CN111229336B - 光波导多微流道芯片的制造方法 - Google Patents

光波导多微流道芯片的制造方法 Download PDF

Info

Publication number
CN111229336B
CN111229336B CN202010052674.1A CN202010052674A CN111229336B CN 111229336 B CN111229336 B CN 111229336B CN 202010052674 A CN202010052674 A CN 202010052674A CN 111229336 B CN111229336 B CN 111229336B
Authority
CN
China
Prior art keywords
light guide
micro
layer
waveguide
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010052674.1A
Other languages
English (en)
Other versions
CN111229336A (zh
Inventor
陈昌
刘博�
豆传国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Industrial Utechnology Research Institute
Original Assignee
Shanghai Industrial Utechnology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Industrial Utechnology Research Institute filed Critical Shanghai Industrial Utechnology Research Institute
Priority to CN202010052674.1A priority Critical patent/CN111229336B/zh
Publication of CN111229336A publication Critical patent/CN111229336A/zh
Application granted granted Critical
Publication of CN111229336B publication Critical patent/CN111229336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Optical Measuring Cells (AREA)

Abstract

本发明提供一种光波导多微流道芯片的制造方法,包括提供衬底,在所述衬底上形成厚度2‑3μm二氧化硅的下包层;在下包层上形成波导层,波导层是氮化硅材料;以波导层形成光波导组,光波导组包括光波导;在波导层上形成厚度为15~30μm高分子聚合材料的上包层;形成微流道,光波导用以将光沿水平方向导入微流道内;微流道由上而下贯穿上包层、波导层和下包层延伸进衬底;微流道延伸进衬底10~15μm,微流道宽度为10‑100μm。具有有益效果:形成光波导与多微流道一体化矩阵的结构,通过多微流体通道和大规模矩阵化的光波导来实现比传统光学系统更高通量的分析性能,快速构建高通量生物样品的芯片级的片上光学检测分析系统,实现微纳尺度下的生物检测的高通量芯片。

Description

光波导多微流道芯片的制造方法
技术领域
本发明涉及一种光波导多微流道芯片的制造方法,尤其涉及一种光波导多微流道生物检测芯片的制造方法。
背景技术
在现代生化分析流程中,高通量检测设备已经被广泛使用。这些设备大多采用基于微流体技术或者微孔阵列的生物芯片,装载在高性能的光学系统中,实现对诸如核酸、蛋白、病毒、细菌、细胞等等不同尺寸的生物样品的分析。这些光学系统的设计通常都基于复杂的几何光学,其体积大、成本高、需要光学准直、维护成本较高。
在精准医疗时代,小型化、高性能、低成本和可移动的集成化分析系统受到很大关注。尤其是lab on chip的概念,经过几十年的发展,基于微流体技术对生物样品的操控方面取得了长足的进步,但真正的lab on chip 系统仍然缺少一种微纳尺度下的高通量生物样品的芯片级的片上光学检测和分析集成系统。
发明内容
为解决目前现代生化分析仪器体积庞大、成本高和满足精准医疗时代所需求的仪器小型化、可移动和集成化等一系列新的需求。
本发明提供一种光波导多微流道芯片的制造方法,包括:
步骤1000:提供衬底,在所述衬底上形成厚度2-3μm二氧化硅的下包层;
步骤2000:在所述下包层上形成波导层,所述波导层是氮化硅材料;
步骤3000:以所述波导层形成第一数量的光波导组,所述光波导组包括第二数量的光波导;
步骤4000:在所述波导层上形成厚度为15~30μm高分子聚合材料的上包层;
步骤5000:形成第一数量的微流道,所述光波导组与所述微流道一一对应组成第一数量的微流体,形成一个微流体组,所述光波导用以将光沿水平方向导入所述微流道内;所述微流道由上而下贯穿所述上包层、所述波导层和所述下包层延伸进所述衬底;
步骤6000:在所述上包层上形成流道盖板,所述流道盖板包括用以向所述微流道注入含待检测生物分子溶液的注液口;
所述微流道延伸进所述衬底10~15μm,所述微流道宽度为10- 100μm。
优选地,步骤3000中,所述波导层厚度为150-1000nm,在所述波导层上旋涂光刻胶形成光波导组掩膜,刻蚀所述波导层,形成所述第一数量的光波导组,所述光波导的宽度为300-600nm。
优选地,步骤3000中,在所述波导层上旋涂光刻胶形成分光结构掩膜,刻蚀所述波导层形成分光结构,所述分光结构用以从干路导光中引出第一数量的导光组,所述导光组与所述光波导组光连接。
优选地,步骤3000中,在所述波导层上旋涂光刻胶形成第一导光掩膜,刻蚀所述波导层形成第二数量的第一导光,以形成所述干路导光;在所述波导层上旋涂材料为聚合物的中间层,使用电子束曝光或者电子束直写在所述中间层上形成第二导光槽,在所述第二导光槽中沉积氮化硅材料并化学机械抛光以形成氮化硅的第一数量的所述导光组,所述导光组包括第二数量的第二导光,其中,部分所述第一导光与部分所述第二导光形成交叉跨层结构。
优选地,所述交叉跨层结构包括第一导光重叠区和第二导光重叠区;所述第一导光在交叉处断开,并在断开相对的两端形成两个锐角导光端面;所述第二导光在交叉处形成与所述锐角导光端面相匹配的锐角导光引面;所述第一导光重叠区包括所述锐角导光端面和与其相匹配的锐角导光引面,所述第二导光重叠区包括所述锐角导光端面和与其相匹配的锐角导光引面。
优选地,所述导光组采用分光结构从所述干路导光中垂直引出。
优选地,所述第二数量为1,所述微流体对应的整层或大部分所述波导层形成一个片状的所述光波导;所述光波导厚度为150-1000nm。
优选地,步骤2000中,通过电感耦合等离子体化学气相沉积法,沉积温度为25-150℃,并通入包括硅气源和氮气源的反应载气,以形成所述波导层。
优选地,步骤2000中,在所述下包层上形成厚度为300-600nm的所述波导层;
步骤3000中,在所述波导层上旋涂光刻胶形成若干相互平行的光波导掩膜,刻蚀所述波导层,形成若干相互平行的所述光波导;再次旋涂光刻胶形成入射光栅掩膜,沉积形成若干入射光栅以与所述光波导形成若干相互平行的耦合光波导,所述耦合光波导的宽度为300-600nm。
优选地,步骤5000中,还包括以所述上包层形成掩板的过程:软烘所述上包层,对所述上包层预定形成微流道的位置进行局部曝光,再经硬烘和显影后,形成贯穿所述上包层、宽度为10-100μm的预备流道;
再以所述上包层为掩板,使用反应离子刻蚀法刻蚀所述预备流道下方的所述波导层、所述下包层和部分所述衬底,以形成所述微流道。
本发明提供一种光波导多微流道检测系统,具有有益效果:本发明通过集成电路量产工艺来生产这种芯片级光学检测和分析系统,将传统光学系统的功能通过集成光学或片上光学器件来实现,不仅可以把传统的台式甚至大型的光学系统缩小到芯片尺寸,而且还保证同等甚至更出色的分析性能,实现微纳尺度下的生物样品的高通量芯片级光学检测和分析集成系统,大幅度降低系统成本。并形成光波导与多微流道一体化矩阵的结构,通过多微流体通道和大规模矩阵化的光波导来实现比传统光学系统更高通量的分析性能,可快速构建微纳尺度下的高通量生物样品的芯片级的片上光学检测和分析集成系统,实现微纳尺度下的生物样品检测的高通量芯片。
附图说明
附图1是本发明芯片中导光结构的示意图;
附图2是图1中A的放大视图;
附图3是图1中B的放大视图;
附图4是图3的剖面图;
附图5是本发明光波导多微流道芯片的示意图;
附图6是图1中的微流体的俯视图;
附图7是片状光波导微流体的俯视图;
附图8是图1中使用的微流体侧视图;
附图9是耦合光波导微流体侧视图。
具体实施方式
下面结合附图对本发明的具体实施方式做详细说明。
在附图中,为了描述方便,层和区域的尺寸比例并非实际比例。当层 (或膜)被称为在另一层或衬底“上”时,它可以直接在另一层或衬底上,或者也可以存在中间层。此外,当一层被称为在另一层“下”时,它可以直接在下面,并且也可以存在一个或多个中间层。另外,当层被称为在两个层之间时,它可以是两个层之间的唯一层,或者也可以存在一个或多个中间层。相同的附图标记始终表示相同的元件。另外,当两个部件之间称为“连接”时,包括物理连接,除非说明书明确限定,此种物理连接包括但不限于电连接、接触连接、无线信号连接。
本发明专利提出水平光波导与微流体通道一体化模块方案,同时提出光波导多微流道芯片的制造方法,快速构建微纳尺度下的高通量生物样品的芯片级的片上光学检测和分析集成系统。其中,水平光波导是指将光沿水平方向导入微流道的光波导。
一种光波导多微流道芯片1的制造方法,如图5所示,包括:
步骤1000:提供衬底11,在所述衬底11上形成厚度2-3μm二氧化硅的下包层12;
步骤2000:在所述下包层12上形成波导层13,所述波导层13是氮化硅材料;
步骤3000:以所述波导层13形成第一数量m的光波导组131、 132、13m,如图6所示,所述光波导组131包括第二数量n的光波导 1311、1312…131n,以形成n*m矩阵化的检测系统;
步骤4000:在所述波导层上形成厚度为15~30μm高分子聚合材料的上包层;
步骤5000:形成第一数量m的微流道201、202…20m,所述光波导组131与所述微流道201一一对应组成第一数量m的微流体,所述光波导1311、1312…131n用以将光沿水平方向导入所述微流道201内;所述微流道201、202…20m由上而下贯穿所述上包层14、所述波导层13和所述下包层12延伸进所述衬底11;
步骤6000:在所述上包层14上形成流道盖板15,所述流道盖板15 包括用以向所述微流道201、202…20m注入含待检测生物分子溶液的注液口151、152…15m;需要说明的是,还包括形成出液口(未示出),以与所述注液口151一一对应形成循环系统,该出液口可以是流道盖板15 上的开口;该出液口也可以是微流道2两端的开口,本发明在此不做限制。
所述微流道201、202…20m延伸进所述衬底11中10~15μm,所述微流道201、202…20m宽度为10-100μm,形成光波导与多微流道一体化矩阵的结构,快速构建微纳尺度下的高通量生物样品的芯片级的片上光学检测和分析集成系统。
需要说明的是,第一数量m的微流体可构成一个微流体组,还可以构建第三数量微流体组构成的微流体矩阵,该第三数量为k,则可光波导总数为形成n*m*k矩阵化的检测系统;形成光波导与多微流道一体化矩阵的结构,快速构建微纳尺度下的高通量生物样品的芯片级的片上光学检测和分析集成系统。
需要说明的是,所述光波导组包括第二数量n相互平行的所述光波导,如图5和图6所示,光波导组131包括第二数量为n相互平行的所述光波导1311、1312…131n,以将光沿水平方向导入所述微流道201,所述光波导的宽度为300-600nm。
步骤3000中,所述波导层厚度为150-1000nm,在所述波导层13上旋涂光刻胶(未示出)形成光波导组掩膜(未示出),刻蚀所述波导层 13,形成所述第一数量m的光波导组131、132…13m,其包括的光波导的宽度为300-600nm,如光波导组131包括的所述光波导1311、1312…131n的宽度为300-600nm。
其中根据波导组131的光源方向不同,如:图8是光波导组131从左端引入光源、而图9是从光波导组131上方引入光源,在多微流道尤其是矩阵化检测系统中,前者需要在制造矩阵化芯片时从结构上增加如图1所示的导光结构6、后者则无需增加该导光结构,下面结合图说明该导光结构6:
步骤3000中,如图1~2和图6所示,还包括在所述波导层13上旋涂光刻胶(未示出)形成分光结构掩膜(未示出),刻蚀所述波导层13形成分光结构A,所述分光结构A用以从干路导光60中引出第一数量m的导光组601、602、60m,所述导光组601、602、60m分别与所述光波导组131、132…13m光连接,进而导光组601与光波导组131中的光波导 1311、1312…131n光连接,如图6所示,所述光波导1311、1312…131n的宽度为300-600nm;其中,所述导光组601、602、60m采用分光结构A 从所述干路导光60中引出。
步骤3000中,还包括在所述波导层13上旋涂光刻胶(未示出)形成第一导光掩膜(未示出),刻蚀所述波导层13形成第二数量n的第一导光61,第二数量n的所述第一导光61是所述干路导光60;在所述波导层 13上旋涂材料为聚合物的中间层(未示出),在所述中间层上形成第二导光槽(未示出),在所述第二导光槽中沉积氮化硅并化学机械抛光形成氮化硅的第一数量m的第二数量n即总数为n*m的第二导光62,第二数量n的第二导光62是所述导光组,如图1中的601、602或60m;其中,如图5所示,部分所述第一导光61与部分所述第二导光62形成交叉跨层结构B;具体地讲,除了最左A’区域的引出的第一个第二导光62外,右边的其余A区域引出的其余第二导光62均与第一导光61交叉,即随着干路导光60向具有n个光波导的第二个微流道202…直至第m个微流道 20m提供导光组602…60m,第二导光62均与第一导光61交叉,因而对于图5中多流道监测系统矩阵化集成光波导多微流道芯片1,需要设计特定的导光结构6,如图5所示,针对上述光波导n*m矩阵化的检测系统,提供如图1所述的导光结构,包括干路导光60,以及从干路导光60中垂直引出的导光组601、602…60m,以分别向微流道201、202…20m传输光源;其中,干路导光60包括n根第一导光61,其传输的光波长分别为λ1、λ2、λ3…λn,以分别传输给光波导组131中的光波导1311、 1312…131n,以及其他光波导组中的n个光波导。其中,从干路导光60 引出的导光组601、602…60m的引出节点A,以及引出导光与干路导光 60中的导光交叉节点B需要进行特别设计;所述导光组601、602…60m 采用分光结构从所述干路导光60中垂直引出,如图2所示,引出节点A 的分光结构,从干路导光60中的第一导光61引出导光组601、602…60m 中的第二导光62即可;如图3~4所示,是交叉节点B的交叉跨层结构,所述干路导光60包括第一导光61,所述导光组601包括第二导光62,所述第一导光61与所述第二导光62通过交叉跨层结构交叉;所述交叉跨层结构包括第一导光重叠区610和第二导光重叠区620;所述第一导光61 在交叉处断开,并在断开相对的两端形成两个锐角导光端面;所述第二导光62在交叉处形成与所述锐角导光端面相匹配的锐角导光引面;所述第一导光重叠区610包括所述锐角导光端面和与所述锐角导光端面相匹配的锐角导光引面,二者之间距离小于1μm;所述第二导光重叠区620包括所述锐角导光端面和与所述锐角导光端面相匹配的锐角导光引面,二者之间距离小于1μm;即第一导光61在交叉处断开,在断开的相对两端各形成一锐角导光端面,从干路导光60中引出的第二导光62在交叉处形成与上述两个锐角导光端面相匹配、距离小于1μm的两个锐角导光引面,从而形成第一导光重叠区610和第二导光重叠区620,从第一导光61断开一端传来的光通过第一导光重叠区610进入第二导光62、随即通过第二导光重叠区620进入第一导光61断开的另一端。
需要说明的是,针对上述光波导总数为形成n*m*k矩阵化的检测系统,可在各导光组601、602…60m依次采用上述分光结构A向下一个、直至第k个微流体组继续传输光源。
如图1、5所示,经过步骤3000后的最终形成的所述波导层13厚度为150-1000nm,亦即图6中的所述光波导1311、1312…131n的厚度为 150-1000nm。
如图5和7所示,光波导组131、132…13m可只包括一个光波导,即第二数量n=1,则导光组601、602…60m各包括一个导光线,以各与光波导组131、132…13m光连接;亦即一个微流体对应的整层或大部分所述波导层13形成一个片状光波导1311,片状光波导1311导入的激发光场可减少检测标记生物分子中的背景光信号,大大提高小生物分子的检出;所述光波导厚度为150-1000nm。
如需形成包含如图9所示的耦合光波导多微流道芯片,无需形成导光结构,则在步骤2000中,在所述下包层12上形成厚度为300-600nm的所述波导层13;步骤3000中,在所述波导层13上旋涂光刻胶(未示出) 形成若干相互平行的光波导掩膜(未示出),刻蚀所述波导层13,形成第二数量n的相互平行的所述光波导1311、1312…131n;再次旋涂光刻胶(未示出)形成入射光栅掩膜(未示出),沉积形成若干入射光栅以与所述光波导耦合形成第二数量n相互平行的耦合光波导,将所述上包层 14上方的光导入所述光波导直至沿水平方向导入所述微流道201,上包层 14和流道盖板15是透光性层;所述入射光栅凸出于所述波导层13向上延伸进所述上包层14,所述耦合光波导的宽度为300-600nm。
在本发明中,步骤5000中,还包括以所述上包层14形成掩板的过程:软烘所述上包层14,对所述上包层14预定形成微流道的位置进行局部曝光,再经硬烘和显影后,形成贯穿所述上包层14、宽度为10-100μm 的预备流道(未示出);再以所述上包层14为掩板,使用反应离子刻蚀法刻蚀所述预备流道下方的所述波导层13、所述下包层12和部分所述衬底11,以形成所述微流道201、202…20m。
在本发明中,所述衬底11是硅衬底;较佳地,所述衬底11是4、 8、12英寸的硅片。
在本发明中,所述高分子聚合材料是SU-8树脂、聚酰亚胺、聚二甲基硅烷、聚乙烯或苯丙环丁烯。
在本发明中,所述流道盖板15是PDMS、石英材料,也可以是上述高分子聚合材料。
在本发明中,氮化硅波导层13是在沉积温度为25-150℃的低温下形成的厚度为150nm-500nm的氮化硅薄膜层;所述氮化硅薄膜的折射率为 1.75-2.2。需要说明的是,氮化硅薄膜可以是折射率均匀的薄膜,也可以是折射率不均匀的薄膜,如折射率分层结构的氮化硅薄膜。
循环肿瘤细胞是脱离肿瘤组织并进入人体血液循环系统的各类肿瘤细胞的统称。通过检测外周血中痕量的循环肿瘤细胞,监测其类型和数量变化的趋势,可实时监测肿瘤动态、评估治疗效果,实现实时个体治疗。结合图5和图6,下面说明利用包含本发明光波导多微流道芯片中的光波导总数为形成n*m*k矩阵化的检测系统检测循环肿瘤细胞的一个实施例,主要步骤如下:
第一步:采用免疫磁珠技术(如免疫磁珠阳性分选)或者微流控技术对采集来的m*k个病患血样中可能存在各类肿瘤细胞进行分选和富集得到含循环肿瘤细胞的溶液,也可直接采用病患血样;
第二步:向上述含循环肿瘤细胞的溶液或血样中加入能与各类肿瘤细胞表面抗原相特异性结合的抗体群,或加入能与各类肿瘤细胞表面结合的适配体群,所述抗体群和适配体群修饰标记,其中与特定肿瘤细胞结合的抗体或适配体上修饰的标记具有唯一性,从而得到含标记循环肿瘤细胞的溶液或血样;所述标记有n种,所述标记可以是荧光分子的靶标探针;
第三步:如图1和5所示,将第二步中得到m*k份溶液或血样分别从注液口151、152…15m(不完全列示,注液口总数为m*k个)加入微流道201、202…20m中(不完全列示,微流道总数为m*k个)中,导光组601、602…60m(不完全列示,导光组总数为m*k个)将与上述n种标记一一对应的n不同波长的光导入所述光波导组131、132…13m(不完全列示,光波导组总数为m*k个)中的n个光波导(如图1和图4所示,光波导组131中的n个光波导1311、1312…131n,不完全列示,光波导总数为n*m*k个)的进而沿水平方向导入所述微流道201、 202…20m中,上述含不同荧光分子标记的标记生物分子21是循环肿瘤细胞被该不同波长的光激发发出特定波长的荧光,而非激生物分子20是未经标记的正常细胞或者经标记但位于光场之外而未被激发的肿瘤细胞,显微镜(未示出)用于收集特定波长的荧光(光信号)并向所述测量装置 (未示出)传输,所述测量装置(未示出)处理收集特定波长的荧光(光信号)并产生待分析信号并向所述分析装置(未示出)传输所述待分析信号,所述分析装置(未示出)分析所述待分析信号形成特定波长的荧光的光谱,通过读取光谱即可判断溶液或血样中循环肿瘤细胞的种类,可一次性分别检测不同病患的多种肿瘤循环细胞,实现微纳尺度下的多种肿瘤细胞检测的高通量芯片,从而实时监测肿瘤动态、评估治疗效果,实现实时个体治疗。
本发明提供一种光波导多微流道芯片的制造方法,具有有益效果:形成光波导与多微流道一体化矩阵的结构,通过多微流体通道和大规模矩阵化的光波导来实现比传统光学系统更高通量的分析性能,可快速构建微纳尺度下的高通量生物样品的芯片级的片上光学检测和分析集成系统,实现微纳尺度下的生物样品检测的高通量芯片。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种光波导多微流道芯片的制造方法,包括:
步骤1000:提供衬底,在所述衬底上形成厚度2-3μm二氧化硅的下包层;
步骤2000:在所述下包层上形成波导层,所述波导层是氮化硅材料;
步骤3000:以所述波导层形成第一数量的光波导组,所述光波导组包括第二数量的光波导;
步骤4000:在所述波导层上形成厚度为15~30μm高分子聚合材料的上包层;
步骤5000:形成第一数量的微流道,所述光波导组与所述微流道一一对应组成第一数量的微流体,形成一个微流体组,所述光波导用以将光沿水平方向导入所述微流道内;所述微流道由上而下贯穿所述上包层、所述波导层和所述下包层延伸进所述衬底;
步骤6000:在所述上包层上形成流道盖板,所述流道盖板包括用以向所述微流道注入含待检测生物分子溶液的注液口;
所述微流道延伸进所述衬底10~15μm,所述微流道宽度为10-100μm。
2.根据权利要求1所述的方法,其特征在于,步骤3000中,所述波导层厚度为150-1000nm,在所述波导层上旋涂光刻胶形成光波导组掩膜,刻蚀所述波导层,形成所述第一数量的光波导组,所述光波导的宽度为300-600nm。
3.根据权利要求2所述的方法,其特征在于,步骤3000中,在所述波导层上旋涂光刻胶形成分光结构掩膜,刻蚀所述波导层形成分光结构,所述分光结构用以从干路导光中引出第一数量的导光组,所述导光组与所述光波导组光连接。
4.根据权利要求3所述的方法,其特征在于,步骤3000中,在所述波导层上旋涂光刻胶形成第一导光掩膜,刻蚀所述波导层形成第二数量的第一导光,以形成所述干路导光;在所述波导层上旋涂材料为聚合物的中间层,使用电子束曝光或者电子束直写在所述中间层上形成第二导光槽,在所述第二导光槽中沉积氮化硅材料并化学机械抛光以形成氮化硅的第一数量的所述导光组,所述导光组包括第二数量的第二导光,其中,部分所述第一导光与部分所述第二导光形成交叉跨层结构。
5.根据权利要求4所述的方法,其特征在于,所述交叉跨层结构包括第一导光重叠区和第二导光重叠区;所述第一导光在交叉处断开,并在断开相对的两端形成两个锐角导光端面;所述第二导光在交叉处形成与所述锐角导光端面相匹配的锐角导光引面;所述第一导光重叠区包括所述锐角导光端面和与其相匹配的锐角导光引面,所述第二导光重叠区包括所述锐角导光端面和与其相匹配的锐角导光引面。
6.根据权利要求3所述的方法,其特征在于,所述导光组采用分光结构从所述干路导光中垂直引出。
7.根据权利要求1所述的方法,其特征在于,所述第二数量为1,所述微流体对应的整层或大部分所述波导层形成一个片状的所述光波导;所述光波导厚度为150-1000nm。
8.根据权利要求1所述的方法,其特征在于,步骤2000中,通过电感耦合等离子体化学气相沉积法,沉积温度为25-150℃,并通入包括硅气源和氮气源的反应载气,以形成所述波导层。
9.根据权利要求1所述的方法,其特征在于,步骤2000中,在所述下包层上形成厚度为300-600nm的所述波导层;
步骤3000中,在所述波导层上旋涂光刻胶形成若干相互平行的光波导掩膜,刻蚀所述波导层,形成若干相互平行的所述光波导;再次旋涂光刻胶形成入射光栅掩膜,沉积形成若干入射光栅以与所述光波导形成若干相互平行的耦合光波导,所述耦合光波导的宽度为300-600nm。
10.根据权利要求1所述的方法,其特征在于,步骤5000中,还包括以所述上包层形成掩板的过程:软烘所述上包层,对所述上包层预定形成微流道的位置进行局部曝光,再经硬烘和显影后,形成贯穿所述上包层、宽度为10-100μm的预备流道;
再以所述上包层为掩板,使用反应离子刻蚀法刻蚀所述预备流道下方的所述波导层、所述下包层和部分所述衬底,以形成所述微流道。
CN202010052674.1A 2020-01-17 2020-01-17 光波导多微流道芯片的制造方法 Active CN111229336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010052674.1A CN111229336B (zh) 2020-01-17 2020-01-17 光波导多微流道芯片的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010052674.1A CN111229336B (zh) 2020-01-17 2020-01-17 光波导多微流道芯片的制造方法

Publications (2)

Publication Number Publication Date
CN111229336A CN111229336A (zh) 2020-06-05
CN111229336B true CN111229336B (zh) 2021-11-23

Family

ID=70867187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010052674.1A Active CN111229336B (zh) 2020-01-17 2020-01-17 光波导多微流道芯片的制造方法

Country Status (1)

Country Link
CN (1) CN111229336B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033931B (zh) * 2020-09-07 2024-04-12 科竟达生物科技有限公司 一种光波导、其制造方法、包含其的生物传感系统及其应用
CN113470847B (zh) * 2021-07-19 2024-01-05 河南仕佳光子科技股份有限公司 一种波导型光镊芯片及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438279B1 (en) * 1999-01-07 2002-08-20 Cornell Research Foundation, Inc. Unitary microcapiliary and waveguide structure and method of fabrication
JP3668198B2 (ja) * 2002-02-18 2005-07-06 株式会社東芝 光導波路型マイクロプレート
CN103338068A (zh) * 2013-06-28 2013-10-02 华中科技大学 一种基于多通道并行光信号的分光监测装置
CN104655566A (zh) * 2015-03-01 2015-05-27 大连理工大学 一种光子集成阵列免标记光学生化传感检测系统
CN104865223A (zh) * 2015-05-27 2015-08-26 东南大学 一种氮化硅波导布拉格光栅折射率传感芯片及其制备方法
CN208921621U (zh) * 2018-10-22 2019-05-31 中国计量大学 一种基于空心光子晶体光纤的荧光化合物微流检测器
CN110018136A (zh) * 2019-04-16 2019-07-16 江苏集萃智能传感技术研究所有限公司 一种基于光流控的生物分子检测芯片及检测系统
CN110530855A (zh) * 2019-10-12 2019-12-03 重庆理工大学 高通量光波导生物传感芯片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131151C1 (en) * 1991-09-19 1992-11-12 Werner 7925 Dischingen De Hauff Fireproof cladding for wall through passage for leads - includes intumescent material expanding when heated to fill and close wall opening
EP0627799B1 (en) * 1993-06-04 1997-10-08 Sharp Kabushiki Kaisha Semiconductor light-emitting device with third cladding layer
DE69902800T2 (de) * 1998-10-15 2003-05-28 Ibm Optische wellenleitervorrichtung
US7248771B2 (en) * 2003-06-16 2007-07-24 Brigham Young University Integrated sensor with electrical and optical single molecule sensitivity
US7524672B2 (en) * 2004-09-22 2009-04-28 Sandia Corporation Microfluidic microarray systems and methods thereof
JP2006300726A (ja) * 2005-04-20 2006-11-02 Hokkaido Univ フォトニック結晶集積型分離・計測デバイス
AU2011217862B9 (en) * 2010-02-19 2014-07-10 Pacific Biosciences Of California, Inc. Integrated analytical system and method
CN110433878B (zh) * 2019-08-21 2021-06-25 北京工业大学 一种基于vcsel耦合阵列的光学相位差的液体检测芯片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438279B1 (en) * 1999-01-07 2002-08-20 Cornell Research Foundation, Inc. Unitary microcapiliary and waveguide structure and method of fabrication
JP3668198B2 (ja) * 2002-02-18 2005-07-06 株式会社東芝 光導波路型マイクロプレート
CN103338068A (zh) * 2013-06-28 2013-10-02 华中科技大学 一种基于多通道并行光信号的分光监测装置
CN104655566A (zh) * 2015-03-01 2015-05-27 大连理工大学 一种光子集成阵列免标记光学生化传感检测系统
CN104865223A (zh) * 2015-05-27 2015-08-26 东南大学 一种氮化硅波导布拉格光栅折射率传感芯片及其制备方法
CN208921621U (zh) * 2018-10-22 2019-05-31 中国计量大学 一种基于空心光子晶体光纤的荧光化合物微流检测器
CN110018136A (zh) * 2019-04-16 2019-07-16 江苏集萃智能传感技术研究所有限公司 一种基于光流控的生物分子检测芯片及检测系统
CN110530855A (zh) * 2019-10-12 2019-12-03 重庆理工大学 高通量光波导生物传感芯片

Also Published As

Publication number Publication date
CN111229336A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
US20050175273A1 (en) Microchip, method of manufacturing microchip, and method of detecting compositions
CN111229336B (zh) 光波导多微流道芯片的制造方法
TW201102634A (en) Analyzer and method for sensing using the same
CN211785572U (zh) 光波导微流体检测系统
CN211603213U (zh) 光波导多微流道检测系统
CN111157734A (zh) 基于cmos图像传感的光栅波导微流体检测系统
CN211603214U (zh) 光栅波导微流体检测系统
CN211826084U (zh) 光栅波导微流体检测系统
CN211826083U (zh) 基于cmos图像传感的光波导多微流道检测系统
CN111157728A (zh) 光波导微流体检测系统
CN111151317B (zh) 光栅波导多微流道芯片的制造方法
CN111229341B (zh) 光栅波导多微流道芯片的制造方法
CN212134710U (zh) 基于cmos图像传感的光栅波导多微流道检测系统
CN211785573U (zh) 基于cmos图像传感的光栅波导微流体检测系统
CN211826081U (zh) 光波导多微流道检测系统
CN111229337B (zh) 光波导多微流道芯片的制造方法
CN111229342B (zh) 基于cmos图像传感的光栅波导多微流道芯片的制造方法
CN211877769U (zh) 光栅波导多微流道检测系统
CN111157731A (zh) 基于cmos图像传感的光波导多微流道检测系统
CN211785134U (zh) 光栅波导多微流道检测系统
CN111135886A (zh) 光波导微流体芯片
CN111250181B (zh) 基于cmos图像传感的光波导多微流道芯片的制造方法
CN111157729A (zh) 基于cmos图像传感的光波导微流体检测系统
CN111190009A (zh) 基于cmos图像传感的光栅波导多微流道检测系统
CN212167467U (zh) 光波导微流体芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant