CN111203260B - 一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用 - Google Patents

一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用 Download PDF

Info

Publication number
CN111203260B
CN111203260B CN202010117477.3A CN202010117477A CN111203260B CN 111203260 B CN111203260 B CN 111203260B CN 202010117477 A CN202010117477 A CN 202010117477A CN 111203260 B CN111203260 B CN 111203260B
Authority
CN
China
Prior art keywords
carbon nitride
palladium
nacl
supported carbon
monatomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010117477.3A
Other languages
English (en)
Other versions
CN111203260A (zh
Inventor
吕海钦
刘桂梅
曾玉彬
孟庆国
苑明哲
王传义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN202010117477.3A priority Critical patent/CN111203260B/zh
Publication of CN111203260A publication Critical patent/CN111203260A/zh
Application granted granted Critical
Publication of CN111203260B publication Critical patent/CN111203260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料制备与环境污染物处理领域,公开了一种单原子钯负载氮化碳催化剂及其制备和在去除一氧化氮的应用。本发明采用光还原法合成的单原子钯负载氮化碳去除一氧化氮。该法采用尿素作为氮化碳的前驱体,然后使氮化碳和钯源充分混合、光照还原,得到单原子钯负载的氮化碳。而且相比于氮化碳,单原子钯负载氮化碳对一氧化氮具有良好的去除效果和稳定性,对一氧化氮具有58%的去除率,材料循环使用120min而性能不衰减。单原子钯负载氮化碳对一氧化氮终产物硝酸根有更高的选择性,氧化更彻底。

Description

一种单原子钯负载氮化碳催化剂及其制备和在去除NO中的 应用
技术领域
本发明属于光催化材料制备与环境污染物处理领域,特别涉及一种单原子钯负载氮化碳催化剂及其制备和在去除一氧化氮的应用。
背景技术
氮氧化物主要来源于化石燃料在工业窑炉和汽车内燃机中的高温燃烧过程。氮氧化物(NOx)作为空气污染物主要指NO和NO2,它们是形成光化学烟雾和酸雨的重要前提物之一,并会对人体皮肤及呼吸系统产生强烈刺激及伤害作用。工业上通常使用选择性催化还原法和选择性非催化还原法去除氮氧化物,但都存在能耗高与运行成本高的缺点。光催化技术可在常温、常压下利用光能去除气相中氮氧化物,具有绿色无污染的优点。
但传统光催化剂存在着可见光吸收弱、比表面积小、载流子复合率高等缺点,导致其光催化效率低,对氮氧化物的去除不彻底。在光催化负载的贵金属钯能极大提升光催化效果,但是全球贵金属钯储量低、价格高,减少负载钯的量、提升钯的助催化效率可以避免贵金属的浪费。在光催化去除氮氧化物的过程中,活性中心钯通常可以降低光生载流子的复合率,使更多的载流子参与催化反应。纳米尺度的金属助催化材料,如纳米Ag、纳米Au、纳米Pt和纳米Pd等,具有纯度高、粒径小、分散性高、化学反应与活性高的优点。纳米金属颗粒通常含有10~100个原子,当继续减小原子数时,其颗粒尺寸将逐渐减小。当纳米的尺度继续降低到单原子时,可以大大降低金属的用量。因而开发一种简单便捷的单原子钯负载型催化剂具有重要意义。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种单原子钯负载氮化碳催化剂。
本发明另一目的在于提供上述单原子钯负载氮化碳催化剂的制备方法。
本发明再一目的在于提供上述单原子钯负载氮化碳催化剂在去除一氧化氮中的应用。
本发明的目的通过下述方案实现:
一种单原子钯负载氮化碳催化剂,其中钯以单原子负载在氮化碳上形成新的复合催化剂,单原子钯的质量百分数为0.3~0.6wt%。
一种上述的单原子钯负载氮化碳催化剂的制备方法,包括以下步骤:
(1)将尿素置于马弗炉中煅烧,得到氮化碳;
(2)将氮化碳与水混合,而后加入PdCl2和NaCl的混合水溶液,分散均匀后再在80℃加热回流8h,冷却至室温后用水离心洗涤,将所得固体分散在水中,搅拌条件下用紫外光照射1h,再用水离心洗涤后干燥即为单原子钯负载氮化碳催化剂。
步骤(1)中所述的煅烧是指以5℃/min的升温速率升至600℃保温2h~4h;尿素煅烧时保温温度为600℃,这一温度可以使氮化碳表面生成碳空位。
步骤(2)中所述的将氮化碳与水混合是指每0.1g的氮化碳对应与50mL~100mL的水混合;步骤(2)中所述的加入PdCl2和NaCl的混合水溶液的用量满足:每0.1g的氮化碳对应加入0.5-1mL的PdCl2和NaCl的混合水溶液;步骤(2)中所述的将所得固体分散在水中是指将每0.1g的氮化碳对应所得固体分散在50mL~100mL的水中。
为了实现均匀负载,优选为将氮化碳研磨成粉末后再与水混合。
步骤(2)中所述的PdCl2和NaCl的混合水溶液中PdCl2和NaCl的质量比为1:5;优选的,步骤(2)中所述的PdCl2和NaCl的混合水溶液中PdCl2的浓度为1mg/mL、NaCl的浓度为5mg/mL,浓度过高会造成单原子钯团聚。
步骤(2)中所述的分散均优选为通过超声进行分散;步骤(2)中所述的加热回流是为了使钯源与氮化碳表面的碳缺陷充分地相互作用;
步骤(2)中所述的紫外光照射优选为用波长为420nm的单色光照射。
步骤(2)中所述的干燥优选为在冷冻干燥器内干燥至少8h。
上述的单原子钯负载氮化碳催化剂在去除一氧化氮中的应用。
所述的单原子钯负载氮化碳催化剂在去除一氧化氮中的应用,具体包括以下步骤:将单原子钯负载氮化碳作为催化剂分散到水中,然后分散在面积至少为26.4cm2的平面载体上,干燥后置于气固相反应器中央(圆柱状,直径为12.8cm,高度为9.7cm)。设置一氧化氮(初始浓度100ppm)气体流量为0.02L/min,空气作为载气的流量为1.7L/min,使与催化剂接触的混合气中一氧化氮的浓度约为2.2ppm,相对湿度为30%~50%,在黑暗条件下使材料达到一氧化氮吸脱附平衡,然后在300W氙灯照射下去除一氧化氮,光照过程中NO和空气一直连续通入反应器。
本发明相对于现有技术,具有如下的优点及有益效果:
本发明提供一种单原子钯负载氮化碳催化剂及其制备和在去除一氧化氮的应用,本发明提供的催化剂制备方法简便易行,不需要复杂的设备和操作方法,通过调节氮化碳表面碳缺陷,在氮化碳表面形成配位不饱和位点,通过缺陷工程调控单原子催化剂在低负载量(负载钯的质量分数0.3~0.6wt%)下具有很高的稳定性和去除一氧化氮的效果。
附图说明
图1为本发明实例1合成的单原子钯负载氮化碳催化剂和纳米钯负载氮化碳催化剂的Pd元素X射线光电子能谱图;
图2为本发明实例1合成的单原子钯负载氮化碳催化剂的像差校正的高角度暗场像高分辨透射电镜图;
图3为本发明实例1合成的氮化碳、纳米钯负载氮化碳催化剂和单原子钯负载氮化碳催化剂在光下去除一氧化氮的性能对比图;
图4为本发明实例1合成的氮化碳在三次循环实验中的稳定性图;
图5为本发明实例1合成的单原子钯负载氮化碳在三次循环实验中的稳定性图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:单原子钯负载氮化碳催化剂的制备
(1)称取20g尿素置于70mL带盖坩埚中,之后将坩埚置于马弗炉炉膛中心,以5℃/min的升温速率升至600℃保温4h。马弗炉自然冷却至室温后,取出样品用玛瑙坩埚研磨成粉末,得到粉末为具有碳空位的石墨相氮化碳。
(2)称取0.1g上述的具有碳空位的石墨相氮化碳,加50mL超纯水分散,加入0.5mL的1mg/mL的PdCl2和5mg/mL的NaCl混合水溶液,超声分散10min,搅拌条件下在80℃加热回流8h;冷却至室温后,用超纯水离心洗涤3~5次,将得到的固体再分散在50mL的超纯水中,之后用波长为420nm的单色光照射1h;之后用超纯水离心洗涤3~5次,得到的固体在冷冻干燥器内干燥至少8h。取出干燥后的固体用玛瑙坩埚研磨成粉末,得到的粉末为单原子钯/石墨相氮化碳。此时单原子钯的负载质量百分数为0.3%。
(3)称取0.1g上述的具有碳空位的石墨相氮化碳,加50mL超纯水分散,加入2.0mL的1mg/mL的PdCl2和5mg/mL的NaCl混合水溶液,超声分散10min,搅拌条件下在80℃加热回流8h;冷却至室温后,用超纯水离心洗涤3~5次,将得到的固体再分散在50mL的超纯水中,之后用波长为420nm的单色光照射1h;之后用超纯水离心洗涤3~5次,得到的固体在冷冻干燥器内干燥至少8h。取出干燥后的固体用玛瑙坩埚研磨成粉末,得到的粉末为纳米钯/石墨相氮化碳。此时纳米钯的负载质量百分数为1.2%。
根据实施例1中合成的单原子钯负载氮化碳,探究该催化剂的元素组成,其在X射线光电子能谱图如图1所示,由于3d轨道电子以双峰出现,Pd元素的一种价态会出现两个峰,对其进行分峰拟合后,从图1中可以看到单原子Pd可以分成四个峰,根据结合能的大小,可以知道钯以Pd+(336.8,342.0eV)和Pd2+(338.0,343.2eV)存在,没有Pd0,说明Pd在氮化碳上不是以纳米颗粒或团簇的形式存在,而是与氮化碳载体上的C、N元素有化学作用;而纳米Pd除了以Pd+和Pd2+形式存在,还出现了Pd0(336,341eV),说明浓度增大后,单原子Pd将会团聚形成纳米钯;
采用单原子钯负载氮化碳,探究金属钯在氮化碳载体上的形态,步骤(2)制备的单原子钯/石墨相氮化碳像差校正的高角度暗场像高分辨透射电镜图如图2所示;从图2中可以看到金属钯在氮化碳表面以单原子的形式存在,无团簇、纳米颗粒存在,均匀分布在催化剂表面;
将实施例1制备的氮化碳、单原子钯负载氮化碳以及纳米钯负载氮化碳催化剂分别作为催化剂测试其催化性能,具体步骤如下:分别称取15mg催化剂并加适量水分散在面积至少为26.4cm2的平面载体上,干燥后置于气固相反应器中央(圆柱状,直径为12.8cm,高度为9.7cm)。设置一氧化氮(初始浓度100ppm)气体流量为0.02L/min,空气作为载气的流量为1.7L/min,使与催化剂接触的混合气中一氧化氮的浓度约为2.2ppm,相对湿度为30%~50%,在黑暗条件下使材料达到一氧化氮吸脱附平衡,即NO浓度不变后,然后在300W氙灯照射下去除一氧化氮。在反应过程中,NO和空气一直连续通入反应器。
采用实施例1合成的氮化碳、单原子钯负载氮化碳以及纳米钯负载氮化碳催化剂,探究在光照条件下催化剂对一氧化氮的去除效果,本发明实例1合成的氮化碳、单原子钯负载氮化碳催化剂以及纳米钯负载氮化碳催化剂在光下去除一氧化氮的性能对比图如图3所示,从图3中可以看出空白条件下,即没有催化剂、其他条件一致时,一氧化氮基本没有被去除。当加入催化剂后,在黑暗条件下,催化剂对一氧化氮也无去除效果;开灯后,一氧化氮浓度在5min内迅速下降,10min后基本达到平衡;对比三种催化剂,单原子钯负载氮化碳对一氧化氮的去除率为58%,纳米钯负载氮化碳对一氧化氮的去除率为47%(Pd负载质量百分数为1.2%),而氮化碳仅有38%,对比纳米钯和单原子钯的催化性能,虽然纳米钯也可提升氮化碳的光催化去除NO的性能,但是单原子钯的优势更明显。因为单原子钯的负载量仅为纳米钯的四分之一,但是性能却比纳米钯的高。
采用氮化碳,探究该催化剂在三次循环实验中对一氧化氮的去除效果,本发明实例1合成的氮化碳在三次循环实验中的稳定性如图4所示,从图4中可以看出氮化碳在三次循环后出现性能下降的现象。循环三次后,其一氧化氮去除率从38%下降到35%;
采用合成的单原子钯负载氮化碳,探究该催化剂在三次循环实验中对一氧化氮的去除效果,本发明实例1合成的单原子钯负载氮化碳在三次循环实验中的稳定性如图5所示;从图中可以看出单原子钯负载氮化碳具有优于氮化碳的稳定性,该催化剂在使用三次后仍能保持58%的一氧化氮去除率。
采用合成的氮化碳和单原子钯负载氮化碳,探究在光照条件下催化剂去除一氧化氮的得产物分布和选择性,得表1。从表1中可以看到对光催化去除一氧化氮,检测到的去除产物有三种,分别是二氧化氮(NO2)、亚硝酸根(NO2 -)和硝酸根(NO3 -)。从选择性来看,三种产物的选择性遵循:NO3 ->NO2>NO2 -。对单原子钯负载氮化碳,其对氧化最终产物NO3 -的选择性要高于氮化碳,对中间产物NO2 -和NO2的选择性较低,说明单原子钯负载氮化碳去除一氧化氮更彻底。
表1氮化碳和单原子钯负载氮化碳在光照条件去除一氧化氮的产物分布和选择性
Figure BDA0002391936080000061
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种单原子钯负载氮化碳催化剂,其特征在于钯以单原子负载在氮化碳上,单原子钯的质量百分数为0.3~0.6wt%;
所述的单原子钯负载氮化碳催化剂的制备方法包括以下步骤:
(1)将尿素置于马弗炉中煅烧,得到氮化碳;
(2)将氮化碳与水混合,而后加入PdCl2和NaCl的混合水溶液,分散均匀后再在80℃加热回流8h,冷却至室温后用水离心洗涤,将所得固体分散在水中,搅拌条件下用紫外光照射1h,再用水离心洗涤后干燥即为单原子钯负载氮化碳催化剂。
2.根据权利要求1所述的单原子钯负载氮化碳催化剂,其特征在于:
步骤(1)中所述的煅烧是指以5℃/min的升温速率升至600℃保温2h~4h。
3.根据权利要求1所述的单原子钯负载氮化碳催化剂,其特征在于:
步骤(2)中所述的将氮化碳与水混合是指每0.1g的氮化碳对应与50mL~100mL的水混合;步骤(2)中所述的加入PdCl2和NaCl的混合水溶液的用量满足:每0.1g的氮化碳对应加入0.5-1mL的PdCl2和NaCl的混合水溶液;步骤(2)中所述的将所得固体分散在水中是指将每0.1g的氮化碳对应所得的固体分散在50mL~100mL的水中。
4.根据权利要求1所述的单原子钯负载氮化碳催化剂,其特征在于:
步骤(2)中所述的PdCl2和NaCl的混合水溶液中PdCl2和NaCl的质量比为1:5;
步骤(2)中所述的PdCl2和NaCl的混合水溶液中PdCl2的浓度为1mg/mL、NaCl的浓度为5mg/mL。
5.根据权利要求1所述的单原子钯负载氮化碳催化剂,其特征在于:
步骤(2)中所述的紫外光照射指用波长为420nm的单色光照射。
6.根据权利要求1所述的单原子钯负载氮化碳催化剂,其特征在于:
步骤(2)中所述的干燥指在冷冻干燥器内干燥至少8h。
7.根据权利要求1所述的单原子钯负载氮化碳催化剂在去除一氧化氮中的应用。
CN202010117477.3A 2020-02-25 2020-02-25 一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用 Active CN111203260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010117477.3A CN111203260B (zh) 2020-02-25 2020-02-25 一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010117477.3A CN111203260B (zh) 2020-02-25 2020-02-25 一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用

Publications (2)

Publication Number Publication Date
CN111203260A CN111203260A (zh) 2020-05-29
CN111203260B true CN111203260B (zh) 2022-10-25

Family

ID=70783648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010117477.3A Active CN111203260B (zh) 2020-02-25 2020-02-25 一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用

Country Status (1)

Country Link
CN (1) CN111203260B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958136B (zh) * 2021-03-04 2023-02-07 中国科学院上海高等研究院 改性氮碳材料负载原子级非贵金属的催化剂、制备及应用
CN113398969A (zh) * 2021-06-02 2021-09-17 南京理工大学 一种单原子催化剂合成方法及其催化剂
CN114713257A (zh) * 2022-03-18 2022-07-08 北京工业大学 一种共轭聚合物负载高浓度单原子金属位点的多相催化剂及其制备方法
CN114904560A (zh) * 2022-06-21 2022-08-16 武汉大学 一种可光催化降解染料的铋负载碳缺陷氮化碳的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049085A1 (ja) * 2009-10-20 2011-04-28 独立行政法人産業技術総合研究所 窒化炭素を含む光触媒及びその製造方法並びに該光触媒を用いた空気浄化方法
JP2011195412A (ja) * 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology 金属を内包する窒化炭素とその製造方法
CN106944119A (zh) * 2017-03-22 2017-07-14 北京师范大学 一种氮化碳负载单原子金属催化材料的制备方法
CN109317178A (zh) * 2018-10-18 2019-02-12 福州大学 一种用于非均相溶液加氢制备氢化丁苯橡胶的负载型催化剂及其制备方法
CN110127636A (zh) * 2018-02-02 2019-08-16 西安交通大学 石墨相氮化碳及其制备方法、产氢光催化剂及其应用
CN110127635A (zh) * 2018-02-02 2019-08-16 西安交通大学 石墨相氮化碳及其制备方法、产氢光催化剂及其应用
CN110327921A (zh) * 2019-07-18 2019-10-15 武汉理工大学 负载型纳米Pd/MgO催化剂及采用该催化剂制备联苯类化合物的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049085A1 (ja) * 2009-10-20 2011-04-28 独立行政法人産業技術総合研究所 窒化炭素を含む光触媒及びその製造方法並びに該光触媒を用いた空気浄化方法
JP2011195412A (ja) * 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology 金属を内包する窒化炭素とその製造方法
CN106944119A (zh) * 2017-03-22 2017-07-14 北京师范大学 一种氮化碳负载单原子金属催化材料的制备方法
CN110127636A (zh) * 2018-02-02 2019-08-16 西安交通大学 石墨相氮化碳及其制备方法、产氢光催化剂及其应用
CN110127635A (zh) * 2018-02-02 2019-08-16 西安交通大学 石墨相氮化碳及其制备方法、产氢光催化剂及其应用
CN109317178A (zh) * 2018-10-18 2019-02-12 福州大学 一种用于非均相溶液加氢制备氢化丁苯橡胶的负载型催化剂及其制备方法
CN110327921A (zh) * 2019-07-18 2019-10-15 武汉理工大学 负载型纳米Pd/MgO催化剂及采用该催化剂制备联苯类化合物的方法

Also Published As

Publication number Publication date
CN111203260A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN111203260B (zh) 一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用
Wu et al. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2
Xu et al. Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor
Liu et al. Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts
Wang et al. Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process
Dasireddy et al. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT)
Elimian et al. Construction of Pt-mTiO2/USY multifunctional catalyst enriched with oxygen vacancies for the enhanced light-driven photothermocatalytic degradation of toluene
Chin et al. Preparation of TiO2 ultrafine nanopowder with large surface area and its photocatalytic activity for gaseous nitrogen oxides
CN109453766B (zh) 一种原子级分散的Ag负载TiO2介孔纳米带光催化剂的制备方法
Song et al. Influences of pH value in deposition-precipitation synthesis process on Pt-doped TiO2 catalysts for photocatalytic oxidation of NO
CN107159202B (zh) 一种锰掺杂的钯负载型催化剂及其制备方法与应用
Chen et al. Gas-phase total oxidation of nitric oxide using hydrogen peroxide vapor over Pt/TiO2
CN107456965A (zh) 一种以氧化铈为载体的负载型钯催化剂及其制备方法
DONG et al. Preparation of spherical activated carbon-supported and Er3+: YAlO3-doped TiO2 photocatalyst for methyl orange degradation under visible light
Silva et al. Catalytic and photocatalytic nitrate reduction over Pd-Cu loaded over hybrid materials of multi-walled carbon nanotubes and TiO2
Fiorenza et al. Solar photocatalytic H2 production over CeO2-based catalysts: Influence of chemical and structural modifications
Zhang et al. High dispersed Pd supported on CeO2 (1 0 0) for CO oxidation at low temperature
Xu et al. Biphasic Ag block assisting electron and energy transfer to facilitate photothermal catalytic oxidation of HCHO over manganese oxide
Zhan et al. Visible light induced molecularly imprinted Dawson-type heteropoly acid cobalt (II) salt modified TiO2 composites: Enhanced photocatalytic activity for the removal of ethylparaben
Zhang et al. Insights into the reaction mechanism of toluene oxidation by isotope dynamic experiment and the kinetics over MCeZr/TiO2 (M= Cu, Mn, Ni, Co and Fe) catalysts
CN111482172B (zh) CuO/缺陷二氧化钛的复合纳米材料及其应用
Zhang et al. Fe-doped MnO2 as an efficient catalyst for low temperature propane oxidation
Yue et al. Highly photocatalytic active thiomolybdate [Mo3S13] 2− clusters/Bi2WO6 nanocomposites
CN113198465A (zh) 一种钌-铂合金催化剂及其应用
Arul et al. Visible light proven Si doped TiO2 nanocatalyst for the photodegradation of Organic dye

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant