例性实施例中,空气通道可以被构造用于为飞行器系统(例如飞行器机舱系统)提供空气,用于冷却之外或除冷却之外的目的,例如用于除冰等。
该书面描述使用示例来公开本发明,包括最佳模式,并且还使本领域技术人员能够实践本发明,包括制造和使用任何设备或系统以及执行任何结合的方法。本发明的专利范围由权利要求书限定,并且可以包括本领域技术人员想到的其他示例。如果这样的其他示例包括与权利要求的字面语言没有不同的结构元件,或者如果它们包括与权利要求的字面语言没有实质性差异的等效结构元件,则这样的其他示例意图落入权利要求的范围内。
本发明的进一步方面通过以下条项的主题提供:
1.一种用于航空运载器的推进发动机,所述推进发动机限定径向方向和空气流路,所述推进发动机包括:电源;和风扇,所述风扇包括能够通过所述电源旋转并大致沿所述径向方向延伸的风扇叶片,所述风扇叶片限定入口、出口以及在所述入口和所述出口之间延伸并与所述空气流路气流连通的空气通道,所述入口沿所述径向方向从所述出口向内定位,以提供通过所述空气流路的气流。
2.根据任何在前条项的推进发动机,其中所述电源是包括转子和定子的电机,其中,所述空气流路是与所述电机热连通的冷却空气流路,并且其中,所述风扇叶片附接到所述电机的所述转子。
3.根据任何在前条项的推进发动机,其中所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,并且所述出口限定在所述外端处。
4.根据任何在前条项的推进发动机,其中所述电源是包括转子和定子的电机,其中,所述风扇叶片的所述内端联接至所述电机的所述转子,并且其中,所述风扇被构造为诱导气流通过所述空气流路。
5.根据任何在前条项的推进发动机,其中所述推进发动机包括罩,其中,所述电源位于所述罩内,并且其中,所述风扇叶片的所述入口也位于所述罩内。
6.根据任何在前条项的推进发动机,其中所述罩限定开口,其中,所述空气流路在第一端与第二端之间延伸,其中,所述第一端与所述罩的所述开口气流连通,并且其中,所述第二端与所述风扇叶片的所述入口气流连通。
7.根据任何在前条项的推进发动机,其中所述罩的所述开口位于所述风扇的所述风扇叶片的后方。
8.根据任何在前条项的推进发动机,其中所述电源是包括转子和定子的电机,其中,所述空气流路是至少部分地由所述电机限定的所述推进发动机的冷却空气流路,并且与所述电机的所述定子热连通。
9.根据任何在前条项的推进发动机,其中所述电源是包括转子和定子的电机,其中,所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,其中所述出口被限定在所述外端处,其中所述风扇叶片的所述外端联接到所述电机的所述转子,并且其中所述风扇被构造为向所述电机的所述空气流路提供所述气流。
10.根据任何在前条项的推进发动机,其中所述推进发动机是电风扇,并且其中,所述电源是电动机。
11.根据任何在前条项的推进发动机,其中所述电源是电机,其中,所述推进发动机是包括风扇区段和涡轮机的燃气涡轮发动机,并且其中,所述风扇区段包括所述风扇和所述电机。
12.根据任何在前条项的推进发动机,其中所述风扇叶片是所述风扇的多个风扇叶片中的第一风扇叶片,其中,所述风扇的所述多个风扇叶片中的每一个风扇叶片限定相应的入口、相应的出口和在所述相应的入口和所述相应的出口之间延伸的相应的空气通道,并且其中,所述多个风扇叶片的所述相应的空气通道中的每个空气通道与所述空气流路气流连通。
13.根据任何在前条项的推进发动机,其中所述航空运载器是飞机、直升机或无人驾驶飞行器。
14.一种航空运载器,包括:机身;机翼,所述机翼联接到所述机身并从所述机身延伸;和推进系统,所述推进系统包括一个或多个推进发动机,所述一个或多个推进发动机联接至所述机身、所述机翼或两者,所述一个或多个推进发动机中的每一个推进发动机限定冷却空气流路并且包括电源;和风扇,所述风扇包括风扇叶片,所述风扇叶片能够通过相应的电源旋转并且大致沿所述径向方向延伸,所述风扇叶片限定入口、出口以及在所述入口和所述出口之间延伸并与相应的所述冷却空气流路气流连通的冷却空气通道,所述入口沿所述径向方向从所述出口向内定位,以提供通过所述冷却空气流路的冷却气流。
15.根据任何在前条项的航空运载器,其中所述一个或多个推进发动机包括至少两个推进发动机。
16.根据任何在前条项的航空运载器,其中每个推进发动机的所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,并且其中所述出口限定在所述外端处。
17.根据任何在前条项的航空运载器,其中所述风扇叶片的所述内端联接至所述电源,并且其中,所述风扇被构造成诱导冷却气流通过所述冷却空气流路。
18.根据任何在前条项的航空运载器,其中每个推进发动机包括罩,其中每个推进发动机的所述电源位于所述罩内,并且其中每个推进发动机的所述风扇的所述风扇叶片的所述入口也位于所述罩内。
19.根据任何在前条项的航空运载器,其中每个推进发动机的所述罩限定开口,其中,每个推进发动机的所述冷却空气流路在第一端和第二端之间延伸,其中所述第一端与相应的罩的所述开口气流连通,并且其中所述第二端与所述相应的风扇叶片的所述入口气流连通。
20.根据任何在前条项的航空运载器,其中每个推进发动机的所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,其中所述出口限定在所述外端处,其中所述风扇叶片的所述外端联接到相应的推进发动机的所述电源,并且其中所述相应的推进发动机的所述风扇构造成将所述冷却气流提供给所述相应的推进发动机的所述冷却空气流路。

Claims (20)

1.一种用于航空运载器的推进发动机,所述推进发动机限定径向方向和空气流路,其特征在于,所述推进发动机包括:
电源,所述电源位于壳体内,所述空气流路与所述电源热连通;和
风扇,所述风扇包括能够通过所述电源旋转并大致沿所述径向方向延伸的风扇叶片,所述风扇叶片限定入口、出口以及在所述入口和所述出口之间延伸并与所述空气流路气流连通的空气通道,所述入口沿所述径向方向从所述出口向内定位,以提供通过所述空气流路和通过所述空气通道的气流。
2.根据权利要求1所述的推进发动机,其特征在于,其中所述电源是包括转子和定子的电机,其中,所述空气流路是与所述电机热连通的冷却空气流路,并且其中,所述风扇叶片附接到所述电机的所述转子。
3.根据权利要求1所述的推进发动机,其特征在于,其中所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,并且所述出口限定在所述外端处。
4.根据权利要求3所述的推进发动机,其特征在于,其中所述电源是包括转子和定子的电机,其中,所述风扇叶片的所述内端联接至所述电机的所述转子,并且其中,所述风扇被构造为诱导气流通过所述空气流路。
5.根据权利要求1所述的推进发动机,其特征在于,其中所述壳体被构造为罩,其中,所述电源位于所述罩内,并且其中,所述风扇叶片的所述入口也位于所述罩内。
6.根据权利要求5所述的推进发动机,其特征在于,其中所述罩限定开口,其中,所述空气流路在第一端与第二端之间延伸,其中,所述第一端与所述罩的所述开口气流连通,并且其中,所述第二端与所述风扇叶片的所述入口气流连通。
7.根据权利要求6所述的推进发动机,其特征在于,其中所述罩的所述开口位于所述风扇的所述风扇叶片的后方。
8.根据权利要求1所述的推进发动机,其特征在于,其中所述电源是包括转子和定子的电机,其中,所述空气流路是至少部分地由所述电机限定的所述推进发动机的冷却空气流路,并且与所述电机的所述定子热连通。
9.根据权利要求1所述的推进发动机,其特征在于,其中所述电源是包括转子和定子的电机,其中,所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,其中所述出口被限定在所述外端处,其中所述风扇叶片的所述外端联接到所述电机的所述转子,并且其中所述风扇被构造为向所述电机的所述空气流路提供所述气流。
10.根据权利要求1所述的推进发动机,其特征在于,其中所述推进发动机是电风扇,并且其中,所述电源是电动机。
11.根据权利要求1所述的推进发动机,其特征在于,其中所述电源是电机,其中,所述推进发动机是包括风扇区段和涡轮机的燃气涡轮发动机,并且其中,所述风扇区段包括所述风扇和所述电机。
12.根据权利要求1所述的推进发动机,其特征在于,其中所述风扇叶片是所述风扇的多个风扇叶片中的第一风扇叶片,其中,所述风扇的所述多个风扇叶片中的每一个风扇叶片限定相应的入口、相应的出口和在所述相应的入口和所述相应的出口之间延伸的相应的空气通道,并且其中,所述多个风扇叶片的所述相应的空气通道中的每个空气通道与所述空气流路气流连通。
13.根据权利要求1所述的推进发动机,其特征在于,其中所述航空运载器是飞机。
14.一种航空运载器,其特征在于,包括:
机身;
机翼,所述机翼联接到所述机身并从所述机身延伸;和
推进系统,所述推进系统包括一个或多个推进发动机,所述一个或多个推进发动机联接至所述机身、所述机翼或两者,所述一个或多个推进发动机中的每一个推进发动机限定冷却空气流路并且包括
电源,所述电源位于壳体内,所述冷却空气流路与所述电源热连通;和
风扇,所述风扇包括风扇叶片,所述风扇叶片能够通过相应的电源旋转并且大致沿径向方向延伸,所述风扇叶片限定入口、出口以及在所述入口和所述出口之间延伸并与相应的所述冷却空气流路气流连通的冷却空气通道,所述入口沿所述径向方向从所述出口向内定位,以提供通过所述冷却空气流路和通过所述冷却空气通道的冷却气流。
15.根据权利要求14所述的航空运载器,其特征在于,其中所述一个或多个推进发动机包括至少两个推进发动机。
16.根据权利要求14所述的航空运载器,其特征在于,其中每个推进发动机的所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,并且其中所述出口限定在所述外端处。
17.根据权利要求16所述的航空运载器,其特征在于,其中所述风扇叶片的所述内端联接至所述电源,并且其中,所述风扇被构造成诱导冷却气流通过所述冷却空气流路。
18.根据权利要求14所述的航空运载器,其特征在于,其中每个推进发动机包括罩,其中每个推进发动机的所述电源位于所述罩内,并且其中每个推进发动机的所述风扇的所述风扇叶片的所述入口也位于所述罩内。
19.根据权利要求18所述的航空运载器,其特征在于,其中每个推进发动机的所述罩限定开口,其中,每个推进发动机的所述冷却空气流路在第一端和第二端之间延伸,其中所述第一端与相应的罩的所述开口气流连通,并且其中所述第二端与所述相应的风扇叶片的所述入口气流连通。
20.根据权利要求14所述的航空运载器,其特征在于,其中每个推进发动机的所述风扇的所述风扇叶片沿所述径向方向限定内端和外端,其中,所述入口限定在所述内端处,其中所述出口限定在所述外端处,其中所述风扇叶片的所述外端联接到相应的推进发动机的所述电源,并且其中所述相应的推进发动机的所述风扇构造成将所述冷却气流提供给所述相应的推进发动机的所述冷却空气流路。
CN201911190315.6A 2018-11-29 2019-11-28 推进发动机热管理系统 Active CN111232223B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/204,094 2018-11-29
US16/204,094 US11001389B2 (en) 2018-11-29 2018-11-29 Propulsion engine thermal management system

Publications (2)

Publication Number Publication Date
CN111232223A CN111232223A (zh) 2020-06-05
CN111232223B true CN111232223B (zh) 2023-08-25

Family

ID=68426178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911190315.6A Active CN111232223B (zh) 2018-11-29 2019-11-28 推进发动机热管理系统

Country Status (3)

Country Link
US (1) US11001389B2 (zh)
EP (1) EP3659908B1 (zh)
CN (1) CN111232223B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165309B2 (en) * 2019-05-10 2021-11-02 Hamilton Sundstrand Corporation Motor cooling system and method
CN111894761A (zh) * 2020-07-13 2020-11-06 潍坊联信增压器股份有限公司 一种向心式涡轮风扇喷气式发动机
PL435035A1 (pl) * 2020-08-20 2022-02-21 General Electric Company Polska Spółka Z Ograniczoną Odpowiedzialnością Gazowe silniki turbinowe zawierające wbudowane maszyny elektryczne i powiązane układy chłodzenia
CN112407294B (zh) * 2020-10-30 2022-11-22 哈尔滨飞机工业集团有限责任公司 一种滑油散热座舱加温系统及方法
KR20220090243A (ko) * 2020-12-22 2022-06-29 현대자동차주식회사 에어 모빌리티
JP7443272B2 (ja) 2021-01-18 2024-03-05 三菱重工業株式会社 ファン装置及びこれを備えた航空機
US12006047B2 (en) * 2021-06-29 2024-06-11 Flir Unmanned Aerial Systems Ulc Propeller deicing systems and methods
US11898458B1 (en) * 2022-08-10 2024-02-13 Hamilton Sundstrand Corporation Radial fan with leading edge air injection
FR3143000A1 (fr) * 2022-12-07 2024-06-14 Safran Helicopter Engines Hélice pour un dispositif propulsif d’aéronef, dispositif propulsif, aéronef et procédé associés

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203269B1 (en) * 1999-02-25 2001-03-20 United Technologies Corporation Centrifugal air flow control
CN101397917A (zh) * 2007-09-28 2009-04-01 通用电气公司 用于涡轮机的空气冷却的叶片
EP2390178A2 (en) * 2010-05-28 2011-11-30 Lockheed Martin Corporation (Maryland Corp.) Rotor blade having passive bleed path
CN103299084A (zh) * 2011-01-11 2013-09-11 斯奈克玛 一种旁路式涡轮喷气发动机
CN106089444A (zh) * 2015-04-30 2016-11-09 通用电气公司 涡轮发动机热学管理
CN107269395A (zh) * 2016-03-30 2017-10-20 通用电气公司 用于调整燃气涡轮发动机中气流畸变的辅助气流通道
CN107339125A (zh) * 2016-05-03 2017-11-10 通用电气公司 用于冷却燃气涡轮发动机的部件的系统和方法
CN107757926A (zh) * 2016-08-19 2018-03-06 通用电气公司 用于电推进发动机的热管理系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774552A (en) 1955-04-25 1956-12-18 United Aircraft Corp Helicopter air circulating system
US3575528A (en) 1968-10-28 1971-04-20 Gen Motors Corp Turbine rotor cooling
US4893987A (en) 1987-12-08 1990-01-16 General Electric Company Diffusion-cooled blade tip cap
US6004095A (en) * 1996-06-10 1999-12-21 Massachusetts Institute Of Technology Reduction of turbomachinery noise
US6966174B2 (en) 2002-04-15 2005-11-22 Paul Marius A Integrated bypass turbojet engines for air craft and other vehicles
US20030192303A1 (en) 2002-04-15 2003-10-16 Paul Marius A. Integrated bypass turbojet engines for aircraft and other vehicles
KR100622000B1 (ko) * 2004-08-17 2006-09-13 현대모비스 주식회사 자동차의 쿨링팬 모터 냉각구조
EP1825116A2 (en) 2004-12-01 2007-08-29 United Technologies Corporation Ejector cooling of outer case for tip turbine engine
EP1825128B1 (en) 2004-12-01 2011-03-02 United Technologies Corporation Regenerative turbine blade and vane cooling for a tip turbine engine
WO2007106059A2 (en) 2006-02-15 2007-09-20 United Technologies Corporation Tip turbine engine with aspirated compressor
US20100083632A1 (en) * 2008-10-08 2010-04-08 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Hybrid propulsive engine including at least one independently rotatable compressor rotor
US20100162680A1 (en) * 2008-12-31 2010-07-01 Syed Jalaluddin Khalid Gas turbine engine with ejector
FR2945270B1 (fr) 2009-05-05 2011-04-22 Airbus France Dispositif de degivrage pour pales de propulseur de type propfan
US8459966B2 (en) * 2010-07-19 2013-06-11 Hamilton Sundstrand Corporation Ram air fan motor cooling
US8840371B2 (en) 2011-10-07 2014-09-23 General Electric Company Methods and systems for use in regulating a temperature of components
US9828914B2 (en) * 2015-04-13 2017-11-28 United Technologies Corporation Thermal management system and method of circulating air in a gas turbine engine
US10683806B2 (en) 2017-01-05 2020-06-16 General Electric Company Protected core inlet with reduced capture area

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203269B1 (en) * 1999-02-25 2001-03-20 United Technologies Corporation Centrifugal air flow control
CN101397917A (zh) * 2007-09-28 2009-04-01 通用电气公司 用于涡轮机的空气冷却的叶片
EP2390178A2 (en) * 2010-05-28 2011-11-30 Lockheed Martin Corporation (Maryland Corp.) Rotor blade having passive bleed path
CN103299084A (zh) * 2011-01-11 2013-09-11 斯奈克玛 一种旁路式涡轮喷气发动机
CN106089444A (zh) * 2015-04-30 2016-11-09 通用电气公司 涡轮发动机热学管理
CN107269395A (zh) * 2016-03-30 2017-10-20 通用电气公司 用于调整燃气涡轮发动机中气流畸变的辅助气流通道
CN107339125A (zh) * 2016-05-03 2017-11-10 通用电气公司 用于冷却燃气涡轮发动机的部件的系统和方法
CN107757926A (zh) * 2016-08-19 2018-03-06 通用电气公司 用于电推进发动机的热管理系统

Also Published As

Publication number Publication date
US11001389B2 (en) 2021-05-11
CN111232223A (zh) 2020-06-05
EP3659908A1 (en) 2020-06-03
EP3659908B1 (en) 2022-03-30
US20200172259A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
CN111232223B (zh) 推进发动机热管理系统
EP3392148B1 (en) Hybrid propulsion system for an aircraft
CN108725804B (zh) 用于飞行器的推进系统
EP3500748B1 (en) Propulsion engine for aircraft
EP3500492B1 (en) Propulsion engine for an aircraft
CN107161349B (zh) 用于飞机的推进系统
CN109367794B (zh) 用于飞行器的推进系统
US11105340B2 (en) Thermal management system for an electric propulsion engine
EP3403932B1 (en) Propulsion system for an aircraft
CN114790942A (zh) 嵌入式电机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant