CN1112036C - 图像显示装置 - Google Patents

图像显示装置 Download PDF

Info

Publication number
CN1112036C
CN1112036C CN96192825A CN96192825A CN1112036C CN 1112036 C CN1112036 C CN 1112036C CN 96192825 A CN96192825 A CN 96192825A CN 96192825 A CN96192825 A CN 96192825A CN 1112036 C CN1112036 C CN 1112036C
Authority
CN
China
Prior art keywords
pixel
lens
array
video display
display board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96192825A
Other languages
English (en)
Other versions
CN1179867A (zh
Inventor
J·H·M·内怎
A·J·S·M·德瓦安
M·V·C·斯特鲁梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1179867A publication Critical patent/CN1179867A/zh
Application granted granted Critical
Publication of CN1112036C publication Critical patent/CN1112036C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

图像显示装置(1),包括一照明系统(3)和一图像显示板(13),该显示板装备有n个像素组成的替换为“列阵”,间距为Pp。装置(1)进一步包括一投影透镜系统(19),用于将经图像显示板调制的光投影成象。图像显示板(13)的照明一侧装备有间距是Pm的m个微透镜(17)组成的微透镜列阵(15)。照明系统(3)包括有N个照明元(11),它们排成列阵,其间距是P1。这些照明元同时发光。而且,N<<m,n和P1>>Pm,Pp。

Description

图像显示装置
本发明涉及一种图像显示装置,包括一个照明系统,一个图像显示板,显示板装备有n个像素组成的列阵,间距为Pp,和一个投影透镜系统,图像显示板的照明一侧装备有微透镜列阵,它包含m个微透镜以及间距为Pm。
开始一段叙述的那种类型的图像显示装置,是从例如欧洲专利申请EP0444871中得知的。本申请中所述的图像显示装置包括一个产生光束的照明系统。此光束随后由液晶图像显示板按照要被显示的图像信息进行调制。图像显示板是由液晶层构成并装备有排列成两维列阵的像素。两块光学透明的平板将液晶层夹在中间,透明平板上装有很多电极,利用这些电极为像素提供图像信息。随后,利用一投影透镜系统将来自图像显示板的被调制光束投影成象。像素是由起实际转换作用的有源部分和无源部分组成。像素的有源部分和无源部分之比确定图像显示板的几何孔径。
常用的LCD投影系统,为了降低成本要实现小型化。然而,如果图像显示板的尺寸减小,尽管分辨率可保持不变,而图像显示板的几何孔径将减小。由于此孔径受到限制,在含有液晶图像显示板的图像显示装置中光损耗可能很严重,使得该系统的光输出减少。为此,正如上述专利申请所述,在图像显示板的照明一侧装有微透镜列阵。此微透镜列阵的微透镜与图像显示板的每个像素相对应,而入射在微透镜上的最大量的光被会聚在相应像素的有源部分。
上述欧洲专利申请中指述的图像显示装置的缺点在于,该系统的通光量受到位于照明一侧图像显示板基片的厚度和像素有源部分尺寸的限制。通光量这个词被理解为光学系统透过辐射能的本领。该本领是由几何孔径和在光学系统中相同位置的光瞳的组合决定的,并可表示为孔径表面积和在孔径中心光瞳所张立体角的乘积。
在上述图像显示装置中,为了能实现最大的通光量,通过微透镜入射到相应像素上的子光束的直径在图像显示板面上应该尽量大到与像素有源部分的尺寸一致,并且入射到像素上的光束的发散角应当不大于电-光效应所许可的发散角。在图像显示板面上的光束直径,取决于入射到微透镜上光束的发散角和在图像显示板照明侧的基片厚度。入射到微透镜上光束的发散角则又是由光源灯和显示板的面积比来决定的。但是上述参数经常并不适配,因为它们一般是在装配该装置时就被固定下来了。如果在图像显示板面上每个像素的光束直径太大,那么至少有部分光束要射到像素的无源部分,结果造成光损耗。这就产生另一个缺点,即引起图像显示板的热负荷。射到无源部分的光将显示板加热。特别对于有强光源的图像显示装置,这是一个难题。
从上所述得出结论,对于入射到微透镜上的光束要实现所需的发散角会引发许多问题,特别是对于小的图像显示板。此外,对于含有比较小的像素的图像显示板也产生同样的问题。像素变小,因此像素的几何孔径也减小,入射到图像显示板上的光的发散角就增大。
本发明的目的是提供一种图像显示装置,其图像显示板前放置一微透镜列阵,与已知的在图像显示板前方带有单个微透镜列阵的图像显示装置相比,其通光量相当大,并且不受入射到微透镜上的光束的所允许的发散角的限制。
为此目的,按照本发明的图像显示装置,其特征在于:照明系统包含有N个照明元,它们被排成间距为P1的列阵且同时发光。其中,N<<m,n和P1>>Pm,Pp。m代表微透镜的数目,n代表像素的数目,Pm代表微透镜列阵的间距,以及Pp代表像素列阵的间距。
照这样,每个像素由N个微透镜照明,而且从一个微透镜来的光照射到N个像素上。这意味着每个微透镜的通光量提高N倍。
本发明基于这样的认识,图像显示板中的电-光效应(或者,还有所希望的投影透镜孔径)优选地限定一个空间立体角(光线必需在该空间立体角范围之内入射到像素上以对图像的形成作出贡献),而不是入射到微透镜上的光束可能具有的发散度。由电-光效应决定的空间立体角是这样的一个角度,光线应该在此角度内入射到像素上,以便能经受所希望的与此像素有关的调制。电-光效应所允许的发散度和入射到微透镜上的光束所允许的发散度之间有十倍的差异是常有的事。所以,如果图像显示板的电-光效应所允许的空间角例如比微透镜所允许的空间角大十倍,那么本发明建议用来自不同的(比如说上述例子中的微透镜列阵中的十个微透镜的)光线来充满每个像素所允许的空间角。这是用排成两维列阵的十个照明元照射与像素对应的微透镜来实现的。照明元的数目比像素数和微透镜数小很多个数量级就足够了。照明元列阵的间距甚大于微透镜列阵的间距和图像显示板上像素的间距。通光量增加的倍数等于照明元的数目N。
如此一来,图像显示板的尺寸可以缩小直至图像显示板的电-光效应再次产生限制性影响为止,而通光量和分辨率保持不变。另一方面,尽管图像显示板的尺寸和通光量保持不变,分辨率可以提高,因此能得到更清晰的图像。尽管图像显示板和像素的尺寸保持不变,可以得到比一般情况更高的通光量,使得图像更亮。
应该注意,欧洲专利EP0518362描述了一种图像显示装置,其中虚光源列阵被安排在用于将光线会聚到图像显示板上有源像素部分上的微透镜列阵的前方,该虚光源列阵的间距等于微透镜列阵的间距和图像显示板上像素的间距。其数目也和微透镜的数目以及像素的数目相同。该装置的缺点,特别是对于含有小像素的图像显示板来说,不但微透镜而且照明元,其尺寸应该很小而且它们应基本相等,这导致制造程序的复杂化。
按照本发明的图像显示装置的另一个实施例的特征在于,微透镜列阵和图像显示板被排成远心式构形。
因此实现了微透镜列阵中微透镜和图像显示板上像素的相对位置与图像显示板上的部位无关。
按照本发明的图像显示装置的优选实施例的特征在于,对于照明元列阵的间距P1和图像显示板上的像素列阵间距Pp有:
M·P1=Pp
对于微透镜列阵的间距Pm和图像显示板上的像素列阵间距Pp有:
Pm=x·Pp
式中,M是微透镜列阵的放大率,x是整数。
在此情形下,与列阵有关的照明元被适宜地成象在图像显示板的像素上,使得光损耗被限制在最小。为此目的,成象后两个照明元之间的距离应该等于图像显示板上像素的间距Pp。
像素的间距可以等于微透镜的间距(x=1),或者微透镜的间距是数倍于像素的间距(x>1)。后面这种可能性的优点是微透镜的尺寸可以稍大,使得制造上的麻烦较小,特别是当像素尺寸很小时。
如果构形不是远心式的,那么间距Pm和Pp应该互相适配以保持微透镜和像素之间所需的对应关系。事实上,照明微透镜的光束的主光线已不再垂直于微透镜列阵和图像显示板的组件。
按照本发明的图像显示装置的另一个实施例的特征在于,照明元具有的辐射表面的形状与图像显示板上像素有源部分的形状一致。
结果,图像显示板上像素的有源部分尽可能最佳地得到利用。
按照本发明的图像显示装置的又一个实施例的特征在于,照明系统包括一具有第一透镜平板和第二透镜平板的积分系统,其中每一透镜平板皆包含多个排成列阵的透镜,第二个透镜平板上的透镜构成一照明元列阵。
现在每个照明元是由积分系统的第二个照明平板上的一个透镜构成。其优点在于,由于积分系统的存在,在图像上的光强度将分布均匀。而且,借助于积分系统,可以将从光源射出的光束的形状转变为图像显示板的形状。例如,截面为圆形的光束可转变成截面为矩形的光束,而且其纵横比与图像显示板一致,比如说,4∶3。
按照本发明的图像显示装置的又一个实施例的特征在于,照明系统包括一,具有第一透镜平板和第二透镜平板的积分系统,其中每一透镜平板皆包含多个排成列阵的透镜,照明元是由第二个透镜平板上的一组毗邻的透镜构成。
另一种选择是照明元是由第二个透镜平板上的多个相邻的透镜组合构成。
本发明的方方面面从以下描述的实施例将会清楚,并参照它们进行解释。
在附图中:
图1表示按照本发明的图像显示装置一个实施例;
图2和3表示按照本发明的图像显示装置一部分的实施例,表明一个像素被一个以上的微透镜照明;
图4和5表示按照本发明的图像显示装置一部分的实施例,表明一个微透镜照明一个以上的像素;
图6a和6b表示按照本发明的图像显示装置的实施例,其中照明元是由积分系统的第二块透镜板上的多个透镜或多组透镜构成的;
图7表示按照本发明的图像显示装置一部分的实施例,其中图像显示板是反射式图像显示板;
图8a和9a每个表示可能的像素形状;
图8b和9b表示与这些形状有关的微透镜列阵;以及
图8c和9c表示照明元的一种可能的空间分布;
概略地表示在图1中的图像显示装置1,包括一个照明系统3,它是由排成列阵的多个光源5组成。每个光源被一个反射器7(比如椭圆形反射器)包围着。这样的反射器7保证光源5发出的大部分光尽可能多地到达图像显示装置。光源5和反射器7结合,保证形成由一些彼此分隔开的照明元11组成的列阵9。
此外,该图像显示装置1有一个图像显示板13。图像显示板13可以包括例如液晶材料和像素矩阵,其运行是基于扭转向列(TN)、超扭转向列(STN)或者铁电效应,以便按照被显示的图像信息来调制射到其上面的光线的偏振方向。另一方面,图像显示板的运行也可以是基于入射的非偏振光在比如聚合物色散液晶(PDLC)中的色散。在所有这些情况下皆提供有液晶材料层,它被夹在例如两个光学透明的玻璃或者合成材料做成的基片之间,基片上提供一种电极结构,以便给每个像素提供被显示的图像信息。
每个像素是由实际起变换作用的有源部分和无源部分组成。每个像素的有源部分和无源部分的比确定了图像显示板的几何孔径。由于受限的孔径,故在包含液晶图像显示板的图像显示装置中光损耗可能很严重。因此,在照明系统3和图像显示板13之间的光路中常使用由微透镜17组成的微透镜列阵,以便将照明系统3发出的最大部分的光会聚到图像显示板13的像素的有源部分上。微透镜列阵的焦平面是在图像显示板上;
经图像显示板13调制的光,随后由投影透镜系统19投影以形成图像,为简单起见,此投影透镜系统19以单块投影透镜表示。
当使用微透镜列阵时,图像显示装置的通光量不仅受限于图像显示板的几何孔径和电。光效应所允许的发散度,而且也受限于入射到微透镜上光束的发散度。为了实现最大的通光量,入射到给定像素上的子光束的直径在图像显示板面上应当尽量与该像素有源部分的尺寸一致。在图像显示板上的光束直径,取决于入射到微透镜上的光束的发散度以及在图像显示板照明一侧基片的厚度。入射到微透镜上的光束的发散度依次又决定于光源灯的面积和图像显示板面积之比。然而上述参数并不总是适配的。
光束在图像显示板面上的尺寸,应基本上等于或者小于像素有源部分的尺寸。如果情况不是如此,光将也入射到像素的无源部分上,引起光损耗和显示板发热。本发明判明,与入射光束发散度有关的限制,能用一个以上的微透镜照明图像显示板上每个像素以及每个微透镜照明一个以上像素的办法来解决。这是通过利用多个(N个)同时发光的照明元11代替单个光源来实现的。在图1中每个照明元是作为独立光源工作的。另一种可能实现照明元列阵的方法,将在下面说明。
场镜18,20可放在微透镜列阵15和图像显示板13组合物的前或后。这就提供了最佳程度地利用投影镜孔径的可能性。而且与没有场镜的情况相比,使用有较小孔径的投影透镜即可。
在上述组合物前后两侧安装场镜为另一个可能性。除了最佳地利用投影镜的孔径外,两个场镜18,20可保证实现远心式照明。这样一来,就达到了微透镜列阵的微透镜和图像显示板的像素之间的相对位置与在图像显示板上的部位无关。因为场镜18,20是可任选的,所以它们在图1,6a和6b中用虚线表示。
图2以截面图形式表示照明元11的数目、微透镜17的数目和图像显示板13上像素21的数目之间的对应关系。为了实现在图像显示装置中通光量最大,在远心照明构形的情况下应保持:
M·P1=Pp
Pm=x·Pp
其中,M是微透镜列阵的放大倍数,x是整数。这意味着,在成象后,照明元与图像显示板上的像素相重合,而且微透镜列阵的间距Pm应该等于(x=1)图像显示板上像素的间距Pp,或者是图像显示板上像素间距Pp的整数倍(x>1)。
例如,图像显示板13上的一个像素21可以与每个微透镜15相对应,于是微透镜列阵的间距Pm就等于图像显示板13的像素的间距Pp(x=1)。比如说图像显示板上一个以上的像素对应一个微透镜(x>1),这也是可能的。如果一个微透镜对应于一个以上的像素,微透镜的尺寸就可以大些,这样就容易制造。这是有益的,特别当图像显示板上像素尺寸较小时。在此情况下,微透镜列阵的间距Pm大于图像显示板上像素的间距Pp。在图10中给予例示。
如果照明构形不是远心式的,那么间隔Pm和Pp应该相互匹配,因为入射在微透镜上的光束的主光线不再与微透镜列阵和图像显示板的组件相垂直。
图像显示板13包含有n个像素21,它们排成矩阵状,微透镜列阵15包含有m个微透镜17。图像显示板13上的像素21是由实际起变换作用的有源部分23和无源部分25组成。图像显示板的几何孔径是由有源部分的面积和无源部分的面积之比决定。
图像显示板中的电-光效应(以及可能还有投影透镜的孔径)应该限定一个空间立体角(为了对图像信息产生贡献,光线必需是在此立体角之内入射到像素上)。作为限制光线射到微透镜上的发散度以便使得射到无源部分的光最少的结果是,这个立体角不能被来自单个微透镜的光完全充满。为此,本发明建议采用来自几个微透镜的光线充满与一个像素相联系的立体角。实现方法是用由多个同时发光的照明元11组成分离的光源来代替单个光源。这样通光量就增加,其增加的倍数等于照明元11的数目N。由电-光效应和几何因素(如图像显示板中基片的厚度和像素尺寸)所允许的发散度确定可实现的倍数。电一光效应所允许的发散度和入射到微透镜上的光束所允许的发散度之间相差十倍是常事。所以,如果图像显示板的电-光效应所允许的立体角比入射到微透镜上的光束所允许的立体角大10倍,那么建议用来自几个微透镜的光线去充满每个像素所允许的立体角。这种效果是通过采用许多个(比如说10个)排成两维列阵的照明元照射微透镜来实现的。  在列阵内照明元的构形可以是对称的,但并不必需如此。事实上,并不是所有的电-光效应(比如TN效应)皆是对称的。优选地应用那些使电光效应能提供最佳图像对比所对应的光线对图像显示板的入射角度。
照明元11的数目(N)比像素21的数目和微透镜17的数目小很多的数量级(N<<m,n),就足够了。照明元11的列阵9的间隔P1比微透镜列阵的间隔Pm和图像显示板13上像素的间隔Pp(P1>>Pm,Pp)大得多。
图2和3说明来自三个不同照明元的三条光束中每一条如何照射一个微透镜随后又照射到单一个像素上。图2表示位于照明元上的点的象在图像显示板上位于像素有源部分点上。图3表示每个照明元的尺寸作为一方面和像素有源部分的尺寸作为另一方面应该如何彼此适配。在适配时,当然要考虑微透镜列阵的放大倍数M。
图4和5表示来自三个不同的照明元的三个光束如何通过单个微透镜照射三个不同的像素。在图4中,三个不同的照明元中每个照明元的一点成象在三个不同像素的一点上。图5表示照明元尺寸和像素有源部分尺寸之间的关系。
彼此分隔开的照明元的列阵,比如可以由图1所示的光源的列阵来实现。实现此列阵的其他方法示于图6a和6b中。现在,照明系统3包含一个部分被反射器7包围的光源5,以保证从光源5发出的光最大部分地到达该装置。反射器7比如说可以是抛物面反射镜以形成准直光束,也可以是球面反射镜和会聚透镜的组合,使得也能得到准直光束。而且照明系统3配备一透镜系统27,它包含第一透镜平板29和第二透镜平板31,称之为积分系统。在面向光源5的一侧,第一透镜平板29设有透镜列阵33,另一侧优选选择平面状。透镜列阵33中的每一个透镜将光源5的象成在第二个透镜平板31的相关联的透镜35上。第二个透镜平板31面向光源5的一侧优选选择平面状,而另一侧设有透镜列阵35。第一透镜平板29上透镜的行列数,比如说与第二个透镜平板31上的行列数相对应。为了利用不同的透镜33将光源5成象在相应透镜35上,每次使用入射到第一透镜平板29上光束的不同部分。这样,与第二透镜平板31的透镜35数相应的若干照明元11就形成了,各个照明元是彼此分开的。第一透镜平板29和第二个透镜平板31的透镜构形可以彼此不同,如在US-A5,184,248中的示例那样。
在第一透镜平板29中的透镜33应彼此毗邻,这一点很重要,以便从光源或光源组接收尽可能多的光。但是,照明元11应该是彼此分隔开的。而且,在第二个透镜平板31之后可以提供一透镜或棱镜系统(没有示出)。因此,保证所有在图像显示板13平面上的再成象彼此重叠,使得该平面上的照明功率具有所需的由平板29和31上透镜数决定的均匀性和均匀程度。同样的结果,可以通过将第三透镜与第二透镜平板结合来达到。事实上,这意味着第二透镜平板上的每个透镜是尖劈状。而且,积分系统有这样的优点,来自光源的光束的截面(比如说是圆形)可以转换成截面为矩形的光束,其纵横比与图像显示板一致,比如说是4∶3。上述积分系统的详细信息可参照美国专利US-A5,098,184和US-A6,184,248。
图6a仅表示垂直方向的4个透镜33。事实上,第一透镜平板29包含有比如说,8×6个透镜。第二透镜平板31上的每个透镜35可起照明元的作用。但是如果第二透镜平板31包含有8×6个透镜,那么优选选择使透镜35分成组,比如说分成8组,每组6个透镜,因为仅仅需要数量级为10的多个照明元。于是,由6个透镜35组成的8组透镜中每一组起一个照明元的作用。这在图6b中已给予说明,该图只示出了4个照明元。在此图中表示的是照明元11,而不是透镜本身。为了实现将第二透镜平板31的许多透镜35联结在一起以构成一个照明元,可以将一个棱镜与第一透镜平板29的每个透镜33结合在一起。
在上述实施例中,图像显示板是透射式图像显示板。但是换一种方式,图像显示板也可以是反射式的。如果反射式图像显示板的运行是基于调制射到其上的光线的偏振方向,那么前进的被调制光束b1和反射回来的被调制光束b2可以用偏振分离元件彼此分开。然而,如果反射式图像显示板的运行是基于色散效应,那么这两个光束就分不开,这时要被调制的光束b1和受调制的光束b2应该在空间上分开,以便区别。如图7所示,例如这可以通过让被调制光束以θ角入射到微透镜列阵上来实现。θ角的大小决定了空间分离的程度。
为了提高照明系统的效率,次级光源表面的的形状,比如说积分系统中第二个透镜平板上透镜或透镜组表面的形状,可以和图像显示板上像素有源部分的形状适配,且其构形可以与像素的构形适配。例如,如果像素是排成Δ构形,照明元也应该排成Δ构形。多个像素的构形而不是像素本身的形状决定了照明元的构形。此外,为了获得最佳的结果,微透镜的构形也应该和像素的构形适配。在上述例子中,微透镜因此也应该排成Δ构形。它们本身的形状并不重要,重要的是它们彼此联结,所以它们本身的形状一般是自动确定的。这样一来,每个像素被最佳地照明而没有任何光强的损失。
图8和9表示像素、微透镜列阵以及照明元的形状和构形的最佳组合示例。
在图8a中,整个像素是六角形,而且许多像素排成Δ构形,而有源部分是正方形。于是微透镜列阵15的微透镜17也排成Δ构形。尤其是它们具有的形状是由将它们联结在一起的需要决定(图8b)。它们的构形与像素21的构形一致。图8c表示照明元被排成Δ构形,也就是说与像素21的构形一致。照明元11本身是正方形,因此与像素21有源部分23的形状一致。
图9a表示总的像素21是正方形和多个像素是排成正方形构形,尽管像素21的有源部分23是矩形。相关联的微透镜列阵的微透镜因而也排成正方形构形,如图9b所示。微透镜本身的形状无关紧要。照明元11也排成正方形构形,其辐射表面的形状与像素21有源部分23的形状一致。
图10表示一个实施例,其中微透镜的间距Pm是像素间距PP的整数倍。这意味着不是每个像素都被所有的照明元照明。在图10中,每个微透镜17对应两个像素21,所以每个像素将被半数的照明元所照明。这样一来,图像的光强就稍下降,但其优点是微透镜列阵的制造会更容易些,当图像显示板具有比较小的像素时其优点特别明显。照明元A,B,C,D,E和F分别成象在像素a,b,c,d,e,和f上。对于透镜i,它们表示在显示板13上,对于透镜i+1表示在显示板13′上,对于透镜i+2表示在显示板13″上。由此可见,通过透镜i被照明元A所照明的像素,也将通过透镜i+1被照明元C、和通过透镜i+2被照明元E所照射。于是像素21可以被分成两组。一组被照明元A,C和E照射,另一组被照明元B,D和F所照射。在该例中表明,每个像素21因而可接收来自三个照明元的光。图10仅示出对第i个透镜的辐射路径。
事实上,一般是保证微透镜列阵稍大于图像显示板,并且具有比图像显示板上像素更多的微透镜,以便使得图像显示板外侧的像素也以同样方式被照明。
在本发明的图像显示装置的所有实施方案中,像素、微透镜和照明元列阵皆以一维方式表示,当然这些列阵是两维的。

Claims (6)

1.一种图像显示装置,包括一照明系统,一图像显示板,它装备有由n个像素组成的、间距为Pp的列阵,和一个投影透镜系统,图像显示板的照明一侧装备有由m个微透镜组成的间距是Pm的微透镜列阵,其特征在于:照明系统包含有N个照明元,它们被排成间距为P1的列阵,并同时发光,其中照明元的数目至少比微透镜的数目m低2个数量级,并且照明元列阵的间距P1至少比微透镜列阵的间距Pm或像素列阵的间距Pp大2个数量级。
2.按照权利要求1所述的图像显示装置,其特征在于,微透镜列阵和图像显示板被安排成远心式构形。
3.按照权利要求2所述的图像显示装置,其特征在于,对于照明元列阵的间距P1和图像显示板上像素列阵的间距Pp有:
M·P1=Pp
以及对微透镜列阵的间距Pm和图像显示板上像素列阵的间距Pp有:
Pm=x·Pp
其中M是微透镜列阵的放大倍数,x是整数。
4.按照权利要求1,2或3所述的图像显示装置,其特征在于,照明元具有的辐射表面的形状与图像显示板上像素的有源部分的形状一致。
5.按照权利要求1,2或3所述的图像显示装置,其特征在于,照明系统包括一具有第一透镜平板和第二透镜平板的积分系统,其中每一透镜平板包含许多排成列阵的透镜,第二透镜平板上的透镜构成一照明元列阵。
6.按照权利要求1,2或3所述的图像显示装置,其特征在于,照明系统包括一具有第一透镜平板和第二透镜平板的积分系统,其中每一透镜平板包含许多排成列阵的透镜,照明元是由第二透镜平板上的一组毗邻的透镜构成。
CN96192825A 1995-12-01 1996-11-21 图像显示装置 Expired - Fee Related CN1112036C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP95203312 1995-12-01
EP95203312.4 1995-12-01

Publications (2)

Publication Number Publication Date
CN1179867A CN1179867A (zh) 1998-04-22
CN1112036C true CN1112036C (zh) 2003-06-18

Family

ID=8220897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96192825A Expired - Fee Related CN1112036C (zh) 1995-12-01 1996-11-21 图像显示装置

Country Status (7)

Country Link
US (1) US5748374A (zh)
EP (1) EP0807353B1 (zh)
JP (1) JPH11506224A (zh)
KR (1) KR100425642B1 (zh)
CN (1) CN1112036C (zh)
DE (1) DE69613214T2 (zh)
WO (1) WO1997021305A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900981A (en) * 1997-04-15 1999-05-04 Scitex Corporation Ltd. Optical system for illuminating a spatial light modulator
JP3888486B2 (ja) * 1997-07-25 2007-03-07 フジノン株式会社 投射型表示装置
GB9809731D0 (en) * 1998-05-08 1998-07-08 Koninkl Philips Electronics Nv CRT Display systems
FR2826098B1 (fr) * 2001-06-14 2003-12-26 Valeo Vision Dispositif d'eclairage ou de signalisation, notamment pour vehicule, comportant plusieurs sources lumineuses
US20180301484A1 (en) * 2017-04-17 2018-10-18 Semiconductor Components Industries, Llc Image sensors with high dynamic range and autofocusing hexagonal pixels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901077A (nl) * 1989-04-28 1990-11-16 Koninkl Philips Electronics Nv Optische belichtingsstelsel en projectie-apparaat voorzien van een dergelijk stelsel.
JPH07107594B2 (ja) * 1990-02-26 1995-11-15 シャープ株式会社 投影型画像表示装置
US5184248A (en) * 1990-07-16 1993-02-02 U.S. Philips Corporation Image projection apparatus
JP2959202B2 (ja) * 1991-06-14 1999-10-06 オムロン株式会社 液晶パネルを用いた画像表示装置および液晶tvプロジェクタ
JPH06102509A (ja) * 1992-06-17 1994-04-15 Xerox Corp 光カップリング・レンズアレイ付きフルカラー表示装置
US5598281A (en) * 1993-11-19 1997-01-28 Alliedsignal Inc. Backlight assembly for improved illumination employing tapered optical elements

Also Published As

Publication number Publication date
CN1179867A (zh) 1998-04-22
EP0807353A1 (en) 1997-11-19
EP0807353B1 (en) 2001-06-06
DE69613214T2 (de) 2002-02-14
KR100425642B1 (ko) 2004-06-30
DE69613214D1 (de) 2001-07-12
JPH11506224A (ja) 1999-06-02
KR19980701857A (ko) 1998-06-25
US5748374A (en) 1998-05-05
WO1997021305A1 (en) 1997-06-12

Similar Documents

Publication Publication Date Title
CN1133893C (zh) 图像显示装置
CN1086894C (zh) 投影型图像显示装置
CN1052077C (zh) 高效照明装置和包括这种装置的图像投影设备
EP1280360B1 (en) Single-panel color image display apparatus
CN1914520A (zh) 光收集照明系统
CN1204435C (zh) 带光学扫描器的图像显示装置
CN1058790C (zh) 多光源投影仪
CN1683992A (zh) 利用偏振转换的照明系统
CN1132136C (zh) 带两个微透镜列阵的图象显示装置
CN1313957A (zh) 调制用于形成二维图象的入射光束的方法和装置
CN1187248A (zh) 衍射光栅光双重收集系统
CN104937488B (zh) 使用反射器阵列的照明设备
CN1144076C (zh) 反射型投影仪
CN1677165A (zh) 照明装置及投射型视频显示装置
CN1138705A (zh) 投射式彩色显示装置
CN1205807C (zh) 投影电视的亮度提高装置
CN1790099A (zh) 投射型显示装置
CN1112036C (zh) 图像显示装置
WO2020063333A1 (zh) 一种led显示屏光学透镜及其显示屏
JPS6368814A (ja) 液晶表示装置用照明装置
CN1554982A (zh) 用于投影机的多光源照明系统
CN1721981A (zh) 屏幕及投影机
CN1212021C (zh) 液晶彩色显示器件
CN1802587A (zh) 投影仪器
GB2373620A (en) Light source arrangements for displays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Applicant after: Koninklike Philips Electronics N. V.

Applicant before: Philips Electronics N. V.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: N.V. PHILIPS OPTICAL LAMP LTD., CO. TO: ROYAL PHILIPS ELECTRONICS CO., LTD.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee