CN111220610B - 一种基于铁醇盐纳米酶的As5+比色检测法 - Google Patents

一种基于铁醇盐纳米酶的As5+比色检测法 Download PDF

Info

Publication number
CN111220610B
CN111220610B CN202010080682.7A CN202010080682A CN111220610B CN 111220610 B CN111220610 B CN 111220610B CN 202010080682 A CN202010080682 A CN 202010080682A CN 111220610 B CN111220610 B CN 111220610B
Authority
CN
China
Prior art keywords
iron alkoxide
solution
alkoxide
detection method
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010080682.7A
Other languages
English (en)
Other versions
CN111220610A (zh
Inventor
徐雪超
牛湘衡
李欣
潘建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010080682.7A priority Critical patent/CN111220610B/zh
Publication of CN111220610A publication Critical patent/CN111220610A/zh
Application granted granted Critical
Publication of CN111220610B publication Critical patent/CN111220610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N2021/786Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour with auxiliary heating for reaction

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于分析化学技术领域,涉及As5+的检测方法,尤其涉及一种基于铁醇盐纳米酶的As5+比色检测法,包括:用去离子水配制1 mg·mL‑1的铁醇盐纳米酶溶液,分别取100µL的铁醇盐纳米酶溶液分散在2700µL醋酸‑醋酸盐缓冲溶液中,加入100µL不同浓度的As5+,孵化0.5~5 min;分别将100µL的5 mM的TMB乙醇溶液加入,孵化10~30 min;用紫外‑可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652 nm处的吸光度并绘制标准工作曲线;将待测As5+样品重复上述步骤测定吸光度;并与标准工作曲线比对,即得As5+浓度。本发明利用铁醇盐纳米酶比色检测As5+,检测过程条件温和,实现As5+的方便、快速检测,成本低廉;检测范围宽至3.33~333.33µg·L‑1,满足世界卫生组织对砷离子的最低限制。

Description

一种基于铁醇盐纳米酶的As5+比色检测法
技术领域
本发明属于分析化学技术领域,涉及As5+的检测方法,尤其涉及一种基于铁醇盐纳米酶的As5+比色检测法。
背景技术
由于矿产的开发和工业废水的排放,无机砷污染在全球范围内日趋严重。据调查,全球至少有2000万人生活在严重无机砷污染的地区。在自然界中,五价砷酸盐(As5+)和三价亚砷酸盐(As3+)是无机砷的最常见的化学形态。无机砷具有很强的毒性和致癌性,严重威胁人体健康,此世界卫生组织(WHO)严格规定饮用水中的砷含量不得高于10μg·L-1。因此,无机砷的定量检测,对环境保护和公共健康具有重要意义。
目前针对无机砷检测方法主要有仪器分析法、电化学法、生物传感法和比色法等,其中仪器分析法包括原子吸收光谱、原子发射光谱法和原子荧光光谱法等,具备有检测限低、选择性优、精确度好等特点。但适用的线性范围较窄,且操作步骤繁琐等缺点极大地限制了其应用。电化学方法可用于砷的多种形态的分析,由于电化学法在测定无机砷过程中产生的是电信号,因而电化学法适用于无机砷连续不间断检测。但是电化学法检测无机砷容易受电极影响,且电极寿命较短,成本高昂。生物传感分析法检测无机砷具有较高的灵敏度度、可移植性、样本需求量低等优点,可以用于痕量无机砷的定量和定性检测分析。但这种方法需要专门的基因工程和生物技术细胞转化,步骤繁琐,且成本昂贵,应用范围有限。比色法能进行可视化检测,是一种较为直观的无机砷检测方法。
此外,纳米酶作为一种新兴的纳米材料,具有与天然酶类似的催化活性,能够催化一些特定的反应。纳米酶比色法,采用纳米酶来检测目标物具有合成方便、原理简单和成本低廉等优点,因此纳米酶比色法是一种较为理想的无机砷检测方法。
发明内容
针对上述现有技术中存在的不足和限制,本发明的目的在于公开一种基于铁醇盐纳米酶的As5+比色检测法。
技术方案
一种基于铁醇盐纳米酶的As5+比色检测法,步骤如下:
(1)用去离子水配制1mg·mL-1的铁醇盐纳米酶溶液,分别取100μL的铁醇盐纳米酶溶液分散在2700μL醋酸-醋酸盐缓冲溶液中,加入100μL不同浓度的As5+,孵化0.5~5 min,优选2min;
(2)分别将100μL的5mM的TMB乙醇溶液加入上述混合溶液中,孵化10~30min,优选20min;
(3)用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652nm处的吸光度并绘制As5+浓度-吸光度标准工作曲线;
(4)将待测As5+样品重复步骤(1)~(3),以紫外-可见吸收分光光度计测定652nm处吸光度;
(5)通过计算与As5+浓度-吸光度标准工作曲线比对,即可获得待测As5+样品的As5+浓度。
本发明较优公开例中,步骤(1)所述醋酸-醋酸盐缓冲溶液浓度0.2M,pH为4.0。
本发明较优公开例中,步骤(1)所述As5+溶液浓度为3.33~333.33μg·L-1
本发明较优公开例中,步骤(4)所述待测As5+样品检测范围为3.33~333.33μg·L-1,检测低限为1.57μg·L-1
本发明所述铁醇盐纳米酶,制备步骤如下:
A、按固液比为7.5mM:9g:150~450mL,将FeCl3·6H2O或Fe(NO3)3·9H2O和尿素分散在乙二醇里,充分溶解成混合溶液,所述固液比优选7.5mM:9g:300mL;
B、混合溶液在150~250℃溶剂热反应20~40min,优选195℃反应30min;
C、铁醇盐纳米酶离心收集,并用乙醇和去离子水洗净,50~70℃干燥18~30h优选60℃干燥24h后即得。
依据本发明所述方法制得的铁醇盐纳米酶为花状球体,其形貌特征如图1所示。
本发明首先制备铁醇盐(IA)纳米酶,铁醇盐是一种氧化酶模拟物,能够催化溶解氧形成超氧阴离子自由基,氧化3,3',5,5'-四甲基联苯胺(TMB),形成蓝色产物TMBox。当在IA+TMB体系中加入As5+时,As5+能够被吸附在铁醇盐上,抑制其氧化酶活性,引起IA+TMB 体系吸光度变化。然后测试加入不同浓度As5+的IA+TMB体系在652nm的吸光度,绘制 As5+浓度-吸光度标准工作曲线,并检测待测物的As5+含量。
在本说明书中,术语“氧化酶模拟物”是指具有氧化酶催化活性的纳米材料。具体地,本发明中的氧化酶模拟物以氧气作为电子受体,通过氧化TMB底物生成有色物质TMBox,用于比色检测。
在本说明书中,术语“TMB”是化合物“3,3’,5,5’-四甲基联苯胺”的缩写名称,二者可互换使用。
在本说明书中,术语“IA”是指合成的铁醇盐,二者可互换使用。
本发明所用反应物、试剂均为市售。
有益效果
本发明公开了一种基于铁醇盐纳米酶的As5+比色检测方法。利用铁醇盐纳米酶比色检测As5+,检测过程条件温和,不需要其他试剂,实现了As5+的方便、快速检测,且检测成本低廉,操作简单;检测范围宽至3.33~333.33μg·L-1,检测限为1.57μg·L-1,可以完全满足世界卫生组织对砷离子的最低限制(10μg·L-1)。铁醇盐纳米酶比色检测As5+具有较高的选择性,可以避免大量共存离子的干扰。
附图说明
图1.IA的扫描电镜图;
图2.IA+TMB、IA和TMB体系的全谱图;
图3.超氧阴离子的电子自旋共振(ESR)谱图;
图4.As5+浓度-吸光度标准工作曲线图;
图5.As5+传感机理示意图;
图6.IA+TMB体系对As5+检测选择性图。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
实施例1
1.铁醇盐纳米酶制备
1.2g FeCl3·6H2O和5.4g尿素分散在180mL乙二醇里,机械搅拌20min,混合溶液195℃反应30min;铁醇盐通过离心收集,并用乙醇和去离子水洗三次,在60℃干燥24h。其形貌为花状球体,如图1所示。
取制备好的100μL铁醇盐纳米酶(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0),将100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,并孵化20min。用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录吸光度,全谱图如图2所示。
利用ESR检测体系中产生的超氧阴离子,ESR谱图如图3所示。
2.基于铁醇盐纳米酶的As5+比色检测方法
100μL的IA(1mg mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);然后将100μL的不同浓度的As5+(3.33至333.33μg·L-1)加入混合溶液中,孵化2min;分别将100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化20min;用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652nm 处的吸光度并绘制As5+浓度-吸光度标准工作曲线(图4)。
图5为As5+传感机理示意图。
此外,As5+检测选择性通过检测加入不同离子的IA+TMB体系吸光度来考察,如图6所示,IA+TMB体系对As5+具有较高的检测选择性。
实施例2
1.铁醇盐纳米酶制备
1.2g FeCl3·6H2O和5.4g尿素分散在90mL乙二醇里,机械搅拌10min,混合溶液150℃反应20min;铁醇盐通过离心收集,并用乙醇和去离子水洗三次,60℃干燥24h。
取制备好的100μL铁醇盐纳米酶(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0)。100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化20min。用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录吸光度。
2.基于铁醇盐纳米酶的As5+比色检测方法
100μL的IA(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);然后将100μL的不同浓度的As5+(3.33至333.33μg·L-1)加入混合溶液中,孵化0.5min;分别100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化10min;用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652nm 处的吸光度并绘制As5+浓度-吸光度标准工作曲线。
实施例3
1.铁醇盐纳米酶制备
1.2g FeCl3·6H2O和5.4g尿素分散在135mL乙二醇里,机械搅拌15min,混合溶液175℃反应25min;铁醇盐通过离心收集,并用乙醇和去离子水洗三次,60℃干燥24h。
取制备好的100μL铁醇盐纳米酶(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化20min。用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录吸光度。
2.基于铁醇盐纳米酶的As5+比色检测方法
100μL的IA(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);然后将100μL的不同浓度的As5+(3.33至333.33μg·L-1)加入混合溶液中,孵化1min;100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化15 min;用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652nm处的吸光度并绘制As5+浓度-吸光度标准工作曲线。
实施例4
1.铁醇盐纳米酶制备
1.2g FeCl3·6H2O和5.4g尿素分散在225mL乙二醇里,机械搅拌25min,混合溶液225℃反应35min;铁醇盐通过离心收集,并用乙醇和去离子水洗三次,60℃干燥24h。
取制备好的100μL铁醇盐纳米酶(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);将100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化20min;用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录吸光度。
2.基于铁醇盐纳米酶的As5+比色检测方法
100μL的IA(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);然后将100μL的不同浓度的As5+(3.33至333.33μg·L-1)加入混合溶液中,孵化3min;100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化25 min;用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652nm处的吸光度并绘制As5+浓度-吸光度标准工作曲线。
实施例5
1.铁醇盐纳米酶制备
1.2g FeCl3·6H2O和5.4g尿素分散在270mL乙二醇里,机械搅拌30min,混合溶液在250℃反应40min;铁醇盐通过离心收集,并用乙醇和去离子水洗三次,60℃干燥24h。
取制备好的100μL铁醇盐纳米酶(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化20min;用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录吸光度。
2.基于铁醇盐纳米酶的As5+比色检测方法的建立
100μL的IA(1mg·mL-1,用去离子水溶解)分散在2700μL的醋酸-醋酸盐缓冲溶液中(0.2M,pH 4.0);然后将100μL的不同浓度的As5+(3.33至333.33μg L-1)加入混合溶液中,孵化5min;100μL的TMB溶液(5mM,用乙醇溶解)加入上述混合溶液中,孵化30 min;用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652nm处的吸光度并绘制As5+浓度-吸光度标准工作曲线。
以上所述,仅为本发明较佳的具体实施方式。当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,任何熟悉本技术领域的技术人员,当可根据本发明作出各种相应的等效改变和变形,都应属于本发明所附的权利要求的保护范围。

Claims (9)

1.一种基于铁醇盐纳米酶的As5+比色检测法,其特征在于,检测步骤如下:
(1)用去离子水配制1mg·mL-1的铁醇盐纳米酶溶液,分别取100μL的铁醇盐纳米酶溶液分散在2700μL醋酸-醋酸盐缓冲溶液中,加入100μL不同浓度的As5+,孵化0.5~5min;所述铁醇盐纳米酶,其制备步骤包括:
A、按固液比为7.5mM:9g:150~450mL,将FeCl3·6H2O或Fe(NO3)3·9H2O和尿素分散在乙二醇里,充分溶解成混合溶液;
B、混合溶液在150~250℃溶剂热反应20~40min;
C、铁醇盐纳米酶离心收集,并用乙醇和去离子水洗净,50~70℃干燥18~30h;
(2)分别将100μL的5mM的TMB乙醇溶液加入上述混合溶液中,孵化10~30min;
(3)用紫外-可见吸收分光光度计测定混合溶液紫外吸收光谱,记录波长为652nm处的吸光度并绘制As5+浓度-吸光度标准工作曲线;
(4)取100μL的1mg·mL-1铁醇盐纳米酶溶液分散在2700μL醋酸-醋酸盐缓冲溶液中,加入100μL待测As5+样品,孵化0.5~5min,再加入100μL的5mM的TMB乙醇溶液,孵化10~30min,以紫外-可见吸收分光光度计测定652nm处的吸光度;
(5)通过计算与As5+浓度-吸光度标准工作曲线比对,即可获得待测样品的As5+浓度。
2.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(1)所述醋酸-醋酸盐缓冲溶液浓度0.2M,pH为4.0。
3.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(1)所述As5+溶液浓度为3.33~333.33μg·L-1
4.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(1)所述用去离子水配制1mg·mL-1的铁醇盐纳米酶溶液,分别取100μL的铁醇盐纳米酶溶液分散在2700μL醋酸-醋酸盐缓冲溶液中,加入100μL不同浓度的As5+,孵化2min。
5.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(1)A中所述固液比为7.5mM:9g:300mL。
6.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(1)B中所述混合溶液在195℃反应30min。
7.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(1)C中60℃干燥24h后即得。
8.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(2)所述分别将100μL的5mM的TMB乙醇溶液加入上述混合溶液中,孵化20min。
9.根据权利要求1所述基于铁醇盐纳米酶的As5+比色检测法,其特征在于:步骤(4)所述待测As5+样品检测范围为3.33~333.33μg·L-1,检测低限为1.57μg·L-1
CN202010080682.7A 2020-02-05 2020-02-05 一种基于铁醇盐纳米酶的As5+比色检测法 Active CN111220610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010080682.7A CN111220610B (zh) 2020-02-05 2020-02-05 一种基于铁醇盐纳米酶的As5+比色检测法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010080682.7A CN111220610B (zh) 2020-02-05 2020-02-05 一种基于铁醇盐纳米酶的As5+比色检测法

Publications (2)

Publication Number Publication Date
CN111220610A CN111220610A (zh) 2020-06-02
CN111220610B true CN111220610B (zh) 2022-10-28

Family

ID=70808369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010080682.7A Active CN111220610B (zh) 2020-02-05 2020-02-05 一种基于铁醇盐纳米酶的As5+比色检测法

Country Status (1)

Country Link
CN (1) CN111220610B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351439A (zh) * 2023-04-01 2023-06-30 辽宁大学 纳米酶复合材料及基于纳米酶水凝胶便携式传感平台及其在检测重金属离子中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293124A (zh) * 2013-06-28 2013-09-11 中南民族大学 一种纳米α-FeOOH/氧化石墨烯的制备方法及应用
CN107462531A (zh) * 2017-07-25 2017-12-12 江苏大学 一种尿酸的无酶比色检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014052482A1 (en) * 2012-09-25 2014-04-03 University Of Connecticut Office Of Economic Development Mesoporous metal oxides and processes for preparation thereof
CN104267026B (zh) * 2014-09-22 2017-05-10 福建医科大学 基于纳米铂模拟过氧化物酶的汞离子检测方法及其试剂盒
KR101708746B1 (ko) * 2015-08-28 2017-02-21 한국과학기술연구원 티오글리콜산으로 표면개질된 금 나노입자를 이용한 3가 크롬 및 6가 크롬 이온의 분별검출용 비색센서용액 및 비색검출방법
CN105699471B (zh) * 2016-02-04 2019-02-26 中国科学院烟台海岸带研究所 一种对两种物质同时检测的方法
CN108844910B (zh) * 2018-06-13 2020-12-04 南昌大学 基于CoOOH纳米片类过氧化物酶特性的As(V)双模式检测方法
CN108896520B (zh) * 2018-06-13 2021-01-01 南昌大学 基于酸性磷酸酶活性抑制原理的比率荧光法检测As(V)
CN109211818A (zh) * 2018-09-17 2019-01-15 江南大学 一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法
CN110361343B (zh) * 2019-08-20 2022-03-22 贵州大学 一种基于寡聚核苷酸调控四氧化三锰催化活性的重金属比色检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293124A (zh) * 2013-06-28 2013-09-11 中南民族大学 一种纳米α-FeOOH/氧化石墨烯的制备方法及应用
CN107462531A (zh) * 2017-07-25 2017-12-12 江苏大学 一种尿酸的无酶比色检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电化学非酶葡萄糖传感器用纳米金属传感材料研究进展;王霜等;《化工新型材料》;20171130(第11期);29-32 *

Also Published As

Publication number Publication date
CN111220610A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
Hou et al. A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone
Liao et al. A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters
Hou et al. Michael reaction-assisted fluorescent sensor for selective and one step determination of catechol via bifunctional Fe-MIL-88NH2 nanozyme
CN110987843B (zh) 基于双金属mof纳米类氧化酶的磷酸根比色检测法
Zhang et al. Photothermal and colorimetric dual-readout silver ions determination utilizing the oxidase-mimicking activity of MnO2 nanosheets
CN103884669B (zh) 检测汞离子用纳米银探针的制备方法及其应用
Zhan et al. A novel colorimetric strategy for rapid detection of dimethoate residue in vegetables based on enhancing oxidase-mimicking catalytic activity of cube-shape Ag2O particles
Li et al. Fabricating a nano-bionic sensor for rapid detection of H2S during pork spoilage using Ru NPs modulated catalytic hydrogenation conversion
CN110108679A (zh) 一种基于铜掺杂碳纳米点的有机磷农药无酶比率荧光检测新方法
CN103293124A (zh) 一种纳米α-FeOOH/氧化石墨烯的制备方法及应用
Li et al. Smartphone-assisted off─ on photometric determination of phosphate ion based on target-promoted peroxidase-mimetic activity of porous CexZr1-xO2 (x≥ 0.5) nanocomposites
Al-Onazi et al. Catalytic oxidation of O-phenylenediamine by silver nanoparticles for resonance Rayleigh scattering detection of mercury (II) in water samples
Chen et al. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban
CN111220610B (zh) 一种基于铁醇盐纳米酶的As5+比色检测法
Qiao et al. A novel colorimetric and fluorometric dual-signal identification of organics and Baijiu based on nanozymes with peroxidase-like activity
Moustafa et al. A highly selective bulk optode based on 6-{4-(2, 4-dihydroxy-phenyl) diazenyl) phenyl}-2-oxo-4-phenyl-1, 2-dihydro-pyridine-3-carbonitrile incorporating chromoionophore V for determination of nano levels of cadmium
CN105806831B (zh) 一种利用化学发光法检测氯酚污染物的方法
Xu et al. Synthesis and sensing behavior of a new multichannel sensor based on thiazolyl ferrocene-rhodamine for Hg2+ detection
CN104614421B (zh) 一种检测2,4,6‑三氯苯酚的电化学方法
Skillen et al. Photocatalytic radical species: An overview of how they are generated, detected, and measured
CN112557383A (zh) 一种基于MnO2复合酶模拟物的铜离子比色检测方法
Liu et al. Material characterization combined with simple green chemistry method for integrated analysis of catalyst performance: A case study on MIL-53 (Fe)
Yan et al. Kill two birds with one stone: Ratiometric sensing of phosphate via a single-component probe with fluorescence-scattering dual-signal response behavior
Du et al. Boric acid-functionalized lanthanide metal-organic framework used as a ratiometric fluorescence probe for uric acid detection
Ye et al. Cu 2+-catalyzed and H 2 O 2-facilitated oxidation strategy for sensing copper (ii) based on cysteine-mediated aggregation of gold nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant