CN111175754A - Lfmcw体制下基于tdpc-jdl的低空风切变风速估计方法 - Google Patents

Lfmcw体制下基于tdpc-jdl的低空风切变风速估计方法 Download PDF

Info

Publication number
CN111175754A
CN111175754A CN202010013262.7A CN202010013262A CN111175754A CN 111175754 A CN111175754 A CN 111175754A CN 202010013262 A CN202010013262 A CN 202010013262A CN 111175754 A CN111175754 A CN 111175754A
Authority
CN
China
Prior art keywords
tdpc
echo data
wind speed
low
constructing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010013262.7A
Other languages
English (en)
Inventor
李海
宋迪
呼延泽
冯青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Aviation University of China
Original Assignee
Civil Aviation University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Aviation University of China filed Critical Civil Aviation University of China
Priority to CN202010013262.7A priority Critical patent/CN111175754A/zh
Publication of CN111175754A publication Critical patent/CN111175754A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种LFMCW体制下基于TDPC‑JDL的低空风切变风速估计方法。其包括构造LFMCW体制下雷达回波数据模型并利用载机速度和雷达工作参数设计TDPC预滤波器,对雷达回波数据进行预滤波;构造降维联合空时变换矩阵,对预滤波后的数据进行降维;估计待检测距离单元杂波协方差矩阵;构建局域联合处理器实现对剩余杂波的抑制和风场目标信号的匹配;依次对范围内所有距离单元的回波数据进行处理等步骤。本发明针对机载气象雷达下视探测低空风切变时,目标信号会淹没在强杂波背景中,风场速度估计不准的问题,提出了一种LFMCW体制下基于TDPC‑JDL的低空风切变风速估计方法。仿真结果证明了该方法的有效性。

Description

LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法
技术领域
本发明属于机载气象雷达目标检测技术领域,特别是涉及一种LFMCW(线性调频连续波)体制下基于TDPC-JDL的低空风切变风速估计方法。
背景技术
低空风切变属于一种极端的天气状况,它具有尺度小、强度大、危害性强、不易监测等特点,在飞机起飞和降落阶段会严重影响飞机的安全。当飞机在起飞或降落阶段突然遭遇低空风切变,飞行员往往由于没有足够的空间和时间来调整飞机姿态而造成严重的飞行事故,因此低空风切变的检测和预警成为当前民航领域的一项重要课题,而风切变风速估计作为整个风切变检测流程的基础,直接会影响风切变检测的准确程度。
传统的机载气象雷达多是用于脉冲体制,而LFMCW雷达具有体积小重量轻、时宽带宽积较大、不存在距离盲区等优点,将LFMCW技术与机载气象雷达进行融合,能够促进机载气象雷达朝着小型化的方向发展。但是目前针对线性调频连续波体制下的低空风切变风速估计鲜有文献报道。
发明内容
为了解决上述问题,本发明的目的在于提供一种LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法。
为了达到上述目的,本发明提供的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法包括按顺序进行的下列步骤:
1)构造LFMCW体制下雷达回波数据模型并利用载机速度和机载气象雷达工作参数设计TDPC预滤波器,对雷达回波数据进行预滤波;
2)构造降维联合空时变换矩阵,对上述预滤波后的雷达回波数据进行降维;
3)利用上述降维后各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵;
4)利用上述待检测距离单元的协方差矩阵构建局域联合处理器,实现对剩余杂波的抑制和风场目标信号的匹配,得到第l个距离单元的风速估计值;
5)重复步骤2)-4),依次对探测范围内所有待测距离单元的回波数据进行处理,计算出各个距离单元的风速估计值,进而完成整个低空风切变场的风速估计。
在步骤1)中,所述的构造LFMCW体制下雷达回波数据模型并利用载机速度和机载气象雷达工作参数设计TDPC预滤波器,对雷达回波数据进行预滤波的方法是:利用dechirp方式对机载气象雷达接收到的数据进行处理,得到空时二维快拍数据;从机载导航设备中读取载机速度V、脉冲重复频率fr、阵元间隔d、机载气象雷达天线主瓣波束水平方位角θ0和俯仰角
Figure BDA0002357911520000021
机载气象雷达天线发射电磁波波长λ作为信号处理的先验信息,设计TDPC预滤波器,沿着杂波轨迹抑制掉大部分杂波。
在步骤2)中,所述的构造降维联合空时变换矩阵,对上述预滤波后的雷达回波数据进行降维的方法是:对于待检测距离单元,构造对应的用于局域联合处理和降维联合空时变换矩阵,对预滤波后的雷达回波数据进行空时二维自适应滤波。
在步骤3)中,所述的利用上述降维后各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵的方法是:选取待检测距离单元周围的参考距离单元,利用步骤2)中得到的降维后的各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵。
在步骤4)中,所述的利用上述待检测距离单元的协方差矩阵构建局域联合处理器,实现对剩余杂波的抑制和风场目标信号的匹配,得到第l个距离单元的风速估计值的方法是:利用步骤3)中估计得到的杂波协方差矩阵构建局域联合处理器,利用局域联合处理器的最优权矢量实现对剩余杂波的抑制和风场目标信号的匹配,进而得到风速估计结果。
本发明提供的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法具有如下有益效果:本方法能够在强杂波的情况下实现对低空风切变风速的准确估计,并且仿真结果证明了本发明方法的有效性。
附图说明
图1为本发明提供的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法流程图;
图2为全距离单元空时二维谱;
图3为原始杂波回波功率谱,图3(b)为TDPC预滤波后杂波回波功率谱;
图4为预滤波前后杂波回波特征值分布;
图5为采用本发明方法时的风速估计结果;
具体实施方式
下面结合附图和具体实例对本发明提供的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法进行详细说明。
如图1所示,本发明提供的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法包括按顺序进行的下列步骤:
1)构造LFMCW体制下雷达回波数据模型并利用载机速度和机载气象雷达工作参数设计TDPC预滤波器,对雷达回波数据进行预滤波;
本发明假设机载气象雷达天线体制为均匀线阵,杂波单元水平方位角和俯仰角分别表示为θ和
Figure BDA0002357911520000041
机载气象雷达系统的阵元数为N,相干脉冲数为K,从机载导航设备中读取载机速度V、调频周期Tr、阵元间隔d、机载气象雷达天线主瓣波束水平方位角θ0和俯仰角
Figure BDA0002357911520000042
机载气象雷达天线发射电磁波波长λ作为信号处理的先验信息。
机载气象雷达在其探测范围内共有L个距离单元,第l个距离单元的空时二维快拍数据x(l)(l=1,2,…L)可表示为:
x(l)=s(l)+c(l)+n (1)
其中,s(l)为第l个距离单元的低空风切变信号数据,c(l)为该距离单元的杂波回波数据,n为高斯白噪声。
下面对第l个距离单元的低空风切变信号数据s(l)进行详细推导。令第k(k=1,2…,K)个周期内机载气象雷达的发射信号为:
Figure BDA0002357911520000043
其中,fc为载波频率,μ=B/Tr为调频斜率,B为调频带宽。
假设第l个距离单元风场信号中心处点目标的多普勒频率为fdl,空间锥角为ψ0,则第k个周期的发射信号经该点目标反射后被第m(m=1,2,…M)个接收阵元接收的回波信号可表示为:
Figure BDA0002357911520000044
其中,αl为该点目标回波幅度,τlmk为该点目标回波信号的时延,可以表示为:
Figure BDA0002357911520000045
其中,Rl为该点目标与机载气象雷达间斜距,c为光速,v为该点目标与载机的相对速度,
Figure BDA0002357911520000051
构造第l个距离单元的混频参考信号:
Figure BDA0002357911520000052
其中,
Figure BDA0002357911520000053
为时延量,
Figure BDA0002357911520000054
为距离单元宽度。
将回波信号χr,l(m,k,t)与第l个距离单元的混频参考信号χref,l(k,t)进行混频并低通滤波,化简后可以得到差频信号为:
Figure BDA0002357911520000055
对式(6)中差频信号的快时间项t做傅里叶变换可得差频信号的频谱为:
Figure BDA0002357911520000056
其中,Te=Trreflmk为有效时长,Sa(β)=sin(β)/β。忽略距离速度耦合因素影响,差频信号幅度谱峰值处对应的频率即为该点目标距离产生的频率,故该频率点对应的频谱数据即为机载气象雷达的第m个接收阵元在第k个周期接收到第l个距离单元内该点目标的空时采样数据,即:
Figure BDA0002357911520000057
其中,
Figure BDA0002357911520000058
为该点目标的回波复幅度,fdl=2vTr/λ为归一化多普勒频率。
则第l个距离单元风场信号中心处点目标的空时二维快拍数据hl可以表示为:
Figure BDA0002357911520000059
其中,
Figure BDA00023579115200000510
表示Kronecker积,
Figure BDA00023579115200000511
表示第l个距离单元风场信号中心处点目标的时域导向矢量,
Figure BDA0002357911520000061
表示第l个距离单元风场信号中心处点目标的空域导向矢量。
较点目标而言,低空风切变是分布式目标,单距离单元内其在多普勒域及角度域均存在一定展宽。则第l个距离单元内的风场信号空时二维快拍数据可以表示为:
Figure BDA0002357911520000062
其中,Γl表示第l个距离单元风场信号的回波复幅度,At(fdl)为该距离单元风场信号的时域导向矢量,As0)为该距离单元风场信号的空域导向矢量,Al0,fdl)为该距离单元风场信号的空时导向矢量。时域导向矢量At(fdl)和空域导向矢量As0)可以分别表示为:
Figure BDA0002357911520000063
其中,
Figure BDA0002357911520000064
为频率扩展函数,σf为多普勒谱宽,⊙为Hadamard积,
Figure BDA0002357911520000065
为角度扩展函数,Δ为角度扩展。
假设地面各个杂波散射单元的杂波回波统计独立。类比式(8)点目标回波数据,可得到第l个距离单元第m个阵元第k个周期的杂波回波数据为:
Figure BDA0002357911520000066
其中,m=1,…,M,k=1,…,K,ρi为杂波反射系数,
Figure BDA0002357911520000067
为接收方向图,
Figure BDA0002357911520000068
为空间角频率,
Figure BDA0002357911520000069
为时间角频率,θi为第i个杂波散射单元的方位角,
Figure BDA00023579115200000610
为第l个距离单元的俯仰角,Nc为一个距离单元的杂波散射单元个数。
令杂波散射单元的回波复幅度、空域相位和多普勒相位分别为:
Figure BDA0002357911520000071
则式(12)可以重新表示为:
Figure BDA0002357911520000072
令第k个周期的杂波回波数据为ck=[c1,k(l)c2,k(l)…cM,k(l)]T,则:
ck=ZDka (15)
其中,Z、Dk、a分别表示第l个距离单元内,雷达系统在一个调频周期内接收的Nc个杂波散射单元杂波回波空域相位、多普勒相位以及复幅度。其中:
Figure BDA0002357911520000073
假设相邻两个周期的杂波回波复幅度变化可以忽略,则第k+1个周期的杂波回波数据比第k个周期仅多了一个时域多普勒相位,可表示为:
Figure BDA0002357911520000074
其中,
Figure BDA0002357911520000075
因此,可以设计滤波系数矩阵Q(l),使得相邻两脉冲间杂波对消后剩余杂波回波能量
Figure BDA0002357911520000076
达到最小,即:
Figure BDA0002357911520000077
将式(15)、式(16)、式(17)代入式(18)中,并利用柯西-施瓦茨不等式可以得到式(18)的闭式解:
Figure BDA0002357911520000078
机载气象雷达系统在第l个距离单元的空时二维快拍数据可以表示为
Figure BDA0002357911520000081
xk(l)为所有阵元在第l个距离单元第k个周期接收的雷达回波数据,且xk(l)=[x1,k(l)…xm,k(l)…xM,k(l)]T,xm,k(l)为第l个距离单元第m个阵元第k个周期接收的雷达回波数据。
对第l个距离单元的空时二维快拍数据进行两脉冲的对消后,剩余雷达回波数据为:
Figure BDA0002357911520000082
其中,IM∈CM×M为单位矩阵,
Figure BDA0002357911520000083
为由滤波系数矩阵构成的TDPC预滤波器,可以表示为:
Figure BDA0002357911520000084
可以看出,由于有一个周期用于杂波回波对消,所以经过预滤波后雷达回波数据的维度由MK变为M(K-1)。
2)构造降维联合空时变换矩阵,对上述预滤波后的雷达回波数据进行降维;
构造降维联合空时变换矩阵能够降低系统的维数,进而降低STAP处理的运算量。在空时二维平面上,以低空风切变信号所处空时通道为主通道,在其周围选取一定大小的矩形区域,将该区域内的其他空时通道作为辅助通道,利用主通道与辅助通道构造降维联合空时变换矩阵。
当低空风切变的方位已知,假设第l个距离单元内风场信号的空时导向矢量为Al0,fdll),其中,ψ0表示当前距离单元的空间锥角,fdll表示当前距离单元的归一化多普勒频率(fdll取值范围为[-1,1])。
假设JDL的区域大小选取为Ms×Ks,Ms代表选取的空域维数,Ks代表选取的时域维数。则JDL降维变换矩阵可以表示为:
Figure BDA0002357911520000091
其中,Ts0)、Tt(fdll)分别为空域和时域的降维变换矩阵,可分别表示为:
Figure BDA0002357911520000092
其中,Δfs为空域间隔,Δft为时域间隔,
Figure BDA0002357911520000093
表示Bt(fdll)的前(K-1)项,Bs0)和Bt(fdll)分别为第l个距离单元的加权空域导向矢量和时域导向矢量,可以分别表示为:
Figure BDA0002357911520000094
Figure BDA0002357911520000095
其中,ξs=[ξs1ξs2…ξsM]T与ξt=[ξt1ξt2…ξtK]T分别代表空域和时域的切比雪夫加权矢量。
在进行风速估计之前,需要对预滤波后的回波数据利用降维变换矩阵进行局域联合降维处理,如下所示:
Figure BDA0002357911520000096
3)利用上述降维后各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵;
选取待检测距离单元周围的参考距离单元,利用上述降维后各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵,可以表示为如下形式:
Figure BDA0002357911520000097
4)利用上述待检测距离单元的协方差矩阵构建局域联合处理器,实现对剩余杂波的抑制和风场目标信号的匹配,得到第l个距离单元的风速估计值;
根据LCMV准则,第l个距离单元的局域联合处理器可以表示为式(28)所示数学优化问题:
Figure BDA0002357911520000101
其中,BT(l)为第l个距离单元降维后的低空风切变信号的空时导向矢量,可以表示为:
Figure BDA0002357911520000102
ωT(l)为局域联合处理器的最优权矢量,可以表示为:
Figure BDA0002357911520000103
机载气象雷达的回波空时二维快拍数据经过预滤波滤除大量杂波之后,再通过局域联合处理抑制剩余杂波并与风场目标信号进行匹配。构造式(31)所示代价函数来估计待测距离单元风场回波信号的多普勒频率:
Figure BDA0002357911520000104
最终得到第l个距离单元风速估计值
Figure BDA0002357911520000105
为:
Figure BDA0002357911520000106
5)重复步骤2)-4),依次对探测范围内所有待测距离单元的回波数据进行处理,计算出各个距离单元的风速估计值,进而完成整个低空风切变场的风速估计。
本发明提供的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法可以通过以下仿真结果进一步说明。
仿真条件描述:机载气象雷达天线为阵元数N=16的均匀线阵,阵元间隔d=λ/2,机载气象雷达天线发射电磁波波长为0.05m,脉冲重复频率为7000Hz,最小可分辨距离为150m,相干处理脉冲数为K=64,杂噪比为40dB,信噪比为5dB。
图2为仿真的机载气象雷达回波信号空时二维谱,从图中可见,低空风切变的空时二维谱为一条带,当机载气象雷达在前视模式工作时,杂波回波的空时二维谱为椭圆形,而且杂波回波的功率远大于低空风切变场的回波功率,低空风切变场回波的多普勒信息完全淹没在杂波回波的多普勒信息中,因此会严重影响后期低空风切变的检测及参数估计。
图3为TDPC预滤波前后载机前视阵杂波的功率谱(选取90号距离单元为例),从图中可以看出,TDPC预滤波器可以沿着杂波回波的分布轨迹形成一道较深的凹口,使主瓣杂波功率大大降低,有效地滤除大量杂波。
图4为TDPC预滤波前后杂波回波特征值分布图,可以很明显看出,经过TDPC预滤波后,杂波回波大特征值个数显著减小,杂波回波自由度显著降低。
图5为本发明方法与空时最优风速估计结果对比图。从图中可以明显看出,本发明方法在强杂波背景下仍然可以很好地估计出风场速度,并且低空风切变信号的风速在8.5-16.5km范围内,随距离变换呈现出正负变化的反“S”形分布,这是低空风切变信号最重要的特点。

Claims (5)

1.一种LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法,其特征在于:所述的低空风切变风速估计方法包括按顺序进行的下列步骤:
1)构造LFMCW体制下雷达回波数据模型并利用载机速度和机载气象雷达工作参数设计TDPC预滤波器,对雷达回波数据进行预滤波;
2)构造降维联合空时变换矩阵,对上述预滤波后的雷达回波数据进行降维;
3)利用上述降维后各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵;
4)利用上述待检测距离单元的协方差矩阵构建局域联合处理器,实现对剩余杂波的抑制和风场目标信号的匹配,得到第l个距离单元的风速估计值;
5)重复步骤2)-4),依次对探测范围内所有待测距离单元的回波数据进行处理,计算出各个距离单元的风速估计值,进而完成整个低空风切变场的风速估计。
2.根据权利要求1所述的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法,其特征在于:在步骤1)中,所述的构造LFMCW体制下雷达回波数据模型并利用载机速度和机载气象雷达工作参数设计TDPC预滤波器,对雷达回波数据进行预滤波的方法是:利用dechirp方式对机载气象雷达接收到的数据进行处理,得到空时二维快拍数据;从机载导航设备中读取载机速度V、脉冲重复频率fr、阵元间隔d、机载气象雷达天线主瓣波束水平方位角θ0和俯仰角
Figure FDA0002357911510000011
机载气象雷达天线发射电磁波波长λ作为信号处理的先验信息,设计TDPC预滤波器,沿着杂波轨迹抑制掉大部分杂波。
3.根据权利要求1所述的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法,其特征在于:在步骤2)中,所述的构造降维联合空时变换矩阵,对上述预滤波后的雷达回波数据进行降维的方法是:对于待检测距离单元,构造对应的用于局域联合处理和降维联合空时变换矩阵,对预滤波后的雷达回波数据进行空时二维自适应滤波。
4.根据权利要求1所述的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法,其特征在于:在步骤3)中,所述的利用上述降维后各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵的方法是:选取待检测距离单元周围的参考距离单元,利用步骤2)中得到的降维后的各个参考距离单元的雷达回波数据估计待检测距离单元的协方差矩阵。
5.根据权利要求1所述的LFMCW体制下基于TDPC-JDL的低空风切变风速估计方法,其特征在于:在步骤4)中,所述的利用上述待检测距离单元的协方差矩阵构建局域联合处理器,实现对剩余杂波的抑制和风场目标信号的匹配,得到第l个距离单元的风速估计值的方法是:利用步骤3)中估计得到的杂波协方差矩阵构建局域联合处理器,利用局域联合处理器的最优权矢量实现对剩余杂波的抑制和风场目标信号的匹配,进而得到风速估计结果。
CN202010013262.7A 2020-01-07 2020-01-07 Lfmcw体制下基于tdpc-jdl的低空风切变风速估计方法 Pending CN111175754A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010013262.7A CN111175754A (zh) 2020-01-07 2020-01-07 Lfmcw体制下基于tdpc-jdl的低空风切变风速估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010013262.7A CN111175754A (zh) 2020-01-07 2020-01-07 Lfmcw体制下基于tdpc-jdl的低空风切变风速估计方法

Publications (1)

Publication Number Publication Date
CN111175754A true CN111175754A (zh) 2020-05-19

Family

ID=70649219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010013262.7A Pending CN111175754A (zh) 2020-01-07 2020-01-07 Lfmcw体制下基于tdpc-jdl的低空风切变风速估计方法

Country Status (1)

Country Link
CN (1) CN111175754A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115310025A (zh) * 2022-10-12 2022-11-08 珠海翔翼航空技术有限公司 一种基于融合模型的飞机安全着陆方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070073486A1 (en) * 2005-09-26 2007-03-29 Tillotson Brian J Airborne weather profiler network
CN104035095A (zh) * 2014-05-30 2014-09-10 中国民航大学 基于空时最优处理器的低空风切变风速估计方法
CN104345301A (zh) * 2014-11-05 2015-02-11 西安电子科技大学 机载mimo雷达非自适应杂波预滤波空时二维对消方法
CN106872982A (zh) * 2017-03-24 2017-06-20 中国民航大学 基于多普勒预滤波的降维stap微下击瀑流中心风速估计方法
CN107748364A (zh) * 2017-10-13 2018-03-02 中国民航大学 基于降秩多级维纳滤波器的低空风切变风场速度估计方法
CN108761419A (zh) * 2018-06-15 2018-11-06 中国民航大学 基于组合空时主通道自适应处理的低空风切变风速估计方法
US20190170871A1 (en) * 2017-11-22 2019-06-06 Foster-Miller, Inc. Airborne Wind Profiling Portable Radar System and Method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070073486A1 (en) * 2005-09-26 2007-03-29 Tillotson Brian J Airborne weather profiler network
CN104035095A (zh) * 2014-05-30 2014-09-10 中国民航大学 基于空时最优处理器的低空风切变风速估计方法
CN104345301A (zh) * 2014-11-05 2015-02-11 西安电子科技大学 机载mimo雷达非自适应杂波预滤波空时二维对消方法
CN106872982A (zh) * 2017-03-24 2017-06-20 中国民航大学 基于多普勒预滤波的降维stap微下击瀑流中心风速估计方法
CN107748364A (zh) * 2017-10-13 2018-03-02 中国民航大学 基于降秩多级维纳滤波器的低空风切变风场速度估计方法
US20190170871A1 (en) * 2017-11-22 2019-06-06 Foster-Miller, Inc. Airborne Wind Profiling Portable Radar System and Method
CN108761419A (zh) * 2018-06-15 2018-11-06 中国民航大学 基于组合空时主通道自适应处理的低空风切变风速估计方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
刘朝晖等: "水下声信号处理技术", 国防工业出版社, pages: 211 - 212 *
单慧琳等: "对称三角线性调频连续波雷达应用于风速探测", 《电子技术应用》 *
单慧琳等: "对称三角线性调频连续波雷达应用于风速探测", 《电子技术应用》, no. 01, 6 January 2013 (2013-01-06) *
吴仁彪等: "基于压缩感知的低空风切变风速估计方法", 《电子与信息学报》 *
吴仁彪等: "基于压缩感知的低空风切变风速估计方法", 《电子与信息学报》, no. 10, 15 October 2013 (2013-10-15) *
李海 等: "基于多通道LFMCW雷达的低空风切变风速估计方法", 《信号处理》, vol. 35, no. 11, 30 November 2019 (2019-11-30), pages 1800 - 1808 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115310025A (zh) * 2022-10-12 2022-11-08 珠海翔翼航空技术有限公司 一种基于融合模型的飞机安全着陆方法和装置

Similar Documents

Publication Publication Date Title
CN108761419B (zh) 基于组合空时主通道自适应处理的低空风切变风速估计方法
CN108344982B (zh) 基于长时间相参积累的小型无人机目标雷达检测方法
CN110554391B (zh) 基于ddd-gmb的低空风切变风速估计方法
CN111220955B (zh) 基于垂直阵列协方差矩阵特征分解的机载气象雷达地杂波抑制方法
CN103529437A (zh) 系留气球载相控阵雷达在多目标下分辨空地目标的方法
CN111239742B (zh) 海杂波背景下基于mbmc的低空风切变风速估计方法
CN111220986A (zh) 回波功率筛选与dlcd辅助的低空风切变风速估计方法
Watts et al. A comparison of coherent and non-coherent radar detection performance in radar sea clutter
CN104793210A (zh) 基于压缩感知的机载相控阵雷达低空风切变风速估计方法
Fang et al. FMCW-MIMO radar-based pedestrian trajectory tracking under low-observable environments
CN111175754A (zh) Lfmcw体制下基于tdpc-jdl的低空风切变风速估计方法
CN106802408B (zh) 基于稀疏恢复的机载非正侧阵近程杂波距离模糊抑制方法
CN103885042B (zh) 基于杂波子空间的阵元误差估计方法
Bacci et al. Joint STAP-ISAR for non-cooperative target imaging in strong clutter
CN110488239B (zh) 基于调频连续波雷达的目标检测方法
CN110109120B (zh) 载机俯冲下基于ddd-3dt的低空风切变风速估计方法及装置
Fang et al. E 2 DTF: An End-to-End Detection and Tracking Framework for Multiple Micro-UAVs With FMCW-MIMO Radar
CN114428228B (zh) 高重频和差天线雷达导引头的杂波抑制方法
CN104914420A (zh) 基于多通道联合自适应处理的低空风切变风速估计方法
CN115616629A (zh) 一种基于天基外辐射源信号的运动目标探测补偿方法
CN115113208A (zh) 一种基于杂波特征精确认知的连续波雷达杂波对消方法
CN110907930B (zh) 一种基于角度估计的车载雷达目标检测估计方法及装置
CN109655793B (zh) 高频雷达从瞬态干扰中提取回波的方法
Abratkiewicz et al. Target acceleration estimation in active and passive radars
CN112748404B (zh) 基于双对称结构和赋权优化的空基雷达杂波抑制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination