CN111221361B - 一种大体积混凝土施工控温方法 - Google Patents

一种大体积混凝土施工控温方法 Download PDF

Info

Publication number
CN111221361B
CN111221361B CN201811422158.2A CN201811422158A CN111221361B CN 111221361 B CN111221361 B CN 111221361B CN 201811422158 A CN201811422158 A CN 201811422158A CN 111221361 B CN111221361 B CN 111221361B
Authority
CN
China
Prior art keywords
temperature
readings
layer
temperature sensor
driving motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811422158.2A
Other languages
English (en)
Other versions
CN111221361A (zh
Inventor
张振江
景念
刘立军
王海蛟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Gaoda Intelligent Equipment Co Ltd
Original Assignee
Hebei Gaoda Intelligent Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Gaoda Intelligent Equipment Co Ltd filed Critical Hebei Gaoda Intelligent Equipment Co Ltd
Priority to CN201811422158.2A priority Critical patent/CN111221361B/zh
Publication of CN111221361A publication Critical patent/CN111221361A/zh
Application granted granted Critical
Publication of CN111221361B publication Critical patent/CN111221361B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

本发明公开了一种大体积混凝土施工控温方法,属于大体积混凝土施工技术领域。本方法通过在施工体内布设水管的方式对施工体进行降温,通过布设温度传感器的方式检测施工体内的温度,通过控制器控制驱动电机工作模式的方式控制具体的降温过程。本发明方法可以对大体积混凝土进行自动控温,能够有效防止温度过高或温差过大而导致的质量问题,且整个控温过程可以做到无人值守,控温准确,节省人工。

Description

一种大体积混凝土施工控温方法
技术领域
本发明涉及一种大体积混凝土施工控温方法,属于大体积混凝土施工技术领域。
背景技术
国标《大体积混凝土施工规范》(GB50496-2009)里规定,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土,称之为大体积混凝土。大体积混凝土广泛应用于建筑工程、桥梁工程、水利工程等大型基础性工程中。
混凝土凝固的过程中会释放水化热,导致混凝土升温,如果混凝土内外温差较大,则会使混凝土产生温度裂缝,影响结构安全和正常使用。为此,美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。
一般来说,大体积混凝土施工过程中的温度变化具有如下规律:
1、浇筑过程中,上部刚浇筑的混凝土还没有开始升温,只有下部先浇筑的混凝土开始放热,且温度呈持续上升的趋势。
2、浇筑完成后,温度先呈持续上升的趋势,并在3-5天左右达到最高值,然后开始降温,大约15天后就无需控温了。
目前,现有技术中采用的控温方法是在混凝土内埋设水管等散热材料,但是这种方式存在以下弊端:
1、不应该冷却的时候开启冷却。例如,浇筑过程中,混凝土还没有开始升温,就已经开始冷却了。
2、开启冷却后,不能及时停止冷却。例如,浇筑过程中,混凝土温度已经降下来了,没有及时停止冷却。
3、温度下降过程中过度持续冷却,造成温度下降过快。
如果温控不好,会影响产品质量,并有重大安全隐患。一旦内部温度超过75度,则属于施工不合格。
发明内容
针对现有技术中存在的问题,本发明提出一种大体积混凝土施工控温方法,其能够在大体积混凝土施工过程中进行自动控温,可以有效保障大体积混凝土施工的施工质量。
为了实现上述目的,本发明提供如下技术方案:
一种大体积混凝土施工控温方法,其中:
施工前,根据施工高度,在施工体内选定一层或多层,层间间距为50~100cm,最上层距离施工体顶面的距离和最下层距离施工体底面的距离均在40~60cm范围内;
在每一层内布置水管,边缘处水管到该处施工体体壁的距离为50~80cm,每层中相邻两段水管之间的距离为50~100cm,每层水管的入水管头和出水管头均向上延伸并露出于施工体的上表面外;
在每一层内的混凝土中心处、混凝土边缘处以及混凝土中心和边缘的中间位置处布置温度传感器,其中,边缘处的传感器与该处施工体体壁的距离为40~60cm,所有温度传感器均通过线路与设于施工体外的控制器连接,所述控制器通过驱动电机控制各层水管内的水流;
开始混凝土浇筑,在浇筑过程以及浇筑之后的硬化过程中,通过控制器采集各温度传感器的读数,并根据读数控制各层水管的水流;
所述控制器用于执行如下程序:
连续采集各温度传感器的读数,并对一定时间内每个温度传感器的读数进行筛选和求平均,得到每个温度传感器的读数均值;
对驱动电机的工作模式进行循环判断,每次判断时:
若有一个温度传感器的当前读数均值大于第一预设温度,或中心温度与表面温度相差大于第一预设温差,则控制驱动电机持续工作;
若没有温度传感器的当前读数均值大于第二预设温度,且中心温度与表面温度相差不大于第二预设温差,则控制驱动电机停止工作;
若中心温度大于第三预设温度,且连续三次判断时所获得的中心温度呈持续下降形势,则控制驱动电机以占空比模式工作;
若驱动电机处于占空比工作模式,且中心温度相比上次判断时的中心温度上升了设定阈值,则控制驱动电机持续工作;
所述表面温度为施工体表面处多个温度传感器读数均值的算术平均值;
所述中心温度为施工体混凝土区域中心位置处多个温度传感器读数均值的算术平均值。
具体的,所述表面温度为施工体内顶层以及除顶层外每层边缘处所有温度传感器读数均值的算术平均值,所述中心温度为中间一层或多层中中心及中间位置处所有温度传感器读数均值的算术平均值。
具体的,所述施工体为承台,承台的各层中均设置有五个温度传感器;每层中,第一温度传感器设于中心位置处,第二、第三温度传感器分别设于该层的两个相邻的侧边处,第四、第五温度传感器分别设于第一温度传感器与第二、第三温度传感器的中间位置处。
具体的,所述连续采集各温度传感器的读数,并对一定时间内每个温度传感器的读数进行筛选和求平均,得到每个温度传感器的读数均值的具体方式为:针对每个温度传感器:
每隔1~5秒采集一次温度读数;
采集20组读数后,将读数按大小进行排序,取中间30%~50%的读数,得到初选读数;
取初选读数的中位数,将初选读数中,偏离中位数超过1℃,或不在-40℃~100℃范围内的读数滤除,得到合规读数;
对合规读数取平均值,作为该温度传感器的读数均值。
具体的,所述占空比模式的周期为5~20分钟,每个周期内驱动电机先工作再停止,每个周期内驱动电机工作时间的占比为1%~90%。
具体的,所述第一、第二、第三预设温度均为40℃,所述第一、第二预设温差均为20℃。
具体的,所述第一预设温度和第一预设温差均为变量,若驱动电机连续从持续工作状态切换至停止状态再切换回持续工作状态,则切换回持续工作状态时的第一预设温度和第一预设温差均取原始值与回差值之和,其他情况下,第一预设温度和第一预设温差均取原始值,所述回差值为0.1~2℃。
具体的,所述设定阈值为1~2℃。
从上面的叙述可以看出,本发明技术方案的有益效果在于:
1、本发明方法可以对大体积混凝土内的温度进行实时监控,并对大体积混凝土进行自动控温,可以有效防止温度过高或温差过大而导致的质量问题,整个控温过程可以做到无人值守,控温准确且节省人工。
2、本发明方法可以对包括浇筑和硬化的整个施工过程进行统一的温度控制,尤其是针对硬化过程中的降温阶段,本发明可以通过占空比模式控制温度降低的速度,有效保障施工质量。
3、进一步地,本发明通过设置回差值,可以避免温度处于临界值时驱动电机的频繁开闭问题,从而延长驱动电机的使用寿命。
附图说明
为了更加清楚地描述本专利,下面提供一幅或多幅附图。
图1为本发明实施例中控制器的工作流程图;
图2为本发明实施例中一种施工体的结构示意图。
具体实施方式
为了便于本领域技术人员对本专利技术方案的理解,下面以具体案例的形式对本专利的技术方案做进一步的说明。
一种大体积混凝土施工控温方法,其中:
施工前,根据施工高度,在施工体内选定一层或多层,层间间距为50~100cm,最上层距离施工体顶面的距离和最下层距离施工体底面的距离均在40~60cm范围内;
在每一层内布置水管,边缘处水管到该处施工体体壁的距离为50~80cm,每层中相邻两段水管之间的距离为50~100cm,每层水管的入水管头和出水管头均向上延伸并露出于施工体的上表面外;
在每一层内的混凝土中心处、混凝土边缘处以及混凝土中心和边缘的中间位置处布置温度传感器,其中,边缘处的传感器与该处施工体体壁的距离为40~60cm,所有温度传感器均通过线路与设于施工体外的控制器连接,所述控制器通过驱动电机控制各层水管内的水流;
开始混凝土浇筑,在浇筑过程以及浇筑之后的硬化过程中,通过控制器采集各温度传感器的读数,并根据读数控制各层水管的水流;
所述控制器用于执行如下程序:
连续采集各温度传感器的读数,并对一定时间内每个温度传感器的读数进行筛选和求平均,得到每个温度传感器的读数均值;
对驱动电机的工作模式进行循环判断,每次判断时:
若有一个温度传感器的当前读数均值大于第一预设温度,或中心温度与表面温度相差大于第一预设温差,则控制驱动电机持续工作;
若没有温度传感器的当前读数均值大于第二预设温度,且中心温度与表面温度相差不大于第二预设温差,则控制驱动电机停止工作;
若中心温度大于第三预设温度,且连续三次判断时所获得的中心温度呈持续下降形势,则控制驱动电机以占空比模式工作;
若驱动电机处于占空比工作模式,且中心温度相比上次判断时的中心温度上升了设定阈值,则控制驱动电机持续工作;
所述表面温度为施工体表面处多个温度传感器读数均值的算术平均值;
所述中心温度为施工体混凝土区域中心位置处多个温度传感器读数均值的算术平均值。
具体的,所述表面温度为施工体内顶层以及除顶层外每层边缘处所有温度传感器读数均值的算术平均值,所述中心温度为中间一层或多层中中心及中间位置处所有温度传感器读数均值的算术平均值。
具体的,所述施工体为承台,承台的各层中均设置有五个温度传感器;每层中,第一温度传感器设于中心位置处,第二、第三温度传感器分别设于该层的两个相邻的侧边处,第四、第五温度传感器分别设于第一温度传感器与第二、第三温度传感器的中间位置处。
具体的,所述连续采集各温度传感器的读数,并对一定时间内每个温度传感器的读数进行筛选和求平均,得到每个温度传感器的读数均值的具体方式为:针对每个温度传感器:
每隔1~5秒采集一次温度读数;
采集20组读数后,将读数按大小进行排序,取中间30%~50%的读数,得到初选读数;
取初选读数的中位数,将初选读数中,偏离中位数超过1℃,或不在-40℃~100℃范围内的读数滤除,得到合规读数;
对合规读数取平均值,作为该温度传感器的读数均值。
具体的,所述占空比模式的周期为5~20分钟,每个周期内驱动电机先工作再停止,每个周期内驱动电机工作时间的占比为1%~90%。
具体的,所述第一、第二、第三预设温度均为40℃,所述第一、第二预设温差均为20℃。
具体的,所述第一预设温度和第一预设温差均为变量,若驱动电机连续从持续工作状态切换至停止状态再切换回持续工作状态,则切换回持续工作状态时的第一预设温度和第一预设温差均取原始值与回差值之和,其他情况下,第一预设温度和第一预设温差均取原始值,所述回差值为0.1~2℃。
具体的,所述设定阈值为1~2℃。
具体来说,应用该方法可对如图2所示的承台进行控温。该承台长1520cm,宽920cm,高350cm。承台中布设三层水管,每层中布设5个温度传感器,其中,3号传感器位于各层中心,1号传感器位于各层的短边处,5号传感器位于各层的长边处,2号传感器位于各层内1、3号传感器之间,4号传感器位于各层内3、5号传感器之间。则承台的表面温度由上层1、2、4、5号,以及中层1、5号传感器的平均值表征,中心温度由中层2、3、4号传感器的平均值表征。
施工过程中,通过温度传感器采集承台内的温度,并通过驱动电机控制各层水管内的水流,整个控制过程由工控机完成。如图1所示,工控机的控制流程如下:
每隔2秒采集一次温度读数;
取15组数据进行大小排序,取中间5组数据进行合规性处理,并取均值;
每隔30秒对驱动电机的工作模式进行一次判断,每次判断时:
若有一个温度传感器的当前读数均值大于40℃,或中心温度与表面温度相差大于20℃,则控制驱动电机持续工作(即,全速模式);
若没有温度传感器的当前读数均值大于40℃,且中心温度与表面温度相差不大于20℃,则控制驱动电机停止工作;
若中心温度大于40℃,且连续三次判断时所获得的中心温度呈持续下降形势,则控制驱动电机以占空比模式工作;占空比模式的周期为10分钟,每个周期内驱动电机先工作再停止,每个周期内驱动电机工作时间的占比为60%。
若驱动电机处于占空比工作模式,且中心温度相比上次判断时的中心温度上升了1℃,则控制驱动电机退出占空比模式,进入全速模式;
若驱动电机连续从全速模式切换至停止状态再切换回全速模式,为了防止电机连续启停影响寿命,可在原始预设温度和预设温差基础上加上一个回差值2℃。
总之,本发明方法可以对大体积混凝土内的温度进行实时监控,并对大体积混凝土进行自动控温,可以有效防止温度过高或温差过大而导致的质量问题,整个控温过程可以做到无人值守,控温准确且节省人工,有效地保障了施工质量。
需要指出的是,以上具体实施方式只是本专利实现方案的具体个例,没有也不可能覆盖本专利的所有实现方式,因此不能视作对本专利保护范围的限定;凡是与以上案例属于相同构思的实现方案,或是上述若干方案的组合方案,均在本专利的保护范围之内。

Claims (7)

1.一种大体积混凝土施工控温方法,其特征在于:
施工前,根据施工高度,在施工体内选定一层或多层,层间间距为50~100cm,最上层距离施工体顶面的距离和最下层距离施工体底面的距离均在40~60cm范围内;
在每一层内布置水管,边缘处水管到该处施工体体壁的距离为50~80cm,每层中相邻两段水管之间的距离为50~100cm,每层水管的入水管头和出水管头均向上延伸并露出于施工体的上表面外;
在每一层内的混凝土中心处、混凝土边缘处以及混凝土中心和边缘的中间位置处布置温度传感器,其中,边缘处的传感器与该处施工体体壁的距离为40~60cm,所有温度传感器均通过线路与设于施工体外的控制器连接,所述控制器通过驱动电机控制各层水管内的水流;开始混凝土浇筑,在浇筑过程以及浇筑之后的硬化过程中,通过控制器采集各温度传感器的读数,并根据读数控制各层水管的水流;
所述控制器用于执行如下程序:
连续采集各温度传感器的读数,并对一定时间内每个温度传感器的读数进行筛选和求平均,得到每个温度传感器的读数均值;
对驱动电机的工作模式进行循环判断,每次判断时:
若有一个温度传感器的当前读数均值大于第一预设温度,或中心温度与表面温度相差大于第一预设温差,则控制驱动电机持续工作;
若没有温度传感器的当前读数均值大于第二预设温度,且中心温度与表面温度相差不大于第二预设温差,则控制驱动电机停止工作;
若中心温度大于第三预设温度,且连续三次判断时所获得的中心温度呈持续下降形势,则控制驱动电机以占空比模式工作;
若驱动电机处于占空比工作模式,且中心温度相比上次判断时的中心温度上升了设定阈值,则控制驱动电机持续工作;
所述表面温度为施工体内顶层以及除顶层外每层边缘处所有温度传感器读数均值的算术平均值;
所述中心温度为中间一层或多层中中心及中间位置处所有温度传感器读数均值的算术平均值。
2.根据权利要求1所述的大体积混凝土施工控温方法,其特征在于:所述施工体为承台,承台的各层中均设置有五个温度传感器;每层中,第一温度传感器设于中心位置处,第二、第三温度传感器分别设于该层的两个相邻的侧边处,第四、第五温度传感器分别设于第一温度传感器与第二、第三温度传感器的中间位置处。
3.根据权利要求1所述的大体积混凝土施工控温方法,其特征在于:所述连续采集各温度传感器的读数,并对一定时间内每个温度传感器的读数进行筛选和求平均,得到每个温度传感器的读数均值的具体方式为:针对每个温度传感器:
每隔1~5秒采集一次温度读数;
采集20组读数后,将读数按大小进行排序,取中间30%~60%的读数,得到初选读数;
取初选读数的中位数,将初选读数中,偏离中位数超过1℃,或不在-40℃~100℃范围内的读数滤除,得到合规读数;
对合规读数取平均值,作为该温度传感器的读数均值。
4.根据权利要求1所述的大体积混凝土施工控温方法,其特征在于:所述占空比模式的周期为5~20分钟,每个周期内驱动电机先工作再停止,每个周期内驱动电机工作时间的占比为1%~90%。
5.根据权利要求1所述的大体积混凝土施工控温方法,其特征在于:所述第一、第二、第三预设温度均为40℃,所述第一、第二预设温差均为20℃。
6.根据权利要求1所述的大体积混凝土施工控温方法,其特征在于:所述第一预设温度和第一预设温差均为变量,若驱动电机连续从持续工作状态切换至停止状态再切换回持续工作状态,则切换回持续工作状态时的第一预设温度和第一预设温差均取原始值与回差值之和,其他情况下,第一预设温度和第一预设温差均取原始值,所述回差值为0.1~2℃。
7.根据权利要求1所述的大体积混凝土施工控温方法,其特征在于:所述设定阈值为1~2℃。
CN201811422158.2A 2018-11-27 2018-11-27 一种大体积混凝土施工控温方法 Active CN111221361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811422158.2A CN111221361B (zh) 2018-11-27 2018-11-27 一种大体积混凝土施工控温方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811422158.2A CN111221361B (zh) 2018-11-27 2018-11-27 一种大体积混凝土施工控温方法

Publications (2)

Publication Number Publication Date
CN111221361A CN111221361A (zh) 2020-06-02
CN111221361B true CN111221361B (zh) 2021-08-31

Family

ID=70830373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811422158.2A Active CN111221361B (zh) 2018-11-27 2018-11-27 一种大体积混凝土施工控温方法

Country Status (1)

Country Link
CN (1) CN111221361B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033576A (zh) * 2020-08-04 2020-12-04 中铁大桥科学研究院有限公司 一种大体积砼温度监测方法
CN112944781B (zh) * 2021-01-28 2022-06-14 中铁三局集团广东建设工程有限公司 一种用于抵抗承台温度逆差的温度调节系统及施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720364A (zh) * 2012-06-25 2012-10-10 广东省长大公路工程有限公司 大体积混凝土施工的自动控温工艺
CN104133052A (zh) * 2014-07-30 2014-11-05 中国水利水电科学研究院 一种大体积混凝土温控效果全过程评价方法
CN104563122A (zh) * 2015-02-11 2015-04-29 中国水利水电第四工程局有限公司 一种大体积混凝土施工方法
CN205139737U (zh) * 2015-11-28 2016-04-06 中铁二十局集团第三工程有限公司 大体积混凝土承台施工用温控装置
CN107357332A (zh) * 2017-07-28 2017-11-17 中国水利水电科学研究院 一种混凝土最高温度控制方法及装置
CN108532606A (zh) * 2018-04-23 2018-09-14 中铁七局集团第四工程有限公司 大体积混凝土的温控方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2768769C (en) * 2004-07-23 2014-01-14 Smart Structures, Inc. Monitoring system for concrete pilings and method of installation
CN106245914A (zh) * 2016-08-26 2016-12-21 重庆建工集团股份有限公司 用于大体积钢筋混凝土结构早拆模的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720364A (zh) * 2012-06-25 2012-10-10 广东省长大公路工程有限公司 大体积混凝土施工的自动控温工艺
CN104133052A (zh) * 2014-07-30 2014-11-05 中国水利水电科学研究院 一种大体积混凝土温控效果全过程评价方法
CN104563122A (zh) * 2015-02-11 2015-04-29 中国水利水电第四工程局有限公司 一种大体积混凝土施工方法
CN205139737U (zh) * 2015-11-28 2016-04-06 中铁二十局集团第三工程有限公司 大体积混凝土承台施工用温控装置
CN107357332A (zh) * 2017-07-28 2017-11-17 中国水利水电科学研究院 一种混凝土最高温度控制方法及装置
CN108532606A (zh) * 2018-04-23 2018-09-14 中铁七局集团第四工程有限公司 大体积混凝土的温控方法

Also Published As

Publication number Publication date
CN111221361A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN111221361B (zh) 一种大体积混凝土施工控温方法
CN103506580B (zh) 大型薄壁阀体铸钢件的铸造方法
CN105689675B (zh) 一种连铸粘结漏钢的治愈控制方法
CN104695709B (zh) 采用相变材料的大体积混凝土裂缝控制方法
CN107357953A (zh) 一种根据热流密度分析水口堵塞的方法
CN108480413A (zh) 一种铝型材挤压成型模具冷却机构
CN107234213A (zh) 高压不锈钢泵体的陶瓷型精密铸造方法
CN103170610A (zh) 利用双模圆盘浇铸机中间包浇铸阳极铜模的装置及其浇铸方法
CN109732045A (zh) 一种型芯及其制造方法和使用方法
CN203725741U (zh) 一种铅阳极立模浇注系统
TW202239496A (zh) 用於預測鋼液溫度的方法
CN208991713U (zh) 一种铸钢钢锭模
CN203140695U (zh) 利用双模圆盘浇铸机中间包浇铸阳极铜模的装置
CN110527769B (zh) 一种高炉炉缸碳砖残厚判断方法
WO2004080904A1 (en) A cooling method for prolonging service life of glass tank furnace and decreasing glass defect
CN207159822U (zh) 一种桥墩大体积混凝土控温装置
KR102069459B1 (ko) 쉘 몰드 소결 방법 및 장치
CN205444131U (zh) 一种分流式坝体结构
CN205821375U (zh) 一种rh精炼炉真空室次工作层改良结构
CN110806106A (zh) 一种加热炉炉顶耐材塌陷修复方法以及修复结构
CN103604744B (zh) 一种表征钢包浇注料新旧料结合强度的实验方法
CN217973264U (zh) 智能冷却铁水沟结构
CN116638061B (zh) 新能源汽车用压铸件尺寸变形控制方法
CN203095837U (zh) 一种延长玻璃窑炉使用寿命及减少玻璃缺陷的冷却装置
CN204325395U (zh) 一种熔炉的主沟结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 050222 no.580 Shitong Road, Shijiazhuang City, Hebei Province

Applicant after: Hebei GAODA Intelligent Equipment Co., Ltd

Address before: 050222 1st floor, building 12, Hebei (Fujian) small and medium sized enterprise science and Technology Park, 580 Shitong Road, Luquan District, Shijiazhuang City, Hebei Province

Applicant before: HEBEI GUNDAM PRESTRESS TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant