CN111193035A - 一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料关于氧还原电催化剂的制备方法 - Google Patents

一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料关于氧还原电催化剂的制备方法 Download PDF

Info

Publication number
CN111193035A
CN111193035A CN201911256286.9A CN201911256286A CN111193035A CN 111193035 A CN111193035 A CN 111193035A CN 201911256286 A CN201911256286 A CN 201911256286A CN 111193035 A CN111193035 A CN 111193035A
Authority
CN
China
Prior art keywords
strong
iron phthalocyanine
composite material
suspension
defective graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911256286.9A
Other languages
English (en)
Other versions
CN111193035B (zh
Inventor
杨东江
赵小亮
于学政
邹译慧
孙瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201911256286.9A priority Critical patent/CN111193035B/zh
Publication of CN111193035A publication Critical patent/CN111193035A/zh
Application granted granted Critical
Publication of CN111193035B publication Critical patent/CN111193035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种强π‑π共轭的缺陷石墨烯和酞菁铁复合材料关于氧还原电催化剂的制备方法,属于电催化领域。该强π‑π共复合材料采用缺陷石墨烯和酞菁铁为原料,成功地制备出了具有优异氧还原活性的电催化剂。该强π‑π共轭复合材料具有超薄纳米结构以及一定的缺陷结构,酞菁铁纳米片在缺陷石墨烯表面上均匀分布,用作氧还原电催化剂时表现出优异的催化活性(在0.1M KOH电解液中的半波电位为0.89V vs.RHE)。目前应用于电催化氧还原(ORR)的催化剂为传统的贵金属铂(Pt)及铂基复合物,但由于它们价格昂贵、储量低、稳定性以及耐甲醇性能较差等问题,使得其作为ORR催化剂的大规模应用受到限制。因此,开发一种制备简单,且具有高催化活性和稳定性的ORR催化剂具有重要的意义。本发明中,强π‑π共轭复合材料的制备过程简单,在碱性条件下ORR催化性能优异,是非常有前景的电催化材料。

Description

一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料关于氧还原 电催化剂的制备方法
技术领域
本发明属于电催化领域,具体涉及一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料关于氧还原电催化剂的制备方法。
背景技术
燃料电池体积小、环境友好、理论比能量高,因此被认为是一种高效的循环能源。然而,它的阴极ORR反应动力学缓慢限制了它的应用,通常,贵金属铂基催化剂用于加快电池阴极 ORR速度。但是铂基催化剂价格昂贵、储量低、以及稳定性和耐甲醇性能较差等缺点限制了燃料电池的大规模应用,因此需要开发一种经济、高效的非贵金属ORR催化剂。
近年来,各种非贵金属ORR催化剂,包括过渡金属硫化物,杂原子掺杂的碳纳米材料,氮化碳,导电聚合物衍生材料和过渡金属-N4螯合大环等被广泛研究。其中,过渡金属酞菁化合物作为一种典型的M-N4大环化合物,因其对ORR的电催化活性而引起了广泛关注。自1964 年酞菁钴被报道以来,其他过渡金属酞菁化合物陆续被合成,它们的ORR催化活性排序如下:酞菁铁>酞菁钴>酞菁镍>酞菁铜>酞菁锰。虽然这些过渡金属酞菁化合物中,酞菁铁的ORR性能最好。但是,由于酞菁铁极易聚集使得大量活性位点被遮蔽,此外酞菁铁导电性差也不利于ORR过程中的电子转移,因此纯酞菁铁的ORR活性远远低于铂基催化剂。因此,如何提高酞菁铁的ORR催化活性成为研究重点。为了解决上述问题,一种有效的方法是通过高温热解形成Fe-N-C活性位点,且高温下形成的石墨碳有利于电子转移,该方法的确能大大提高酞菁铁的ORR催化性能。但是热解过程不容易控制材料的结构。另外一种有效的方法是设计酞菁铁锚定在碳纳米材料上形成复合材料。值得注意的是,碳纳米材料作为载体,对复合材料的性能起着至关重要的作用。根据报道,随着载体ORR活性的提高,复合材料的ORR性能也将提高。石墨烯作为经典的碳纳米材料,具有优异的导电性,另外一旦引入缺陷,所得的缺陷石墨烯的ORR性能将得到提高,因为这些缺陷会导致部分原子的电子环境和表面疏水性改变。这样,酞菁铁和缺陷石墨烯可以通过芳香环之间的相互作用,即强π-π共轭形成复合材料,酞菁铁纳米片在缺陷石墨烯上的分布使酞菁铁的分散性增强,并反过来减弱了复合材料的π- π堆积作用,使复合材料暴露出更多活性位点。这种特殊的空间排布,增强了复合材料的稳定性和导电性,保证了电子的快速传输。此外,复合材料的高比表面积将提供足够的电极- 电解质接触界面,以使O2分子和Fe-N活性位点在ORR过程中充分作用。
为此,本专利提供了一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料氧还原电催化剂的制备方法,选择具有ORR催化活性的酞菁铁和缺陷石墨烯,采用在无水乙醇中单独剥离,然后混合超声、搅拌的方法形成纳米尺寸上强π-π共轭的复合材料,并且在碱性条件下表现出很好的ORR催化活性。
发明内容
本发明利用缺陷石墨烯和酞菁铁作为原料,制备了可用作电催化氧还原的强π-π共轭纳米材料。
本发明制备过程简单,不需要昂贵设备,所得产品性能好,在将来电催化氧还原的大规模应用中具有光明的前景。
一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料电催化氧还原催化剂的制备过程包括以下步骤:
1)制备出15mL质量浓度0.4mg·mL-1的缺陷石墨烯悬浮液;
2)制备出15mL质量浓度0.8mg·mL-1的酞菁铁悬浮液;
3)在超声条件下,缺陷石墨烯悬浮液逐滴加入到酞菁铁悬浮液中;
4)混合悬浮液超声2小时,然后慢速搅拌2小时,60℃烘干后得到缺陷石墨烯和酞菁铁的强π-π共轭复合材料;
5)利用电化学工作站和三电极体系测试上述产物在0.1M KOH电解液中的ORR催化活性。
本发明具有以下优点:
本发明使用的原料主要是石墨烯和酞菁铁,原料来源广泛、环保绿色、安全性高。
本发明方法制备的缺陷石墨烯和酞菁铁的强π-π共轭复合材料,具有很高的ORR催化活性、稳定性和甲醇耐受性。
本发明方法制备的缺陷石墨烯和酞菁铁的强π-π共轭复合材料可大量合成,不需要昂贵设备,可广泛用于电催化领域中。
附图说明
图1是具体实施例1得到的缺陷石墨烯和酞菁铁的强π-π共轭复合材料的TEM图,从中可以看出酞菁铁纳米片在缺陷石墨烯上的均匀分布;
图2是具体实施例1得到的缺陷石墨烯和酞菁铁的强π-π共轭复合材料的XPS图,显示表面材料中酞菁铁的存在。
图3是具体实施例1得到的缺陷石墨烯和酞菁铁的强π-π共轭复合材料在碱性条件下的ORR催化活性,在0.1M KOH电解液中的半波电位为0.89V vs.RHE。
图4是具体实施例1得到的缺陷石墨烯和酞菁铁的强π-π共轭复合材料在碱性电解液中的稳定性,在0.1M KOH电解液中工作15小时后,电流保持为96%。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例1
1)制备出15mL质量浓度0.40mg·mL-1的缺陷石墨烯悬浮液;
2)制备出15mL质量浓度0.80mg·mL-1的酞菁铁悬浮液;
3)在超声条件下,缺陷石墨烯悬浮液逐滴加入到酞菁铁悬浮液中;
4)混合悬浮液超声2小时,然后慢速搅拌2小时,60℃烘干后得到缺陷石墨烯和酞菁铁的强π-π共轭复合材料
5)用电化学工作站和三电极体系测试上述产物在0.1M KOH电解液中的ORR催化活性。
实施例2
1)制备出15mL质量浓度0.40mg·mL-1的缺陷石墨烯悬浮液;
2)制备出15mL质量浓度0.12mg·mL-1的酞菁铁悬浮液;
3)在超声条件下,缺陷石墨烯悬浮液逐滴加入到酞菁铁悬浮液中;
4)混合悬浮液超声2小时,然后慢速搅拌2小时,60℃烘干后得到缺陷石墨烯和酞菁铁的强π-π共轭复合材料;
5)用电化学工作站和三电极体系测试上述产物在0.1M KOH电解液中的ORR催化活性。
实施例3
1)制备出15mL质量浓度0.40mg·mL-1的缺陷石墨烯悬浮液;
2)制备出15mL质量浓度0.80mg·mL-1的酞菁铁悬浮液;
3)在超声条件下,缺陷石墨烯悬浮液逐滴加入到酞菁铁悬浮液中;
4)混合悬浮液超声4小时,然后慢速搅拌4小时,60℃烘干后得到缺陷石墨烯和酞菁铁的强π-π共轭复合材料;
5)用电化学工作站和三电极体系测试上述产物在0.1M KOH电解液中的ORR催化活性。

Claims (4)

1.一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料的制备方法,其特征在于所述方法包括以下步骤:
1)把一定质量的单层缺陷石墨烯超声分散在无水乙醇中,得到均匀分散的单层缺陷石墨烯悬浮液。
2)把两倍缺陷石墨烯质量的酞菁铁超声分散在无水乙醇中,得到均匀分散的酞菁铁超薄纳米片悬浮液;
3)在超声条件下,缺陷石墨烯悬浮液逐滴加入到酞菁铁悬浮液中;
4)混合悬浮液超声2小时,然后慢速搅拌2小时,60℃烘干后得到缺陷石墨烯和酞菁铁的强π-π共轭复合材料,利用电化学工作站和三电极体系测试上述强π-π共轭复合材料的电化学性能。
2.根据权利要求书1所述的制备方法,其特征在于,步骤1)中所述碳纳米材料载体为缺陷单层石墨烯,缺陷石墨烯的悬浮液质量浓度0.4mg·mL-1
3.根据权利要求书1所述的制备方法,其特征在于,步骤2)中缺陷石墨烯与酞菁铁的质量比为1∶2,酞菁铁悬浮液质量浓度0.8mg·mL-1
4.根据权利要求书1所述的制备方法,其特征在于,步骤4)中所述的缺陷石墨烯和酞菁铁通过超声和搅拌促使两者在纳米尺寸上发生强π-π共轭,超声和搅拌时间均为2小时。
CN201911256286.9A 2019-12-03 2019-12-03 一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料的制备方法 Active CN111193035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911256286.9A CN111193035B (zh) 2019-12-03 2019-12-03 一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911256286.9A CN111193035B (zh) 2019-12-03 2019-12-03 一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111193035A true CN111193035A (zh) 2020-05-22
CN111193035B CN111193035B (zh) 2021-06-11

Family

ID=70709858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911256286.9A Active CN111193035B (zh) 2019-12-03 2019-12-03 一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111193035B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736258A (zh) * 2020-12-25 2021-04-30 青岛大学 一种基于分子内或分子间非对称有机分子电催化剂的制备方法及其在锌空电池中的应用
CN114073988A (zh) * 2020-08-21 2022-02-22 南京理工大学 缺陷调控的石墨烯/Ag-TCNQ量子点复合材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091959A (zh) * 2014-07-18 2014-10-08 长春理工大学 一种硝基亚铁酞菁/石墨烯复合材料及其制备方法
CN107123817A (zh) * 2017-04-11 2017-09-01 浙江工业大学 一种三金属合金负载型石墨烯纳米孔材料及其制备方法和应用
CN108615898A (zh) * 2018-04-15 2018-10-02 广西师范大学 一种直接甲醇燃料电池Fe-S-N共掺杂石墨烯载Pt催化剂及其制备方法
CN109817995A (zh) * 2019-01-30 2019-05-28 西安工业大学 锌空气电池阴极催化剂的固定化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091959A (zh) * 2014-07-18 2014-10-08 长春理工大学 一种硝基亚铁酞菁/石墨烯复合材料及其制备方法
CN107123817A (zh) * 2017-04-11 2017-09-01 浙江工业大学 一种三金属合金负载型石墨烯纳米孔材料及其制备方法和应用
CN108615898A (zh) * 2018-04-15 2018-10-02 广西师范大学 一种直接甲醇燃料电池Fe-S-N共掺杂石墨烯载Pt催化剂及其制备方法
CN109817995A (zh) * 2019-01-30 2019-05-28 西安工业大学 锌空气电池阴极催化剂的固定化方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CORNELIA MARINESCU等: "Cobalt phthalocyanine-supported reduced graphene oxide: A highly efficient catalyst for heterogeneous activation of peroxymonosulfate for rhodamine B and pentachlorophenol degradation", 《CHEMICAL ENGINEERING JOURNAL》 *
GLORIA I. CARDENAS-JIRON等: "Electrical Characteristics of Cobalt Phthalocyanine Complexes Adsorbed on Graphene", 《J. PHYS. CHEM. C》 *
WENPING LIU等: "Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction", 《J. MATER. CHEM. A》 *
XIN WANG等: "Grafting Cobalt Diselenide on Defective Graphene for Enhanced Oxygen Evolution Reaction", 《ISCIENCE》 *
YI JIA等: "Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions", 《ADVANCED MATERIALS》 *
ZHE-TING LIU等: "A comparison of physically and chemically defective grapheme nanosheets as catalyst supports for cubic Pd nanoparticles in an alkaline oxygen reduction reaction", 《ELECTROCHIMICA ACTA》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073988A (zh) * 2020-08-21 2022-02-22 南京理工大学 缺陷调控的石墨烯/Ag-TCNQ量子点复合材料
CN114073988B (zh) * 2020-08-21 2023-11-10 南京理工大学 缺陷调控的石墨烯/Ag-TCNQ量子点复合材料
CN112736258A (zh) * 2020-12-25 2021-04-30 青岛大学 一种基于分子内或分子间非对称有机分子电催化剂的制备方法及其在锌空电池中的应用
CN112736258B (zh) * 2020-12-25 2022-05-24 青岛大学 一种基于分子内或分子间非对称有机分子电催化剂的制备方法及其在锌空电池中的应用

Also Published As

Publication number Publication date
CN111193035B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
Zhang et al. Multi-dimensional Pt/Ni (OH) 2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance
Arukula et al. Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: An efficient anode catalyst for direct methanol fuel cells
CN102350372B (zh) 一种聚苯胺/石墨烯可控负载铂纳米粒子的制备方法
Wang et al. Co3S4/NCNTs: a catalyst for oxygen evolution reaction
Wang et al. Surface-oxidized Fe–Co–Ni alloys anchored to N-doped carbon nanotubes as efficient catalysts for oxygen reduction reaction
Liu et al. Low loading platinum nanoparticles on reduced graphene oxide-supported tungsten carbide crystallites as a highly active electrocatalyst for methanol oxidation
CN105854918A (zh) 纳米级钴基粒子与氮掺杂碳的复合材料、合成方法及用途
Zhang et al. Electrocatalytic oxidation of formic acid on functional MWCNTs supported nanostructured Pd–Au catalyst
Qin et al. MXene supported rhodium nanocrystals for efficient electrocatalysts towards methanol oxidation
Yue et al. MnO2 nanorod catalysts for magnesium–air fuel cells: influence of different supports
CN111193035B (zh) 一种强π-π共轭的缺陷石墨烯和酞菁铁复合材料的制备方法
Chen et al. Interface engineering for boosting electrocatalytic performance of CoP-Co2P polymorphs for all-pH hydrogen evolution reaction and alkaline overall water splitting
Yang et al. Hydrogen production with polyaniline/multi‐walled carbon nanotube cathode catalysts in microbial electrolysis cells
CN111359613B (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
Akula et al. Morphological influence of graphitic carbon nanofibers by N–F dual-doping on Pt electrocatalytic activity and stability for oxygen reduction reaction in polymer electrolyte membrane fuel cells
CN108649241B (zh) 氮掺杂石墨烯负载CoCx/FeCo@C的燃料电池氧还原催化剂及其制备方法
Wang et al. One-step preparation of polyaniline-modified three-dimensional multilayer graphene supported PtFeOx for methanol oxidation
Li et al. Coupling palladium nanocrystals over D‑phenylalanine-functionalized carbon nanotubes as an advanced electrocatalyst for hydrogen evolution and ethanol oxidation
Zhang et al. Gram-scale synthesis and unraveling the activity origin of atomically dispersed Co-N4O sites toward superior electrocatalytic oxygen reduction
Wang et al. Graphene carbon black as catalyst support: The influences of iron phthalocyanine loading and carbon black additive amount on the power generation performance of direct glucose fuel cell
Abrari et al. Multi-walled carbon nanotube-supported Ni@ Pd core–shell electrocatalyst for direct formate fuel cells
Huang et al. N+ irradiation regulates surface defects and doping towards efficient hydrogen evolution reaction on Sb2Te3
Zhang et al. Heterointerface engineering of rhombic Rh nanosheets confined on MXene for efficient methanol oxidation
CN112768706B (zh) 一种核壳催化剂及其制备方法与在可充电锌空电池中的应用
He et al. Rhodium nanoparticles anchored on 3D metal organic framework-graphene hybrid architectures for high-performance electrocatalysts toward methanol oxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant