CN111174376A - 一种基于测量值的蓄冷空调系统能效评价的计算方法 - Google Patents

一种基于测量值的蓄冷空调系统能效评价的计算方法 Download PDF

Info

Publication number
CN111174376A
CN111174376A CN201910878824.1A CN201910878824A CN111174376A CN 111174376 A CN111174376 A CN 111174376A CN 201910878824 A CN201910878824 A CN 201910878824A CN 111174376 A CN111174376 A CN 111174376A
Authority
CN
China
Prior art keywords
cold
energy efficiency
electric quantity
air
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910878824.1A
Other languages
English (en)
Inventor
赵晓宇
贺延壮
贺迪
牛璐琳
徐珍喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongfang Technovator International Technology Beijing Co ltd
Original Assignee
Tongfang Technovator International Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongfang Technovator International Technology Beijing Co ltd filed Critical Tongfang Technovator International Technology Beijing Co ltd
Priority to CN201910878824.1A priority Critical patent/CN111174376A/zh
Publication of CN111174376A publication Critical patent/CN111174376A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种基于测量值的蓄冷空调系统能效评价的计算方法,涉及暖通空调技术领域。本发明的方法步骤为:1)定义系统供冷周期,采用不同的时间步长对系统的能效数值进行统计分析,计算完整周期的能效比。2)通过采集器采集供冷周期内系统冷量和电量,输入电价数据。3)将电量折算为常规系统供冷电量,即:
Figure 100004_DEST_PATH_IMAGE002
4)将折算常规电量加入到EER计算公式中,完成蓄冷空调系统的能效比计算,

Description

一种基于测量值的蓄冷空调系统能效评价的计算方法
技术领域
本发明涉及暖通空调技术领域,特别是基于测量值的蓄冷空调系统能效评价的计算方法。
背景技术
蓄冷空调在中国已有40多年的应用历史,在城市化和工业化快速发展的今天,电网高峰期供电压力巨大。同时在有峰谷电价政策的城市中电价高峰期供冷费用过高,而具有移峰填谷的蓄冷空调系统成为一种有效的解决方案,有效实现了电力的调峰,同时也为业主节省了大量运行费用,但是并没有一个完整的运行能效评价体系。
欧美和中东等国家对于蓄冷空调系统的评价方法大多聚焦于LCC(Life-cycle-cost)的动态经济型指标,国内大多使用静态投资回收期(Pay-back-period)作为蓄冷系统的评价指标。现有技术方案使用较多的为常规空调系统的能效指标EER,即系统的制冷量与其所有设备的电耗之比,单位通常采用kWhc/kWhe,指标数值越大代表其系统运行效率越高。在此评价方法中,可以逐时计算系统EER用于评估系统逐时能效;同时也可以用一个完整的供冷周期为单位计算周期总能效,用于评估系统整体运行状况。计算公式如下:
Figure 100002_DEST_PATH_IMAGE002
如果蓄冷空调系统使用同样的计算方法,则能效比将远低于同等水平的常规系统,以部分项目案例实际计算结果为例:
Figure 100002_DEST_PATH_IMAGE004
现有技术中,空调系统的能源站大致分为根据空调使用时间提供制冷的常规空调系统和利用峰谷电价差异进行蓄能空调系统。而对于能源站进行运行和性能分析的最常见方法为计算冷站能效,即能效比EER=输出冷量/输入电量。如果直接照搬到蓄冷空调系统中,由于蓄冷系统夜间电价低谷期进行制冷蓄冷(冰或冷水)在白天电价平峰和高峰期释放,具有节费不省电的特点,会出现蓄冷系统总能效远低于常规系统的情况,无法体现蓄冷系统“移峰填谷”优化能源结构和发电效率以及节省业主运行费用等重要作用。通常蓄冷空调系统设计时一般考虑“项目投资回收期”为指标体现其节省运行费用的特点,但是只能用于设计前期方案比较选择,不能用于后期的运行指导。
发明内容
针对上述现有技术存在的不足,本发明的目的是提供一种基于测量值的蓄冷空调系统能效评价的计算方法。它可将蓄冷空调系统能效比折算为同等情况下常规空调系统能效比,从而进行系统间运行能效的对比,给蓄冷空调系统提供一种新的评价方法,应用于对系统节能诊断和改善。
为了达到上述发明目的,本发明的技术方案以如下方式实现:
一种基于测量值的蓄冷空调系统能效评价的计算方法,它的方法步骤为:
1)定义系统供冷周期,采用不同的时间步长对系统的能效数值进行统计分析,计算完整周期的能效比。
2)通过采集器采集供冷周期内系统冷量和电量,输入电价数据。所述冷量为系统总输出冷量,包括冷机空调工况制冷量和蓄能部分当日的释冷量。所述电量包括设备在直接供冷工况峰、平、谷时段和蓄冷工况分别的用电量。所述电价包括当地的峰平谷电价和常规电价。
3)将电量折算为常规系统供冷电量,即:
Figure 100002_DEST_PATH_IMAGE006
其中,
Figure 100002_DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE010
,平时段和谷时段类似。
4)将折算常规电量加入到EER计算公式中,完成蓄冷空调系统的能效比计算,系统周期内总供冷量=冷机空调工况制冷量(双工况冷机+机载冷机)+蓄冷设备供冷量
Figure DEST_PATH_IMAGE012
在上述基于测量值的蓄冷空调系统能效评价的计算方法中,所述采用不同的时间步长为日、周、月、季度或者年。
在上述基于测量值的蓄冷空调系统能效评价的计算方法中,所述峰平谷电量包括设备空调工况设备制冷用电量。
本发明由于采用了上述方法,用电价折算的方式将蓄冷空调系统能效比折算为常规空调系统,提出蓄冷空调系统的能效评价的具体方法。该方法不仅可以反映项目运行真实能效水平,且可以用于设备和系统的节能诊断。本发明方法考虑了蓄冷系统对城市电网削峰填谷的重要作用,减轻了电网的压力,并在夜间电量需求低时蓄冷,同时节省了发电和制冷的成本。本发明中,折算为常规系统后,蓄冷系统也可与现有评价标尺进行对标,利用常规系统完整的评价体系对蓄冷系统进行评价。
具体实施方式
本发明基于测量值的蓄冷空调系统能效评价的计算方法,它的方法步骤为:
1)定义系统供冷周期,采用不同的时间步长即日、周、月、季度或者年对系统的能效数值进行统计分析,计算完整周期的能效比。
2)通过采集器采集供冷周期内系统冷量和电量,输入电价数据。所述冷量为系统总输出冷量,包括冷机空调工况制冷量和蓄能部分当日的释冷量。所述电量包括设备在直接供冷工况峰、平、谷时段和蓄冷工况分别的用电量。所述电价包括当地的峰平谷电价和常规电价。
3)将电量折算为常规系统供冷电量,即:
Figure DEST_PATH_IMAGE006A
其中,
Figure DEST_PATH_IMAGE008A
Figure DEST_PATH_IMAGE010A
,平时段和谷时段类似;
峰平谷电量包括设备空调工况设备制冷用电量,和当前时段蓄冷系统取冷用电量,也可以理解为:
Figure DEST_PATH_IMAGE017
4)将折算常规电量加入到EER计算公式中,完成蓄冷空调系统的能效比计算,
系统周期内总供冷量=冷机空调工况制冷量(双工况冷机+机载冷机)+蓄冷设备供冷量
Figure DEST_PATH_IMAGE012A

Claims (3)

1.一种基于测量值的蓄冷空调系统能效评价的计算方法,它的方法步骤为:
1)定义系统供冷周期,采用不同的时间步长对系统的能效数值进行统计分析,计算完整周期的能效比;
2)通过采集器采集供冷周期内系统冷量和电量,输入电价数据;所述冷量为系统总输出冷量,包括冷机空调工况制冷量和蓄能部分当日的释冷量;所述电量包括设备在直接供冷工况峰、平、谷时段和蓄冷工况分别的用电量;所述电价包括当地的峰平谷电价和常规电价;
3)将电量折算为常规系统供冷电量,即:
Figure DEST_PATH_IMAGE002
其中,
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE006
,平时段和谷时段类似;
4)将折算常规电量加入到EER计算公式中,完成蓄冷空调系统的能效比计算,
系统周期内总供冷量=冷机空调工况制冷量(双工况冷机+机载冷机)+蓄冷设备供冷量
Figure DEST_PATH_IMAGE008
2.根据权利要求1所述基于测量值的蓄冷空调系统能效评价的计算方法,其特征在于,所述采用不同的时间步长为日、周、月、季度或者年。
3.根据权利要求1或2所述基于测量值的蓄冷空调系统能效评价的计算方法,其特征在于,所述峰平谷电量包括设备空调工况设备制冷用电量。
CN201910878824.1A 2019-09-18 2019-09-18 一种基于测量值的蓄冷空调系统能效评价的计算方法 Pending CN111174376A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910878824.1A CN111174376A (zh) 2019-09-18 2019-09-18 一种基于测量值的蓄冷空调系统能效评价的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910878824.1A CN111174376A (zh) 2019-09-18 2019-09-18 一种基于测量值的蓄冷空调系统能效评价的计算方法

Publications (1)

Publication Number Publication Date
CN111174376A true CN111174376A (zh) 2020-05-19

Family

ID=70655756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910878824.1A Pending CN111174376A (zh) 2019-09-18 2019-09-18 一种基于测量值的蓄冷空调系统能效评价的计算方法

Country Status (1)

Country Link
CN (1) CN111174376A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654612A (zh) * 2022-10-26 2023-01-31 珠海格力电器股份有限公司 一种冰蓄冷系统的诊断方法及装置、冰蓄冷设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647225A (en) * 1995-06-14 1997-07-15 Fischer; Harry C. Multi-mode high efficiency air conditioning system
CN107062475A (zh) * 2017-03-27 2017-08-18 国网天津市电力公司 一种冰蓄冷空调经济效益在线监测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647225A (en) * 1995-06-14 1997-07-15 Fischer; Harry C. Multi-mode high efficiency air conditioning system
CN107062475A (zh) * 2017-03-27 2017-08-18 国网天津市电力公司 一种冰蓄冷空调经济效益在线监测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴若飒: "公共建筑中蓄冷空调系统能效经济性评价与保障体系研究", 《中国优秀硕士学位论文全文数据库》 *
肖剑仁,陈震宇: "温湿度独立控制江水源热泵耦合大温差水蓄冷空调系统应用与分析", 《暖通空调》 *
胡涛等: "某水蓄冷空调系统的设计及经济性分析", 《制冷与空调》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654612A (zh) * 2022-10-26 2023-01-31 珠海格力电器股份有限公司 一种冰蓄冷系统的诊断方法及装置、冰蓄冷设备

Similar Documents

Publication Publication Date Title
CN105160159A (zh) 一种多能源技术量化筛选方法
CN109539480B (zh) 一种面向分布式能源站的冷热负荷绿色节能优化调度系统
CN108053064A (zh) 一种电蓄冷负荷预测方法
CN111174376A (zh) 一种基于测量值的蓄冷空调系统能效评价的计算方法
CN104457023A (zh) 区域型冷热电三联供系统的设备容量优化配置方法
CN101424459A (zh) 一种新能源中央空调系统
Wang et al. Electricity demand analysis for solar PV houses: Polyvalent heat pumps coupled with water storage tanks
CN113298164B (zh) 一种基于光伏出力不确定性的楼宇用能优化方法
CN115222227A (zh) 一种基于数据库的碳排放量确定方法、系统、介质及设备
CN113221315B (zh) 构建海水源热泵系统机组设计选型方法及系统
Yin et al. Heating characteristics and economic analysis of a controllable on-demand heating system based on off-peak electricity energy storage
CN114548533A (zh) 一种建筑冷热电动态负荷设计方法、装置、区域内动态负荷获取方法、计算机及存储介质
Julianto et al. Confronting the Duck Curve Problem Using Dynamic Economic Emission Dispatch with CAES.
CN114548805B (zh) 一种太阳能和地源热泵复合系统在典型港区节能减排中的应用效果评估模型
Liu et al. Economic Analysis of Grid-Interactive Efficient Buildings: A Case Study in South China
CN2807103Y (zh) 太阳能空调热水装置
CN117290939B (zh) 一种适用于地铁车站的蓄冷设计计算方法
CN217057792U (zh) 一种带有储能装置的热管空调
CN202532619U (zh) 超低噪音节能型风机盘管机组
Zhou et al. Research on Modeling Method of Comprehensive Energy User Load in Load-intensive City Smart Park
Xu et al. Performance Diagnosis and Energy-Saving Optimization of the Heat Recovery Unit in An Office Building in Sichuan
Jin et al. The Economic Evaluation Research of Multi-Class Electric-Based Heating Mode in Non-Municipal Area
Ma et al. Brief Analysis of Compound Air Conditioning System in a Battery Manufacturing Plant
Shen Energy saving system for building cooling and heating integration based on building information modelling technology
Chen et al. Development of an integrated energy system simulation computing platform based on a typical cross-border area

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200519

WD01 Invention patent application deemed withdrawn after publication