CN109211818A - 一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法 - Google Patents

一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法 Download PDF

Info

Publication number
CN109211818A
CN109211818A CN201811079469.3A CN201811079469A CN109211818A CN 109211818 A CN109211818 A CN 109211818A CN 201811079469 A CN201811079469 A CN 201811079469A CN 109211818 A CN109211818 A CN 109211818A
Authority
CN
China
Prior art keywords
concentration
ion
absorbance
nano platinum
pvp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811079469.3A
Other languages
English (en)
Inventor
许春华
赵媛
杨璇
杨亚鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201811079469.3A priority Critical patent/CN109211818A/zh
Publication of CN109211818A publication Critical patent/CN109211818A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

在本发明中,制备了粒径均一的PVP包被的铂纳米粒子,并将其应用于同时检测Hg2+和Ag+。所制备的铂纳米粒子可以在过氧化氢(H2O2)存在时,显著催化氧化3,3,5,5‑四甲基联苯胺(TMB)变为蓝色,Hg2+和Ag+能大幅抑制PVP包被的Pt NPs的类过氧化物酶活性,导致吸光度下降。乙二胺四乙酸钠(EDTA)可以成功掩蔽Hg2+,对Ag+的影响可以忽略不计,由此实现选择性检测Ag+。经计算,Ag+检测限为9.75nM,Hg2+检测限为17.75nM。

Description

一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法
技术领域
本发明涉及汞离子和银离子的检测。尤其是一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法,属于分析化学和纳米技术领域。
背景技术
汞离子和银离子是在自然环境中广泛存在的两种重金属离子。汞的化合物来源于燃煤工业、火山爆发、金矿开采和垃圾焚烧。汞离子会导致多种疾病,包括神经系统,免疫系统,生殖系统,肾脏,心脏甚至是基因遗传相关的疾病。银的化合物主要来源于摄影、电子和制镜工业的废料,可以引起生物酶失活,引起相关健康问题。银离子可在肝组织中累积,对过度使用含有银盐的药物的病人有负面作用。因此,建立一种快速、灵敏、选择性高的方法来检测汞离子和银离子是十分必要的。
汞离子和银离子经常在同一系统中共存。如今,已有很多方法应用于同时检测汞离子和银离子,比如电感耦合等离子质谱,原子吸收光谱。这些方法虽然非常灵敏,并且可以实现多重检测,但是所需仪器相当笨重,不便携带,因此不可用于现场检测。近几年,荧光法和电化学法在检测汞离子和银离子领域发展迅速。比色法由于可简单直接用裸眼观察而备受关注。近年来,通过把比色技术与其他方法结合,人们制备了多种纳米材料用于检测重金属离子。用吐温20、缩氨酸、巯基丙酸和腺一磷酸修饰金纳米粒子,加入汞离子和银离子可引起这些金纳米离子的聚合,可将此应用于检测高效汞离子和银离子。这类方法虽然简单但是特异性和灵敏度差。利用汞离子和银离子与DNA(脱氧核糖核酸)之间存在T(胸腺嘧啶)-Hg2+-T和C(胞嘧啶)-Ag+-C的化学作用,DNA修饰的金纳米粒子也可用于检测汞离子和银离子。然而,由于DNA非常不稳定且价格昂贵,这一技术在日常检测应用中非常受局限。金属纳米粒子如金纳米粒子、铂纳米粒子、钯纳米粒子具有独特的催化性质且这些性质已应用于生化检测。在这些金属纳米粒子中,铂纳米粒子是最重要的一种催化剂之一。它具有很多模拟酶性质,可催化超氧物歧化、过氧化、氧化。PVP(聚乙烯吡咯烷酮)包被的纳米粒子分散性好,形貌一致。在本方法中,制备了粒径均一的PVP包被的铂纳米粒子,并将其应用于同时检测Hg2+和Ag+。所制备的铂纳米粒子可以在过氧化氢(H2O2)存在时,显著催化氧化3,3,5,5-四甲基联苯胺(TMB)变为蓝色,Hg2+和Ag+能大幅抑制PVP包被的Pt NPs的类过氧化物酶活性,导致吸光度下降。乙二胺四乙酸钠(EDTA)可以成功掩蔽Hg2+,对Ag+的影响可以忽略不计,由此实现选择性检测Ag+。本检测方法灵敏度高、检测仪器简单、无需高技术人员。
发明内容
一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法,包括以下步骤:
(1)合成PVP包被的铂纳米粒子
用H2PtCl6作前驱体,乙二醇既作为溶剂,同时也作为还原剂,PVP做包被剂,采用一锅法快速合成PVP包被的Pt NPs。
(2)建立测定汞离子的标准曲线
配制一定浓度梯度的汞离子标准溶液,加入pH 4.0的磷酸缓冲液中,再加入一定量的铂纳米粒子、TMB和H2O2,然后孵育20分钟,将所得溶液转移至石英比色皿,用紫外分光光度计测定其在652nm处的吸光度。以汞离子浓度为横坐标,所记录反应溶液吸光度与空白组吸光度之差为纵坐标,建立标准曲线。
(3)建立测定银离子的标准曲线
配制一定浓度梯度的银离子标准溶液,加入pH 4.0的磷酸缓冲液中,再加入一定量的铂纳米粒子、TMB和H2O2,然后孵育20分钟,将所得溶液转移至石英比色皿,用紫外分光光度计测定其在652nm处的吸光度。以银离子浓度为横坐标,所记录反应溶液吸光度与空白组吸光度之差为纵坐标,建立标准曲线。
(4)加入不同的金属离子,评价该检测方法的选择性。
(5)自来水样品中加标检测。
附图说明:
图1:合成铂纳米粒子的透射电子显微镜图。
图2:检测Ag+和Hg2+的线性校准曲线。
图3:不同金属离子对PVP包被的Pt NPs的类过氧化物酶活性的影响。
具体实施方式:
实施例1:
首先,在50mL烧瓶中加入4mL乙二醇,加热至110℃。将0.637mL 100mM的H2PtCl6和0.045g PVP分别溶解在2mL乙二醇中。然后,在1.5min内将两种溶液同时滴加到烧瓶中。在110℃下继续回流反应3小时后,获得深棕色均相Pt NPs。所得Pt NPs保存在室温下备用,使用时用超纯水稀释。
实施例2:
将100μL不同浓度Ag+或Hg2+(0,20nM,40nM,60nM,80nM和100nM)加入到1760μL pH4.0PBS溶液中。然后加入20μL 5.4nM PVP包被的Pt NPs,100μL 0.01M TMB和20μL10M H2O2并孵育20分钟。将混合物转移至石英比色皿中,记录UV-vis吸收光谱。
以汞离子浓度为横坐标,所记录反应溶液吸光度与空白组吸光度之差为纵坐标,建立标准曲线。该定量曲线在0-100nM的浓度范围内表现出良好的线性关系。曲线的相关系数分别r=0.992,基于信噪比(S/N)=3,该方法测定汞离子的检测限约为17.75nM。
以银离子浓度为横坐标,所记录反应溶液吸光度与空白组吸光度之差为纵坐标,建立标准曲线。该定量曲线在0-100nM的浓度范围内表现出良好的线性关系。曲线的相关系数分别r=0.999,基于信噪比(S/N)=3,该方法测定汞离子的检测限约9.75nM。
实施例3:
一定量的100μL0.1μM的金属离子,如Pb2+、Cd2+、Co2+、Fe2+、K+、Mg2+、Na+、Ni2+、Zn2+、Cu2+、Sr2+、Fe3+、Ca2+、Ba2+、Al3+和Cr3+,分别加入100μL1μMHg2+和Ag+,转移到1.84mL pH 4.0的PBS溶液中,然后加入20μL的5.4nM PVP封端的Pt NP,20μL的0.01M TMB和20μL的10M H2O2。孵育20分钟,将所得溶液转移至石英其特征在于记录了紫外-可见吸收光谱波长范围从500nm到800nm。从图2可以看出,只有汞离子和银离子对催化有抑制作用。
实施例4:
为了评估该方法在实际样品中应用,应用加标法检测自来水样品中的Hg2+和Ag+的浓度,首先,取100μL加入一系列浓度梯度Hg2+和Ag+(样品1,15nM和35nM;样品2,35nM和15nM;样品3,25nM和25nM;样品4,25nM和65nM;样品5,65nM和25nM;样品6,45nM和45nM)的自来水,分别加入1760μL pH 4.0PBS溶液中,再加入20μL 5.4nM的PVP包被的Pt NPs、100μL0.01M TMB和20μL 10M H2O2,然后孵育20分钟,将所得溶液转移至石英比色皿,用紫外分光光度计测定其在652nm处的吸光度。然后取含相同浓度的Hg2+和Ag+的加标自来水,加入EDTA(终浓度1mM),孵育20分钟,将所得溶液转移至石英比色皿,用紫外分光光度计测定其在652nm处的吸光度。
将所测得吸光度代入银离子标准曲线方程,由代数关系可得样品中银离子和汞离子的浓度。具体计算方式如下
结果如表1所示。样品中银离子的回收率在99.4–102.8%的范围内,RSD从1.7%到2.6%,汞离子的回收率在100.4–108.1%的范围内,RSD从0.8%到2.2%,证明了该检测方法能检测实际样品中汞离子和银离子的含量。
表1通过PVP包被的Pt NPs检测自来水样品中的Ag+和Hg2+

Claims (7)

1.一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法,其特征在于包括以下步骤:
(1)用H2PtCl6作前驱体,乙二醇既作为溶剂,同时也作为还原剂,PVP做包被剂,采用一锅法快速合成PVP包被的Pt NPs。
(2)配制一定浓度梯度的银离子标准溶液,加入磷酸缓冲液中,再加入一定量的铂纳米粒子、TMB和H2O2,然后孵育20分钟,将所得溶液转移至石英比色皿,用紫外分光光度计测定其在652nm处的吸光度。以银离子浓度为横坐标,所记录反应溶液吸光度与空白组吸光度之差为纵坐标,建立标准曲线。
(3)测定Hg2+和Ag+共存的样品,加入EDTA掩蔽Hg2+,先测定Ag+引起的吸光度减少量,再通过扣除Ag+的影响来计算出Hg2+的浓度。
2.如权利要求书1所述的方法,其特征在于:所述磷酸缓冲液的pH为4.0,体积为1760μL。
3.如权利要求书1所述的方法,其特征在于:所述铂纳米粒子的粒径为5nm浓度为20μL,体积为5.4nM。
4.如权利要求书1所述的方法,其特征在于:所述TMB的浓度为0.01M,体积为100μL。
5.如权利要求书1所述的方法,其特征在于:所述H2O2的浓度为10M,体积为20μL。
6.如权利要求书1所述的方法,其特征在于:EDTA的中浓度为1mM。
7.如权利要求书1所述的方法,其特征在于:Ag+检测限为9.75nM,Hg2+检测限为17.75nM。
CN201811079469.3A 2018-09-17 2018-09-17 一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法 Pending CN109211818A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811079469.3A CN109211818A (zh) 2018-09-17 2018-09-17 一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811079469.3A CN109211818A (zh) 2018-09-17 2018-09-17 一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法

Publications (1)

Publication Number Publication Date
CN109211818A true CN109211818A (zh) 2019-01-15

Family

ID=64983684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811079469.3A Pending CN109211818A (zh) 2018-09-17 2018-09-17 一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法

Country Status (1)

Country Link
CN (1) CN109211818A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220610A (zh) * 2020-02-05 2020-06-02 江苏大学 一种基于铁醇盐纳米酶的As5+比色检测法
CN111239124A (zh) * 2020-03-06 2020-06-05 中国药科大学 一种利用二硫化铂的过氧化氢比色检测法
CN112881585A (zh) * 2021-01-12 2021-06-01 赣南师范大学 一种基于纳米酶催化驱动的银源检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220610A (zh) * 2020-02-05 2020-06-02 江苏大学 一种基于铁醇盐纳米酶的As5+比色检测法
CN111239124A (zh) * 2020-03-06 2020-06-05 中国药科大学 一种利用二硫化铂的过氧化氢比色检测法
CN112881585A (zh) * 2021-01-12 2021-06-01 赣南师范大学 一种基于纳米酶催化驱动的银源检测方法

Similar Documents

Publication Publication Date Title
Zhong et al. Synthesis of catalytically active carbon quantum dots and its application for colorimetric detection of glutathione
Zhang et al. A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection
Hatamluyi et al. A novel molecularly imprinted polymer decorated by CQDs@ HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in biological samples
Haghighi et al. Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles
Wang et al. An ascorbic acid sensor based on protein-modified Au nanoclusters
Shen et al. Engineering an enzymatic cascade catalytic smartphone-based sensor for onsite visual ratiometric fluorescence–colorimetric dual-mode detection of methyl mercaptan
Liao et al. A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters
CN109211818A (zh) 一种基于铂纳米粒子比色法同时检测汞离子和银离子的方法
Huang et al. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer–enzyme hybrid system
CN104007092B (zh) 一种基于点击化学的铜离子荧光检测方法
CN110082329B (zh) 一种菠萝蛋白酶包裹的荧光铂纳米簇及制备方法和应用
Pirot et al. Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid
Sun et al. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal–organic frameworks–hydrogen peroxide system
Kang et al. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@ Ag core–shell nanoparticles
Balasubramanian et al. One-step green synthesis of colloidal gold nano particles: A potential electrocatalyst towards high sensitive electrochemical detection of methyl parathion in food samples
Wang et al. Ultrasensitive detection of uric acid in serum of patients with gout by a new assay based on Pt@ Ag nanoflowers
Kamruzzaman et al. Chemiluminescence microfluidic system on a chip to determine vitamin B1 using platinum nanoparticles triggered luminol–AgNO3 reaction
Peng et al. Rapid colorimetric detection of H2O2 in living cells and its upstream series of molecules based on oxidase-like activity of CoMnO3 nanofibers
Li et al. A sensitive electrochemical molecularly imprinted sensor based on catalytic amplification by silver nanoparticles for 3-indoleacetic acid determination
Pan et al. A bifunctional immunosensor based on osmium nano-hydrangeas as a catalytic chromogenic and tinctorial signal output for folic acid detection
Chi et al. Fabrication of a novel nano-biosensor for efficient colorimetric determination of uric acid
Zhou et al. Dendritic silica nanospheres with Au–Pt nanoparticles as nanozymes for label-free colorimetric Hg2+ detection
CN109100339B (zh) 用于选择性检测Pb离子和Ag离子浓度的试剂盒及检测方法
Arputharaj et al. Visible fluorescent sensing of Cu2+ ions in urine by reusable chitosan/L-histidine–stabilized silicon nanoparticles integrated thin layer chromatography sheet
Batish et al. Quercetin capped silver nanoparticles as an electrochemical sensor for ultrasensitive detection of chloramphenicol in food and water samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190115