CN111172535B - 一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法 - Google Patents

一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法 Download PDF

Info

Publication number
CN111172535B
CN111172535B CN202010060668.0A CN202010060668A CN111172535B CN 111172535 B CN111172535 B CN 111172535B CN 202010060668 A CN202010060668 A CN 202010060668A CN 111172535 B CN111172535 B CN 111172535B
Authority
CN
China
Prior art keywords
stainless steel
film
titanium dioxide
nanoflower
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010060668.0A
Other languages
English (en)
Other versions
CN111172535A (zh
Inventor
张喆
吴进明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010060668.0A priority Critical patent/CN111172535B/zh
Publication of CN111172535A publication Critical patent/CN111172535A/zh
Application granted granted Critical
Publication of CN111172535B publication Critical patent/CN111172535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法。将清洗干燥后的不锈钢片浸没于添加了硝酸的双氧水溶液中,以海绵钛为钛源,在80~90℃下保温24~48小时,即可在不锈钢表面覆盖均匀的二氧化钛纳米花薄膜。本发明方法简便、成本低,所制备的纳米花状二氧化钛薄膜均匀覆盖不锈钢表面,结合牢固,可应用于自清洁、杀菌、光催化等领域。

Description

一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法
技术领域
本发明公开一种在不锈钢表面一步生长TiO2纳米花薄膜的技术,可在自清洁、杀菌、污水处理、大气治理等方面获得应用,属环保和新材料领域。
背景技术
TiO2作为一种过渡金属氧化物,因为具有高的可见光透过率、良好的化学稳定性以及无毒、环境友好等特性,在光催化有机污染物降解、光解水制氢、染料敏化太阳能电池、灭菌、自清洁、气体传感等诸多领域都有巨大的应用。基于其应用的广泛性,在金属、玻璃、陶瓷等不同类型的材料表面生长具有特殊纳米结构及特殊物理化学特性的TiO2薄膜具有重要意义。
不锈钢耐蚀性好,价格便宜,在日常生活和工业中应用广泛。在不锈钢表面引入TiO2功能涂层,可赋予其额外的杀菌、自清洁等特性,拓展其应用领域。作为TiO2载体,不锈钢具有显著的优势:耐腐蚀、耐高温、柔韧性好、价格低廉。CN1634653A公布了一种以不锈钢丝网为载体,采用溶胶凝胶技术制备纳米TiO2薄膜的方法。该方法所制备的TiO2为零维纳米颗粒,相对于一维、三维等纳米结构,表面积相对较小,作为光催化剂应用时,光子利用率低,活性位点有限,同时不利于光生载流子的有效分离。CN103290417A公布了一种不锈钢表面生长一维纳米管结构TiO2薄膜的制备方法。该方法结合双层辉光离子渗金属和阳极氧化法等技术,工艺相对复杂,设备要求高。本课题组之前公布了一种在不锈钢丝网表面制备TiO2纳米线阵列薄膜的方法(发明专利号ZL201310541801.4),首先采用溶胶凝胶技术在不锈钢丝网表面制备TiO2籽晶层,而后在籽晶层上生长TiO2纳米线阵列,制备过程多步,且涉及成本较高的溶胶凝胶技术。
发明内容
本发明的目的在于针对现有技术的不足,提供一种在不锈钢表面一步生长TiO2纳米花薄膜的技术,方法简便,成本较低,工业化应用前景好。其主要步骤如下:
1)配置反应液
在质量百分比浓度为15~30%的双氧水中,添加0.14~0.28摩尔/升硝酸,得到反应液。
2)生长TiO2纳米花结构薄膜
将清洗干燥后不锈钢片浸没于反应液中,并加入过量海绵钛作为钛源,在80~90℃下反应24~48小时,即可在不锈钢表面均匀覆盖纳米花状薄膜。
本发明在低温液相中在不锈钢表面一步生长纳米花薄膜。所得薄膜对反应时间、双氧水浓度等过程参数不敏感,简单易行,重复性好。与其他技术相比,本发明方法制备技术工艺简单,无需对不锈钢进行预处理、无需昂贵试剂或复杂设备、无需高温高压等苛刻条件,反应条件温和,可控性好,适合于大面积生产,且制备的纳米花属于三维纳米结构,与零维的纳米颗粒、一维的纳米管与纳米线等纳米结构相比具有更高的表面积,有利于光催化效率的提高,可望在环境保护、灭菌等领域获得实际应用。
附图说明
图1为实施例1制备的表面覆盖TiO2纳米花薄膜的不锈钢片的低倍场发射扫描电子显微镜照片;
图2为实施例1制备的表面覆盖TiO2纳米花薄膜的不锈钢片的高倍场发射扫描电子显微镜照片;
图3为实施例1制备的表面覆盖TiO2纳米花薄膜的不锈钢片的X射线衍射谱;
图4为实施例2制备的表面覆盖TiO2纳米花薄膜的不锈钢片的低倍场发射扫描电子显微镜照片;
图5为实施例2制备的表面覆盖TiO2纳米花薄膜的不锈钢片的高倍场发射扫描电子显微镜照片;
图6为实施例2制备的表面覆盖TiO2纳米花薄膜的不锈钢片的高倍场发射扫描电子显微镜照片;
图7为实施例3制备的表面覆盖TiO2纳米花薄膜的不锈钢片的低倍场发射扫描电子显微镜照片;
图8为实施例3制备的表面覆盖TiO2纳米花薄膜的不锈钢片的高倍场发射扫描电子显微镜照片;
图9为实施例4制备的表面覆盖TiO2纳米花薄膜的不锈钢片的低倍场发射扫描电子显微镜照片;
图10为实施例4制备的表面覆盖TiO2纳米花薄膜的不锈钢片的高倍场发射扫描电子显微镜照片;
具体实施方式
以下结合实施例进一步阐述本发明在不锈钢表面一步生长纳米花TiO2薄膜的方法,但本发明不仅仅局限于下述实施例。所得纳米花薄膜为结晶良好的金红石结构TiO2薄膜,厚度约300~400纳米,与不锈钢基体结合牢固。
实施例1
步骤1配置反应液
在质量百分比浓度为30%的双氧水中,添加0.28摩尔/升硝酸,得到反应液。
步骤2生长纳米花薄膜
将清洗干燥后304不锈钢浸没于反应液中,加入0.25克海绵钛作为钛源,在80℃下反应24小时。
反应结果
图1低倍扫描电子显微镜照片表明,不锈钢表面均匀覆盖纳米花薄膜。图2高倍扫描电子显微镜图片表明,纳米花的尺度在300~500nm左右,不同纳米花的大小有一定差别。图3的X射线衍射结果表明,纳米花薄膜为结晶良好的金红石相TiO2
实施例2
步骤1配置反应液
同实施例1。
步骤2生长纳米花薄膜
将清洗干燥后304不锈钢浸没于反应液中,加入0.25克海绵钛作为钛源,在80℃下反应48小时。
反应结果
图4低倍扫描电子显微镜照片表明,纳米花薄膜生长密集;图5高倍扫描电子显微镜照片表明,与实施例1比较,所得纳米花形貌接近。图6高倍扫描电子显微镜照片表明,纳米花薄膜的厚度在400nm左右。
实施例3
步骤1配置反应液
在质量百分比浓度为15%的双氧水中,添加0.14摩尔/升硝酸,得到反应液。
步骤2生长纳米花薄膜
同实施例2。
反应结果
图7低倍扫描电子显微镜照片表明,不锈钢表面均匀覆盖纳米花薄膜,其上分布少量纳米花颗粒;图8高倍扫描电子显微镜照片表明,相对于实施例1、2反应获得的形貌,纳米花的尺度略微变小,尺寸更均匀。
实施例4
步骤1配置反应液
在质量百分比浓度为30%的双氧水中,添加0.28摩尔/升硝酸,得到反应液。
步骤2生长纳米花薄膜
将清洗干燥后304不锈钢浸没于反应液中,加入0.25克海绵钛作为钛源,在90℃下反应24小时。
反应结果
图9、10扫描电子显微镜照片表明,不锈钢片表面覆盖纳米花薄膜,但均匀性较差。

Claims (1)

1.一种在不锈钢表面一步生长TiO2纳米花薄膜的方法,其特征在于,过程是:将不锈钢片浸没于质量百分比浓度为15~30%的双氧水中,同时添加0.14~0.28摩尔/升硝酸,并加入过量海绵钛作为钛源,在80~90℃下反应24~48小时,即可在不锈钢表面均匀覆盖纳米花状TiO2薄膜。
CN202010060668.0A 2020-01-19 2020-01-19 一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法 Active CN111172535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010060668.0A CN111172535B (zh) 2020-01-19 2020-01-19 一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010060668.0A CN111172535B (zh) 2020-01-19 2020-01-19 一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法

Publications (2)

Publication Number Publication Date
CN111172535A CN111172535A (zh) 2020-05-19
CN111172535B true CN111172535B (zh) 2021-08-06

Family

ID=70652908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010060668.0A Active CN111172535B (zh) 2020-01-19 2020-01-19 一种在不锈钢表面一步生长二氧化钛纳米花薄膜的方法

Country Status (1)

Country Link
CN (1) CN111172535B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391851C (zh) * 2006-02-14 2008-06-04 浙江大学 一种制备三维纳米花结构二氧化钛的方法
CN101525152A (zh) * 2008-12-16 2009-09-09 中国科学院电工研究所 一种菊花状三维TiO2纳米材料及其制备方法
CN102557130A (zh) * 2012-02-22 2012-07-11 浙江大学 一种制备二氧化钛纳米花阵列薄膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391851C (zh) * 2006-02-14 2008-06-04 浙江大学 一种制备三维纳米花结构二氧化钛的方法
CN101525152A (zh) * 2008-12-16 2009-09-09 中国科学院电工研究所 一种菊花状三维TiO2纳米材料及其制备方法
CN102557130A (zh) * 2012-02-22 2012-07-11 浙江大学 一种制备二氧化钛纳米花阵列薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Titania Nanoflowers with High Photocatalytic Activity;Jin-Ming Wu;《J.Am.Ceram.Soc》;20061231;第89卷(第8期);全文 *

Also Published As

Publication number Publication date
CN111172535A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Zeng et al. Preparation of vertically aligned WO3 nanoplate array films based on peroxotungstate reduction reaction and their excellent photoelectrocatalytic performance
Komaraiah et al. Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating
Yang et al. Fast photoelectro-reduction of CrVI over MoS2@ TiO2 nanotubes on Ti wire
Yang et al. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism
Momeni et al. Growth and characterization of Ta2O5 nanorod and WTa2O5 nanowire films on the tantalum substrates by a facile one-step hydrothermal method
US8835285B2 (en) Methods to fabricate vertically oriented anatase nanowire arrays on transparent conductive substrates and applications thereof
Tang et al. Electrodeposition of ZnO nanotube arrays on TCO glass substrates
Bashiri et al. Influence of growth time on photoelectrical characteristics and photocatalytic hydrogen production of decorated Fe2O3 on TiO2 nanorod in photoelectrochemical cell
CN102107850B (zh) 一种表面包覆碳层的金红石单晶二氧化钛核壳结构纳米线阵列的制备方法
Patil et al. Photosensitive nanostructured TiO2 grown at room temperature by novel “bottom-up” approached CBD method
Tan et al. (001)-Faceted hexagonal ZnO nanoplate thin film synthesis and the heterogeneous catalytic reduction of 4-nitrophenol characterization
Nyarige et al. Structural and optical properties of hematite and L-arginine/hematite nanostructures prepared by thermal spray pyrolysis
Hu et al. Synthesis of Ag-loaded SrTiO 3/TiO 2 heterostructure nanotube arrays for enhanced photocatalytic performances
Xue et al. Insight into Cd0. 9Zn0. 1S solid-solution nanotetrapods: Growth mechanism and their application for photocatalytic hydrogen production
Zhang et al. Leaf-like MXene nanosheets intercalated TiO2 nanorod array photoelectrode with enhanced photoelectrochemical performance
Patil et al. Synthesis of photosensitive nanograined TiO2 thin films by SILAR method
Khan et al. Hierarchical nanostructures of titanium dioxide: synthesis and applications
Li et al. Electrochemical synthesis of orientation-ordered ZnO nanorod bundles
Shao et al. Nanotube-Based Composites: Synthesis and Applications
Biswal et al. ZnO/CuO nanostructures anchored over Ni/Cu tubular films via pulse electrodeposition for photocatalytic and antibacterial applications
Yang et al. Novel Fe2O3/{101} TiO2 nanosheet array films with stable hydrophobicity and enhanced photoelectrochemical performance
Kok et al. Bismuth-rich Bi12O17Cl2 nanorods engineered with oxygen vacancy defects for enhanced photocatalytic nitrogen fixation
Li et al. A highly efficient In2S3/Ag2S/TiO2 NTAs photoelectrodes for photocathodic protection of Q235 carbon steel under visible light
CN107699855A (zh) 一种具有高光催化效率的二氧化钛纳米棒薄膜及其制备方法
Han et al. Enhanced photoelectrochemical characteristic of TiO2 nanotubes via surface plasma treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant