CN111180592B - 一种全波长360°可探测有机薄膜式光电探测器的制造方法 - Google Patents

一种全波长360°可探测有机薄膜式光电探测器的制造方法 Download PDF

Info

Publication number
CN111180592B
CN111180592B CN202010015835.XA CN202010015835A CN111180592B CN 111180592 B CN111180592 B CN 111180592B CN 202010015835 A CN202010015835 A CN 202010015835A CN 111180592 B CN111180592 B CN 111180592B
Authority
CN
China
Prior art keywords
wavelength
full
layer
electrode
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010015835.XA
Other languages
English (en)
Other versions
CN111180592A (zh
Inventor
秦瑞平
郭得恩
胡梁浩
杨纪恩
宋健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202010015835.XA priority Critical patent/CN111180592B/zh
Publication of CN111180592A publication Critical patent/CN111180592A/zh
Application granted granted Critical
Publication of CN111180592B publication Critical patent/CN111180592B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种全波长360°可探测有机薄膜式光电探测器的制造方法,具体过程为:在预先附有导电铟锡氧化物透明电极的导电基底上依次涂布负电荷传输层、涂布核心光敏层、蒸镀正电荷萃取层和蒸镀银薄膜电极,再去除负极遮挡层,连接电极引线,封装即得全波长360°可探测有机薄膜式光电探测器。本发明制造的光电探测器光电探测相应的波长范围为300‑1200nm,最大光探测性在405nm处为1.6 E12琼斯。响应时间由关状态到开状态为2‑5毫秒;由开状态到关状态为3‑7毫秒。线性范围:单色光光源功率0.1毫瓦‑150毫瓦每平方厘米。

Description

一种全波长360°可探测有机薄膜式光电探测器的制造方法
技术领域
本发明属于光电探测器的制造技术领域,具体涉及一种全波长360°可探测有机薄膜式光电探测器的制造方法。
背景技术
光电探测器(光电传感器)是光电信号转换器件的简称,它是利用光信号转换为电信号再由电流检测器检测出来的一种传感器,在军事侦察如战斗机外置光电球,安防系统中常见的光电开关烟雾报警器,工业中经常用它来做计数器,在电梯自动闭合响应等方面有广泛应用。最常见的如硅、砷镓铟等半导体光电探测器。
随着自动化控制技术不断进步,光电传感器应用领域越来越广。低成本、高灵敏及高可靠性,这意味着每瓦光功率将会有100毫安以上的信号电流输出,可以高重复性生产的薄膜式光电探测器具有独特的优势。本发明的创新在于开发了一种全波长响应(300-1600nm)、360°可探测信号源的光电探测器的制作方法,在透明的铟锡氧化物导电基底上可以任意面积制造这种光电器件,光电器件在固定不动的位置对360°无死角入射光全波长具有响应。而目前通常的光电探测器只在一个较窄的波段具有探测性,同时只能正面180°探测入射光,因此存在一定的使用局限性。
发明内容
为解决现有技术中存在的不足,本发明提供了一种全波长360°可探测有机薄膜式光电探测器的制造方法,该方法将活性有机材料配制成有机溶液均匀涂布在适当的导电基底上,再利用不同的基底在真空条件下蒸镀透明的金属电极最终得到有机薄膜式光电探测器。
本发明为解决上述技术问题采用如下技术方案,一种全波长360°可探测有机薄膜式光电探测器的制造方法,其特征在于具体过程为:在预先附有导电铟锡氧化物透明电极的导电基底上依次涂布负电荷传输层、涂布核心光敏层、蒸镀正电荷萃取层和蒸镀银薄膜电极,再去除负极遮挡层,连接电极引线,封装即得全波长360°可探测有机薄膜式光电探测器,其中核心光敏层所用活性有机材料的结构式如下所示:
Figure DEST_PATH_IMAGE002
进一步的,所述导电基底为铟锡氧化物ITO玻璃、氟锡氧化物FTO玻璃或铟锡氧化物ITO涤纶PET薄膜。
进一步的,所述全波长360°可探测有机薄膜式光电探测器的制造方法,其具体步骤为:
步骤S1:在超净室内在一块2.5cm×12cm的预先附有导电铟锡氧化物透明电极的1mm厚的玻璃上涂布氧化锌纳米溶胶溶液,于120℃干燥20分钟形成负电荷传输层,再涂布活性有机材料的混合有机溶液,于120℃干燥10分钟形成核心光敏层;
步骤S2:在手套箱内在步骤S1制好的核心光敏层上真空蒸镀正电荷萃取层,该正电荷萃取层的活性物质为钼的氧化物;
步骤S3:在手套箱内在步骤S2制好的正电荷萃取层上真空蒸镀纯银薄膜电极;
步骤S4:在手套箱内将步骤S3制好的电池连接负电极并去掉负极遮挡层连接电极;
步骤S5:将步骤S4制好的每一片光电开关在手套箱内水氧含量低于0.1ppm的条件下由环氧树脂热封机封装即得全波长360°可探测有机薄膜式光电探测器。
进一步的,所述负电荷传输层的厚度为30-50nm,核心光敏层的厚度为1-100nm,正电荷萃取层的厚度为8-10nm,银薄膜电极的厚度为20nm。
进一步的,所述核心光敏层所用活性有机材料的合成路线为:
Figure DEST_PATH_IMAGE004
本发明与现有技术相比具有以下有益效果:本发明能够制造面积和形状任意设定的全波长360°光响应的光电探测器,该光电探测器结构精巧且简单实用,主要适用于自动控制领域做光敏探测应用,也适用于军事领域目标探测。本发明制造的光电探测器光电探测相应的波长范围为300-1200nm,最大光探测性在405nm处为1.6 E12琼斯。响应时间由关状态到开状态为2-5毫秒;由开状态到关状态为3-7毫秒。线性范围:单色光光源功率0.1毫瓦-150毫瓦每平方厘米。
附图说明
图1是实施例1制得光电探测器的单波长响应图;
图2是实施例1制得光电探测器的360°响应图;
图3是实施例1制得光电探测器响应速度和线性范围。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
在预先附有导电铟锡氧化物透明电极的1mm厚、面积15mm×20mm的玻璃上依次涂布负电荷传输层,涂布核心活性层,蒸镀正电荷萃取层,蒸镀银金属电极,再去除负极遮挡层,连接电极引线,封装。
具体过程如下:
步骤1)在超净室内,在一块2.5cm×12cm的预先附有导电铟锡氧化物透明电极(ITO)的1mm厚的玻璃上印刷厚度约为40nm的氧化锌纳米溶胶溶液,于120℃干燥20分钟形成负电荷传输层,再涂布活性有机材料的混合有机溶液,于120℃干燥10分钟形成核心光敏层;
步骤2)在手套箱内在步骤1)制好的核心光敏层上真空蒸镀正电荷萃取层如钼的氧化物;
步骤3)在手套箱内在步骤2)制好的正电荷萃取层上真空蒸镀纯银薄膜电极;
步骤4)在手套箱内将步骤3)制好的电池连接负电极并去掉负极遮挡层连接电极;
步骤5)将步骤4)制好的每一片光电开关在手套箱内水氧含量低于0.1ppm的条件下由环氧树脂热封机封装。
实施例1的关键还在于符合以下要求:核心光敏层1-100nm;正电荷萃取层8-10nm;银金属电极20nm。
本发明为所述的核心活性有机材料采用如下技术方案,核心的全波长活性有机材料的合成方法按照以下合成路线合成具有以下所示的分子结构的化合物5:
Figure 953823DEST_PATH_IMAGE004
上述化合物5的具体合成过程如下:
合成上述的化合物3
THF 100mL中投入0.56g化合物1、0.35g化合物2、1g碳酸钠、10mL水和80mg催化剂零价钯,65-80℃反应三天。过柱除去黄色的化合物2的分解物少量,其余大极性冲出过GPC,得到101mg化合物3,为棕红色粉末。质谱,核磁正确。
合成上述的化合物4
取16g上述的化合物3,第一步用无水三氯化铁的硝基甲烷溶液在干燥的DCM 中鼓氮气泡氧化,搅拌24小时,反应后萃取除去三氯化铁,过柱,得到化合物4为红色物质15g。
合成上述的化合物5
取10g化合物4,用DCM溶解后转移到微波反应器中,加热搅拌至溶剂挥干,加入100mL氧六环、10mL乙醇胺,脱气后加入10g碳酸钾,在微波反应器中200℃反应30分钟,取出时均相黑色溶液,硅胶柱层析提出产物,得8g黑棕色粉末即化合物5。质谱正离子峰在M=1797.6。

Claims (5)

1.一种全波长360°可探测有机薄膜式光电探测器的制造方法,其特征在于具体过程为:在预先附有导电铟锡氧化物透明电极的导电基底上依次涂布负电荷传输层、涂布核心光敏层、蒸镀正电荷萃取层和蒸镀银薄膜电极,再去除负极遮挡层,连接电极引线,封装即得全波长360°可探测有机薄膜式光电探测器,其中核心光敏层所用活性有机材料的结构式如下所示:
Figure DEST_PATH_IMAGE001
2.根据权利要求1所述的全波长360°可探测有机薄膜式光电探测器的制造方法,其特征在于:所述导电基底为铟锡氧化物ITO玻璃、氟锡氧化物FTO玻璃或铟锡氧化物ITO涤纶PET薄膜。
3.根据权利要求1所述的全波长360°可探测有机薄膜式光电探测器的制造方法,其特征在于具体步骤为:
步骤S1:在超净室内在一块2.5cm×12cm的预先附有导电铟锡氧化物透明电极的1mm厚的玻璃上涂布氧化锌纳米溶胶溶液,于120℃干燥20分钟形成负电荷传输层,再涂布活性有机材料的混合有机溶液,于120℃干燥10分钟形成核心光敏层;
步骤S2:在手套箱内在步骤S1制好的核心光敏层上真空蒸镀正电荷萃取层,该正电荷萃取层的活性物质为钼的氧化物;
步骤S3:在手套箱内在步骤S2制好的正电荷萃取层上真空蒸镀纯银薄膜电极;
步骤S4:在手套箱内将步骤S3制好的电极去除负极遮挡层,连接电极引线;
步骤S5:将步骤S4制好的每一片光电开关在手套箱内水氧含量低于0.1ppm的条件下由环氧树脂热封机封装即得全波长360°可探测有机薄膜式光电探测器。
4.根据权利要求1或3所述的全波长360°可探测有机薄膜式光电探测器的制造方法,其特征在于:所述负电荷传输层的厚度为30-50nm,核心光敏层的厚度为1-100nm,正电荷萃取层的厚度为8-10nm,银薄膜电极的厚度为20nm。
5.根据权利要求1或3所述的全波长360°可探测有机薄膜式光电探测器的制造方法,其特征在于:所述核心光敏层所用活性有机材料的合成路线为:
Figure 837933DEST_PATH_IMAGE002
CN202010015835.XA 2020-01-08 2020-01-08 一种全波长360°可探测有机薄膜式光电探测器的制造方法 Expired - Fee Related CN111180592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010015835.XA CN111180592B (zh) 2020-01-08 2020-01-08 一种全波长360°可探测有机薄膜式光电探测器的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010015835.XA CN111180592B (zh) 2020-01-08 2020-01-08 一种全波长360°可探测有机薄膜式光电探测器的制造方法

Publications (2)

Publication Number Publication Date
CN111180592A CN111180592A (zh) 2020-05-19
CN111180592B true CN111180592B (zh) 2022-07-29

Family

ID=70657848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010015835.XA Expired - Fee Related CN111180592B (zh) 2020-01-08 2020-01-08 一种全波长360°可探测有机薄膜式光电探测器的制造方法

Country Status (1)

Country Link
CN (1) CN111180592B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2249389A2 (en) * 2004-02-25 2010-11-10 S.O.I. Tec Silicon on Insulator Technologies Photodetecting device
WO2012037260A1 (en) * 2010-09-14 2012-03-22 The Regents Of The University Of Michigan Organic semiconductors as window layers for inorganic solar cells
CN104638107A (zh) * 2015-02-11 2015-05-20 友达光电股份有限公司 一种近红外光有机光传感器及近红外光传感方法
WO2015198321A1 (en) * 2014-06-24 2015-12-30 Cyprus University Of Technology Thin film optoelectronic devices using delafossite type metal oxides and methods of their fabrication
CN105826472A (zh) * 2016-05-16 2016-08-03 河南师范大学 一种有机光电开关及其制造方法和应用
CN106920882A (zh) * 2017-04-17 2017-07-04 芜湖乐知智能科技有限公司 一种基于介质/金属/介质电极的钙钛矿光电探测器及其制备方法
CN109206366A (zh) * 2018-08-03 2019-01-15 河南师范大学 双炔基桥联单苝酰亚胺二聚体n型半导体材料的合成方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201004106D0 (en) * 2010-03-11 2010-04-28 Isis Innovation Device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2249389A2 (en) * 2004-02-25 2010-11-10 S.O.I. Tec Silicon on Insulator Technologies Photodetecting device
WO2012037260A1 (en) * 2010-09-14 2012-03-22 The Regents Of The University Of Michigan Organic semiconductors as window layers for inorganic solar cells
WO2015198321A1 (en) * 2014-06-24 2015-12-30 Cyprus University Of Technology Thin film optoelectronic devices using delafossite type metal oxides and methods of their fabrication
CN104638107A (zh) * 2015-02-11 2015-05-20 友达光电股份有限公司 一种近红外光有机光传感器及近红外光传感方法
CN105826472A (zh) * 2016-05-16 2016-08-03 河南师范大学 一种有机光电开关及其制造方法和应用
CN106920882A (zh) * 2017-04-17 2017-07-04 芜湖乐知智能科技有限公司 一种基于介质/金属/介质电极的钙钛矿光电探测器及其制备方法
CN109206366A (zh) * 2018-08-03 2019-01-15 河南师范大学 双炔基桥联单苝酰亚胺二聚体n型半导体材料的合成方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"360° omnidirectional, printable and transparent photodetectors for flexible optoelectronics";Der-Hsien Lien等;《Flexible Electronics》;20180608;全文 *

Also Published As

Publication number Publication date
CN111180592A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Wu et al. Highly efficient and stable self‐powered ultraviolet and deep‐blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction
Wang et al. Perovskite indoor photovoltaics: opportunity and challenges
Xu et al. Solution‐processed transparent self‐powered p‐CuS‐ZnS/n‐ZnO UV photodiode
CN109920918B (zh) 基于复合电子传输层的钙钛矿光电探测器及其制备方法
Shao et al. A high performance UV–visible dual-band photodetector based on an inorganic Cs 2 SnI 6 perovskite/ZnO heterojunction structure
Liu et al. Highly sensitive, broadband, fast response organic photodetectors based on semi-tandem structure
Sun et al. Efficient and stable large-area perovskite solar cells with inorganic perovskite/carbon quantum dot-graded heterojunction
CN111180592B (zh) 一种全波长360°可探测有机薄膜式光电探测器的制造方法
Luo et al. Facile Nanogold–Perovskite Enabling Ultrasensitive Flexible Broadband Photodetector with pW Scale Detection Limit
Shuang et al. High-performance Ag 2 BiI 5 Pb-free perovskite photodetector
WO2010107261A2 (ko) 태양 전지 및 그 제조 방법
Lin et al. Solution-processed Li-doped ZnSnO metal-semiconductor-metal UV photodetectors
Li et al. Inhibited Aggregation of Lithium Salt in Spiro-OMeTAD for Perovskite Solar Cells
CN104638109A (zh) 一种有机太阳能电池的阴极界面材料及其制备方法
Nandal et al. Anomalous scaling exponents in the capacitance–voltage characteristics of perovskite thin film devices
Heo et al. Highly durable organic photodetector for complementary metal oxide semiconductor image sensors
JP2020102602A (ja) 光電変換素子、及び光電変換素子モジュール
CN105448524B (zh) 银掺杂有机金属钙钛矿材料、太阳能电池及其制作方法
Behera et al. Lead free perovskite based heterojunction photodetectors: A mini review
Xu et al. A Facile Approach for the Encapsulation of Perovskite Solar Cells
KR20220016961A (ko) 광전 변환 소자, 광전 변환 소자 모듈, 전자 장치 및 전원 모듈
CN111490166A (zh) 一种基于新型聚合物空穴传输层的柔性钙钛矿光电探测器及其制备方法
Zheng et al. Ultrasensitive and high gain solution-processed perovskite photodetectors by CH 3 NH 3 PbI 2.55 Br 0.45: Zn 2 SnO 4 bulk heterojunction composite
US12062503B2 (en) Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
CN109346461B (zh) 一种光电热电复合自驱动的光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220729