CN111176496B - 一种电容式传感器及通过电容成像确定触摸屏定位的方法 - Google Patents

一种电容式传感器及通过电容成像确定触摸屏定位的方法 Download PDF

Info

Publication number
CN111176496B
CN111176496B CN201911414166.7A CN201911414166A CN111176496B CN 111176496 B CN111176496 B CN 111176496B CN 201911414166 A CN201911414166 A CN 201911414166A CN 111176496 B CN111176496 B CN 111176496B
Authority
CN
China
Prior art keywords
dielectric constant
electrodes
electrode
capacitance
touch screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911414166.7A
Other languages
English (en)
Other versions
CN111176496A (zh
Inventor
高硕�
孙世杰
吕瑞函
黄安彪
徐立军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201911414166.7A priority Critical patent/CN111176496B/zh
Publication of CN111176496A publication Critical patent/CN111176496A/zh
Application granted granted Critical
Publication of CN111176496B publication Critical patent/CN111176496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明属于传感器应用领域,公开了一种电容式传感器,电容式传感器共有八个矩形薄片的电极,电极按照间隔排列在电容式传感器的触摸屏的边缘并围成环形,电极引线与外部激励信号输入系统系统和检测信号采集系统相连接,触摸屏外侧设置有介电屏蔽层;本发明还公开了一种通过电容成像确定触摸屏定位的方法,其电容根据上述的电容传感器测得。本发明的电容式传感器可以测量不同触摸位置时的电容大小,利用电容信号进行图像重建来确定触摸位置,结构简单、制作方便,本发明适用于触摸屏的图像重建进行定位。

Description

一种电容式传感器及通过电容成像确定触摸屏定位的方法
技术领域
本发明属于传感器应用领域,涉及一种电容传感器,具体涉及一种电容式传感器及通过电容成像确定触摸屏定位的方法。
背景技术
随着人们对人机交互的需求越来越高,人们对触摸时位置的精确度的要求也越来越高,现有技术中是在触摸屏上设置用于采样的横向与纵向电极阵列,但在这种方法中降低了触摸屏透光度,增加了触摸屏的损耗功率。而电容成像技术通过采用特殊设计的敏感空间阵列电极,根据被测物质各相具有不同的介电常数,当各相组分分布或浓度分布发生变化时,将引起介电常数发生变化,从而使测量电极对间的电容值发生变化,利用相应的图像重建算法重建被测物场的介电分布图。电容成像技术采用的是非侵入或非接触式的检测方式,可以提高触摸屏的透光度以及触摸的精确度,因此引起了人们的关注,具有重要意义。
发明内容
本发明的目的是要提供一种电容传感器,可以测量不同触摸位置时电容大小,只需将电极按照间隔排列在电容式传感器的触摸屏周围,结构简单,制作方便,不需要外加结构;
本发明的另一个目的是要提供一种通过上述电容传感器测量电容大小,通过电容成像确定触摸屏定位的方法。
为了实现上述的目的,本发明采用了如下的技术方案:
一种电容式传感器,所述电容式传感器共有八个矩形薄片的电极,所述电极按照间隔排列在电容式传感器的触摸屏的边缘并围成环形,所述电极引线与外部激励信号输入系统和检测信号采集系统相连接;所述触摸屏外侧设置有介电屏蔽层。
作为限定,所述电极为激励电极或检测电极,所述激励电极与检测电极不是同一电极,激励电极与检测电极形成不规则的平行板电容结构。
作为第二种限定,所述电极与电极引线均采用铜质材料。
本发明还提供了一种通过电容成像确定触摸屏定位的方法,所述电容根据上述的电容传感器测得,包括以下步骤:
一、对电极依次编号,选取一个电极作为激励电极,其余电极作为检测电极,通过激励信号输入系统对选取的激励电极施加激励信号电压后,依次对检测电极进行检测,得到测量的电容值;
得到所有测量的电容值后,更换激励电极,选择另一个电极作为激励电极,其余电极作为检测电极,重复之前的操作,直到所有电极都被激励一次;
二、通过数据采集系统采集步骤一中测量的电容值传入上位机中,根据电容值计算电极围成的区域内的介电常数并判断介电常数物质类别,进行图像重建。
作为限定,所述图像重建算法包括以下步骤:
(一)将电极围成的区域剖分为N个单元,N≥2,将单元i的介电常数物质变化后测量的电容值向量xi作为输入向量,单元i的介电常数物质变化后,电极围成的区域内全部单元的介电常数向量yi作为输出向量,通过SVM算法对每个单元依次进行训练,得到N个单元训练样本集
Figure GDA0003239410300000021
(二)采用并联归一化模型对输入向量xi进行电容归一化处理,得到归一化后的训练样本集为
Figure GDA0003239410300000031
(三)对单元i,对归一化后的训练样本集建立两分类问题,然后对归一化后的训练样本集构造相应的最优化问题并引入拉格朗日乘子转为对偶问题,求得最优解,然后对两分类问题构造对应的决策函数fi=sgn(g(xi)),其中,
Figure GDA0003239410300000032
K(xi,xj)为核函数,K(xi,xj)=exp(-γ||xi-xj||2),γ>0,其中,γ为固定算子,d为常数;
(四)通过xi能否使决策函数中的g(xi)得到最大值来判定单元i的介电常数,然后判断单元i介电常数物质类别;
(五)对电极围成的区域剖分的N个单元分别重复(三)、(四)步骤,完成对电极围成的区域全部内单元的介电常数物质类别的判断,重建图像。
作为第二种限定,所述步骤(二)中的并联归一化模型为
Figure GDA0003239410300000033
其中Ci为检测到的电容值,Cl表示电极围成的区域中标定的低介电常数物质满场分布时的电容值,Ch表示电极围成的区域中标定的高介电常数物质满场分布时的电容值;xi’为归一化电容值,xi’与被检测的电容值Ci为线性关系。
作为第三种限定,所述步骤(一)单元i介电常数物质变化后测量的电容值向量
Figure GDA0003239410300000041
单元i的介电常数物质变化后,电极围成的区域内全部单元的介电常数向量
Figure GDA0003239410300000042
其中
Figure GDA0003239410300000043
为单元i内介电常数变化后测得的电容值,n为单元i内测得的电容值的个数;
Figure GDA0003239410300000044
是单元i的介电常数物质变化后编号为N的单元内的介电常数;
步骤(二)中xi归一化处理后得到
Figure GDA0003239410300000045
作为第四种限定,所述步骤(三)中,对于训练样本集中的训练样本构造最优化问题为
Figure GDA0003239410300000046
Figure GDA0003239410300000047
引入拉格朗日乘子α=(α1,……,αN)T,
Figure GDA0003239410300000048
后,构造对偶问题为
Figure GDA0003239410300000049
Figure GDA00032394103000000410
得到最优解
Figure GDA00032394103000000411
其中,
Figure GDA00032394103000000412
为单元i最优化问题的最优解,
Figure GDA00032394103000000413
为单元i对偶问题的最优解,C为惩罚函数,ξi为引入的松弛变量,b为常数,xj为引入拉格朗日乘子导出对偶问题后与xi的对偶值,yj为引入拉格朗日乘子导出对偶问题后与yi的对偶值。
本发明由于采用了上述的技术方案,其与现有技术相比,所取得的技术进步在于:
(1)本发明的电容式传感器可以测量不同触摸位置时的电容大小,利用电容信号进行图像重建,只需要在电容式传感器触摸屏的边缘表面上放置电极,结构简单、制作方便;
(2)利用电容信号进行图像重建来确定触摸位置,不再限制触摸材料,扩大了用户的触摸条件,方便用户使用;
(3)将电极安置在触摸屏周围表面上,提高了显示范围内的透光率,使得触摸屏可用较低的功耗达到较高的色彩显示;
(4)利用图像来确定触摸位置,可以提高准确度,减小误触发生。
本发明属于传感器应用领域,涉及一种电容传感器,通过电容成像提高触摸屏定位精确度,适用于触摸屏的图像重建进行定位。
附图说明
图1为本发明实施例中电极的结构示意图;
图2为本发明实施例的系统流程框图;
图3为本发明实施例2的图像重建图;
图4为本发明实施例3的图像重建图;
图5为本发明实施例4的图像重建图;
图6为本发明实施例5的图像重建图;
图7为本发明实施例6的图像重建图。
图中:1、电极;2、介电屏蔽层;3、电极引线;4、高介电常数区域;5、低介电常数区域。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
实施例1一种电容式传感器
如图1所示,一种电容式传感器,电容式传感器共有八个矩形薄片的电极1,电极1按照间隔排列在电容式传感器的触摸屏的边缘并围成环形,电极引线3与外部激励信号输入系统系统和检测信号采集系统相连接;触摸屏外侧设置有介电屏蔽层2。电极1和电极引线3均采用铜质材料。
实施例2一种通过电容成像确定触摸屏定位的方法
如图2所示,本实施例提供了一种利用上述电容传感器测得的电容信号进行处理的成像定位方法,包括以下步骤:
对电极1依次编号,选取一个电极作为激励电极,其余电极作为检测电极,通过激励信号输入系统对选取的激励电极施加激励信号电压后,依次对检测电极进行检测,得到测量的电容值;
得到所有测量的电容值后,更换激励电极,选择另一个电极作为激励电极,其余电极1作为检测电极,重复之前的操作,直到所有电极1都被激励一次;
二、通过数据采集系统采集步骤一中测量的电容值传入上位机中,根据电容值计算电极1围成的区域内的介电常数并判断介电常数物质类别,进行图像重建。
其中图像重建算法包括以下步骤:
(一)将电极1围成的区域剖分为104个单元,将单元i的介电常数物质变化后测量的电容值向量xi作为输入向量,单元i的介电常数物质变化后,电极1围成的区域内全部单元的介电常数向量yi作为输出向量,通过SVM算法对每个单元依次进行训练,得到104个单元训练样本集
Figure GDA0003239410300000071
本步骤中单元i介电常数物质变化后测量的电容值向量
Figure GDA0003239410300000072
单元i的介电常数物质变化后,电极1围成的区域内全部单元的介电常数向量
Figure GDA0003239410300000073
其中
Figure GDA0003239410300000074
为单元i内介电常数物质变化后测得的电容值,n为测得的电容值的个数;
Figure GDA0003239410300000075
是单元i的介电常数物质变化后编号为104的单元内的介电常数;
(二)采用并联归一化模型对输入向量xi进行电容归一化处理,得到归一化后的训练样本集为
Figure GDA0003239410300000076
其中,本步骤中的并联归一化模型为
Figure GDA0003239410300000077
其中Ci为检测到的电容值,Cl表示电极1围成的环形区域中标定的低介电常数物质满场分布时的电容值,Ch表示电极1围成的环形区域中标定的高介电常数物质满场分布时的电容值;xi’为归一化电容值,xi’与被检测的电容值Ci为线性关系;
步骤(二)中xi归一化处理后得到
Figure GDA0003239410300000078
(三)对单元i,对归一化后的训练样本集建立两分类问题,然后对归一化后的训练样本集构造相应的最优化问题并引入拉格朗日乘子转为对偶问题,求得最优解,然后对两分类问题构造对应的决策函数fi=sgn(g(xi)),其中,
Figure GDA0003239410300000079
K(xi,xj)为核函数,K(xi,xj)=exp(-γ||xi-xj||2),γ>0,其中,γ为固定算子,d为常数;
本步骤中,对于训练样本集中的训练样本构造最优化问题为
Figure GDA0003239410300000081
Figure GDA0003239410300000082
引入拉格朗日乘子α=(α1,……,αN)T,
Figure GDA0003239410300000083
后,构造对偶问题为
Figure GDA0003239410300000084
Figure GDA0003239410300000085
得到最优解
Figure GDA0003239410300000086
其中,
Figure GDA0003239410300000087
为单元i最优化问题的最优解,
Figure GDA0003239410300000088
为单元i对偶问题的最优解,C为惩罚函数,ξi为引入的松弛变量,w为建立两分类问题所划分直线的斜率,b为常数,xj为引入拉格朗日算子导出对偶问题后与xi的对偶值,yj为引入拉格朗日算子导出对偶问题后与yi的对偶值;
(四)通过xi能否使决策函数中的g(xi)得到最大值来判定单元i的介电常数,然后判断单元i介电常数物质类别;
(五)对电极1围成的区域剖分的N个单元分别重复(三)、(四)步骤,完成对电极1围成的区域全部内单元的介电常数物质类别的判断,重建图像。
本实施例中,将电极1围成的区域剖分后触摸了触摸屏的左上角顶点的单元,并测量了介电常数物质变化后的电容值,所测量的电容值分别如表1所示,其中表中的“-”代表电极作为激励电极或检测电极时不用重复测量的电容值。
进行重建图像后得到的图像如图3所示,其中在图3得到的图像中,分为高介电常数区域4和低介电常数区域5,其中高介电常数区域4说明为手指的触摸区域,在图3右侧的图例并不代表实际介电常数数值,而是指代区域内介电常数的相对情况。
表1介电常数物质变化后测量的电容值向量
Figure GDA0003239410300000091
实施例3一种电容传感器对其电容信号进行处理的成像定位方法本实施例与实施例2中的对电容信号进行处理的成像定位方法相同,区别在于触摸的位置不同,得到图像重建的结果也不相同。
本实施例中,将电极1围成的区域剖分后触摸了触摸屏的右上角顶点的单元,并测量了介电常数物质变化后的电容值,所测量的电容值分别如表2所示,其中表中的“-”代表电极作为激励电极或检测电极时不用重复测量的电容值。
进行重建图像后得到的图像如图4所示,其中在图4得到的图像中,分为高介电常数区域4和低介电常数区域5,其中高介电常数区域4说明为手指的触摸区域,在图4右侧的图例并不代表实际介电常数数值,而是指代区域内介电常数的相对情况。
表2介电常数物质变化后测量的电容值
Figure GDA0003239410300000101
实施例4一种电容传感器对其电容信号进行处理的成像定位方法本实施例与实施例2中的对电容信号进行处理的成像定位方法相同,区别在于触摸的位置不同,得到图像重建的结果也不相同。
本实施例中,将电极1围成的区域剖分后触摸了触摸屏的左下角顶点的单元,并测量了介电常数物质变化后的电容值,所测量的电容值分别如表3所示,其中表中的“-”代表电极作为激励电极或检测电极时不用重复测量的电容值。
进行重建图像后得到的图像如图5所示,其中在图5得到的图像中,分为高介电常数区域4和低介电常数区域5,其中高介电常数区域4说明为手指的触摸区域,在图5右侧的图例并不代表实际介电常数数值,而是指代区域内介电常数的相对情况。
表3介电常数物质变化后测量的电容值
Figure GDA0003239410300000111
实施例5一种电容传感器对其电容信号进行处理的成像定位方法本实施例与实施例2中的对电容信号进行处理的成像定位方法相同,区别在于触摸的位置不同,得到图像重建的结果也不相同。
本实施例中,将电极1围成的区域剖分后触摸了触摸屏的右下角顶点的单元,并测量了介电常数物质变化后的电容值,所测量的电容值分别如表4所示,其中表中的“-”代表电极作为激励电极或检测电极时不用重复测量的电容值。
进行重建图像后得到的图像如图6所示,其中在图6得到的图像中,分为高介电常数区域4和低介电常数区域5,其中高介电常数区域4说明为手指的触摸区域,在图6右侧的图例并不代表实际介电常数数值,而是指代区域内介电常数的相对情况。
表4介电常数物质变化后测量的电容值
Figure GDA0003239410300000121
实施例6一种电容传感器对其电容信号进行处理的成像定位方法
本实施例与实施例2中的对电容信号进行处理的成像定位方法相同,区别在于触摸的位置不同,得到图像重建的结果也不相同。
本实施例中,将电极1围成的区域剖分后触摸了触摸屏的中间位置的单元,并测量了介电常数物质变化后的电容值,所测量的电容值分别如表5所示,其中表中的“-”代表电极作为激励电极或检测电极时不用重复测量的电容值。
进行重建图像后得到的图像如图7所示,其中在图7得到的图像中,分为高介电常数区域4和低介电常数区域5,其中高介电常数区域4说明为手指的触摸区域,在图7右侧的图例并不代表实际介电常数数值,而是指代区域内介电常数的相对情况。
表5介电常数物质变化后测量的电容值
Figure GDA0003239410300000131

Claims (4)

1.一种通过电容成像确定触摸屏定位的方法,所述电容根据电容传感器测得,其特征在于,所述电容传感器共有八个矩形薄片的电极,所述电极按照间隔排列在电容传感器的触摸屏的边缘并围成环形,所述电极引线与外部激励信号输入系统和检测信号采集系统相连接;所述触摸屏外侧设置有介电屏蔽层,所述通过电容成像确定触摸屏定位的方法包括以下步骤:
一、对电极依次编号,选取一个电极作为激励电极,其余电极作为检测电极,通过激励信号输入系统对选取的激励电极施加激励信号电压后,依次对检测电极进行检测,得到测量的电容值;
得到所有测量的电容值后,更换激励电极,选择另一个电极作为激励电极,其余电极作为检测电极,重复之前的操作,直到所有电极都被激励一次;
二、通过检测信号采集系统采集步骤一中测量的电容值传入上位机中,根据电容值计算电极围成的区域内的介电常数并判断介电常数物质类别,进行图像重建;
三、在得到的重建图像中,分为高介电常数区域和低介电常数区域,其中高介电常数区域为手指的触摸区域;
其中,所述图像重建算法包括以下步骤:
(一)将电极围成的区域剖分为N个单元,N≥2,将单元i的介电常数物质变化后测量的电容值向量xi作为输入向量,单元i的介电常数物质变化后,电极围成的区域内全部单元的介电常数向量yi作为输出向量,通过SVM算法对每个单元依次进行训练,得到N个单元训练样本集
Figure FDA0003229477160000011
所述步骤(一)触摸过程中单元i介电常数物质变化后测量的电容值向量
Figure FDA0003229477160000021
单元i的介电常数物质变化后,电极围成的区域内全部单元的介电常数向量
Figure FDA0003229477160000022
其中
Figure FDA0003229477160000023
为单元i内介电常数物质变化后测得的电容值,n为单元i内测得的电容值的个数;
Figure FDA0003229477160000024
是单元i的介电常数物质变化后编号为N的单元内的介电常数;
(二)采用并联归一化模型对输入向量xi进行电容归一化处理,得到归一化后的训练样本集为
Figure FDA0003229477160000025
步骤(二)中xi归一化处理后得到
Figure FDA0003229477160000026
(三)对单元i,对归一化后的训练样本集建立两分类问题,然后对归一化后的训练样本集构造相应的最优化问题并引入拉格朗日乘子转为对偶问题,求得最优解,然后对两分类问题构造对应的决策函数fi=sgn(g(xi)),其中,
Figure FDA0003229477160000027
K(xi,xj)为核函数,K(xi,xj)=exp(-γ||xi-xj||2),γ>0,其中,γ为固定算子,d为常数;
(四)通过xi能否使决策函数中的g(xi)得到最大值来判定单元i的介电常数,然后判断单元i介电常数物质类别;
(五)对电极围成的区域剖分的N个单元分别重复(三)、(四)步骤,完成对电极围成的区域全部内单元的介电常数物质类别的判断,重建图像。
2.根据权利要求1所述的通过电容成像确定触摸屏定位的方法,其特征在于,所述步骤(二)中的并联归一化模型为
Figure FDA0003229477160000031
其中Ci为检测到的电容值,Cl表示电极围成的区域中标定的低介电常数物质满场分布时的电容值,Ch表示电极围成的区域中标定的高介电常数物质满场分布时的电容值;xi’为归一化电容值,xi’与被检测的电容值Ci为线性关系。
3.根据权利要求1所述的通过电容成像确定触摸屏定位的方法,其特征在于,所述步骤(三)中,对于训练样本集中的训练样本构造最优化问题为
Figure FDA0003229477160000032
Figure FDA0003229477160000033
引入拉格朗日乘子α=(α1,……,αN)T,
Figure FDA0003229477160000034
后,构造对偶问题为
Figure FDA0003229477160000035
Figure FDA0003229477160000036
得到最优解
Figure FDA0003229477160000037
其中,
Figure FDA0003229477160000038
为单元i最优化问题的最优解,
Figure FDA0003229477160000039
为单元i对偶问题的最优解,C为惩罚函数,ξi为引入的松弛变量,b为常数,xj为引入拉格朗日乘子导出对偶问题后与xi的对偶值,yj为引入拉格朗日乘子导出对偶问题后与yi的对偶值。
4.根据权利要求1所述的通过电容成像确定触摸屏定位的方法,其特征在于,所述电极与电极引线均采用铜质材料。
CN201911414166.7A 2019-12-31 2019-12-31 一种电容式传感器及通过电容成像确定触摸屏定位的方法 Active CN111176496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911414166.7A CN111176496B (zh) 2019-12-31 2019-12-31 一种电容式传感器及通过电容成像确定触摸屏定位的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911414166.7A CN111176496B (zh) 2019-12-31 2019-12-31 一种电容式传感器及通过电容成像确定触摸屏定位的方法

Publications (2)

Publication Number Publication Date
CN111176496A CN111176496A (zh) 2020-05-19
CN111176496B true CN111176496B (zh) 2021-10-08

Family

ID=70655944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911414166.7A Active CN111176496B (zh) 2019-12-31 2019-12-31 一种电容式传感器及通过电容成像确定触摸屏定位的方法

Country Status (1)

Country Link
CN (1) CN111176496B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596658A (zh) * 2015-10-14 2017-04-26 上海海洋大学 一种用于电容层析成像多相流电容归一化方法
CN109283230A (zh) * 2018-11-30 2019-01-29 燕山大学 一种平面阵列电容成像方法及系统
CN109813772A (zh) * 2019-03-18 2019-05-28 燕山大学 一种同面阵列电容稳定成像方法
CN110186962A (zh) * 2019-05-10 2019-08-30 天津大学 一种用于电容层析成像的不完整测量数据成像方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11083393B2 (en) * 2017-02-06 2021-08-10 The Regents Of The University Of California Non-contact tomographic imaging and thin film sensors for sensing permittivity changes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596658A (zh) * 2015-10-14 2017-04-26 上海海洋大学 一种用于电容层析成像多相流电容归一化方法
CN109283230A (zh) * 2018-11-30 2019-01-29 燕山大学 一种平面阵列电容成像方法及系统
CN109813772A (zh) * 2019-03-18 2019-05-28 燕山大学 一种同面阵列电容稳定成像方法
CN110186962A (zh) * 2019-05-10 2019-08-30 天津大学 一种用于电容层析成像的不完整测量数据成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于机器学习的ECT图像重建算法的研究;张婷;《中国优秀硕士学位论文全文数据库 信息科技辑》;20180315;第2.2节,附图2-1,第3.1节,第4.1、4.2.2节,附图4-2 *

Also Published As

Publication number Publication date
CN111176496A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
US10747355B2 (en) Touch detection using multiple simultaneous stimulation signals
Marashdeh et al. A multimodal tomography system based on ECT sensors
US7876311B2 (en) Detection of low noise frequencies for multiple frequency sensor panel stimulation
CN106959325B (zh) 一种平面阵列电极电容传感器、成像系统及成像方法
CN104598090B (zh) 一种触摸屏的多点触摸定位方法及触摸屏装置
Uchida et al. Cyclic voltammetry with non-triangular waveforms: Electrochemically reversible systems
Sun et al. Image reconstruction based on fractional Tikhonov framework for planar array capacitance sensor
CN111176496B (zh) 一种电容式传感器及通过电容成像确定触摸屏定位的方法
CN106685421A (zh) 一种模拟信号采集方法及装置
Kumar et al. Recent prospects of medical imaging and sensing technologies based on electrical impedance data acquisition system
CN111077193B (zh) 一种电容传感器及对其电容信号进行处理的成像定位方法
CN203965629U (zh) 高位置分辨mrpc探测器的复用读出系统
CN105320875B (zh) 控制方法及移动终端
Zhao et al. A novel computational imaging algorithm based on split Bregman iterative for electrical capacitance tomography
CN111061399B (zh) 基于迭代算法处理电容信号并应用于触摸屏定位的方法
CN111192338B (zh) 基于触摸屏应用Calderon算法重建图像的方法
CN102401629A (zh) 一种手机及其测量角度的方法
US10712893B2 (en) Single-surface position sensor and positioning method thereof
CN107450774A (zh) 触控检测方法、电路、存储介质、处理器和终端
Gao et al. A Novel Touch Interface with Ultrahigh Optical Transmittance Based on Electrical Impedance Tomography for Interactive Displays
Li et al. P‐15.3: An EIT Based Large Area Touch Interface
Reinmuth et al. Theory of Alternating Current Polarography
CN111061400B (zh) 基于Calderon算法对触摸屏图像重建的方法
CN111063002A (zh) 基于触摸屏应用迭代算法成像重建的定位方法
CN214277988U (zh) 一种用于维生素检测的印刷电极

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant