CN111171848A - 一种生产高纯钢铁和氢气的系统及方法 - Google Patents

一种生产高纯钢铁和氢气的系统及方法 Download PDF

Info

Publication number
CN111171848A
CN111171848A CN202010070537.0A CN202010070537A CN111171848A CN 111171848 A CN111171848 A CN 111171848A CN 202010070537 A CN202010070537 A CN 202010070537A CN 111171848 A CN111171848 A CN 111171848A
Authority
CN
China
Prior art keywords
gas
coal
hydrogen
pyrolysis
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010070537.0A
Other languages
English (en)
Other versions
CN111171848B (zh
Inventor
王晓波
吴玉程
易群
邓存宝
史利娟
秦志峰
李聪明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010070537.0A priority Critical patent/CN111171848B/zh
Publication of CN111171848A publication Critical patent/CN111171848A/zh
Application granted granted Critical
Publication of CN111171848B publication Critical patent/CN111171848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Industrial Gases (AREA)

Abstract

本发明公开了一种生产高纯钢铁和氢气的系统及方法,属于能源化工领域。本发明是将低阶非粘结性煤通过改性用于可热解‑气化的原材料,通过热解‑气化一体化技术将低阶煤分级转化利用,获得高品质煤基富氢气体,并将其直接还原铁生产高纯钢铁和H2产品,实现了廉价低阶煤的高效高附加值转化利用;利用煤基富氢气体直接还原铁矿石/废钢材生产钢铁,有效避免传统焦炭炼钢过程中,焦炭所含灰分以及其他杂质元素进入铁水,提高钢铁材料纯净度;充分利用非炼焦煤资源,对现有焦化行业进行升级改造,不仅节省投资,同时缓解优质炼焦煤资源紧缺,降低原料成本,还能化解过剩焦炭产能,解决氢能产业链中规模化氢源问题,将带来巨大的经济效益和社会效益。

Description

一种生产高纯钢铁和氢气的系统及方法
技术领域
本发明涉及一种生产高纯钢铁和氢气的系统及方法,属于能源化工领域。具体涉及一种利用低阶非粘结性劣质煤转化制成富氢煤气,并将其用于生产氢气和高纯铁素体材料,特别是涉及一种生产高纯钢铁和氢气的多联产能源系统的应用方法。
背景技术
氢能与燃料电池产业是推动清洁能源转型和构建低碳行业体系的关键,是保护环境和改善生态的有效途径,也是培育经济发展新动能、新经济模式的重要支撑。氢能产业链包括制氢、储氢、运氢、加氢用氢,是一套新的配套系统工程。氢能的规模应用需要充足的氢源,目前氢源提取途径主要包括:各种化工过程副产氢的回收、电解水制氢、矿物燃料制氢、生物质制氢、其他含氢物质制氢。但存在稳定性差和经济性不足的问题。
2018年我国炼焦原煤消耗量为10亿吨左右,焦炭产量约4亿吨,传统焦化过程以炼焦煤作为原料,原料成本较高,产品主要为焦炭,焦炭作为炼钢的主要原料,由于含有少量的硫、氮、硅以及镁、铝等杂质元素,在还原铁矿石的过程中,这些杂质元素进入了铁水中,导致铁水纯净度降低,无法获得高质量铁素原材料,进而不能满足下游中高端铸造行业产品生产,附加值较低。焦炉煤气作为焦化过程的主要副产物,含有丰富的氢资源,H2(55~60vol.%)、CH4(25~30 vol.%)和少量的CO、CO2和N2。通常情况下,1吨干煤约产出0.75吨左右的焦炭和320 m3左右的焦炉煤气。目前大量的焦炉煤气主要通过补碳等工艺作为下游深加工原料气生产化学品或液体燃料(甲醇或汽油等),但由于工艺复杂,能源利用效率较低,化学产品附加值不高导致经济性不明显。利用焦炉煤气制氢是较为经济的技术路线之一,但仍存在产氢规模小、氢气生产成本高的问题。
因此,如何依托现有焦化装置生产要素,结合焦化和钢铁行业的特点,开展新技术的突破和产业的融合,设计合理的生产工艺路线,实现廉价低阶非炼焦煤替代炼焦煤的分级转化与利用,是优化焦化、钢铁行业产品结构,提高经济性的重要举措,对于煤炭资源的高效清洁综合利用具有重要意义。
发明内容
本发明提出了一种生产高纯钢铁和氢气的多联产能源系统和方法,利用煤改性技术、热解-气化一体化技术将低阶非粘结性劣质煤转化富氢煤气,并将其用于生产氢气和直接还原铁矿石或者废弃钢材生产钢铁的应用方法,实现低阶煤的高效高附加值利用。
本发明提出了一种生产高纯钢铁和氢气的多联产能源系统,包括如下装置:煤改性装置(包括配煤装置与型煤装置)、立式高温煤热解炉、气化炉、水煤气变换(CO+H2O=CO2+H2)反应器、电捕焦油器、酸性气体脱除塔、干法脱硫塔、气体分离单元、储气缓冲罐、竖炉;
煤改性装置设有低阶非粘结性煤入口,通过改性后的煤原料送入立式高温煤热解炉,热解获得的固体热解基础材料进入气化炉气化,热解炉的气体产物热解煤气与水煤气变换反应器的出口气体混合后共同进入电捕焦油器,脱除焦油、萘、氨、苯等杂质,电捕焦油器的出口气体送往酸性气体脱除塔,除去大部分CO2与H2S,初步净化后的气体在干法脱硫塔中将H2S进一步脱除,达到产品硫含量要求,从干法脱硫塔出来的净化气体分为两路,一路通入气体分离单元,分离出高纯度的H2产品,剩余贫氢气体与另一路净化气体混合后进入储气缓冲罐,从储气缓冲罐出来的富氢气体送入竖炉,富氢气体在竖炉内与铁矿石/废钢材发生还原反应,获得高纯度的铁素体材。
本发明提供了上述装置用于生产高纯钢铁和氢气的多联产能源系统方法,包括以下步骤:
a) 将低阶非粘结性煤送入煤改性装置,通过配煤与成型后制得可直接热解的煤炭原料;
b)将步骤a)产生的煤炭原料送往立式高温煤热解炉,反应温度为900 - 1400 oC,压力为1 atm,生成用于直接气化的基础材料,热解煤气和焦油;
所述热解煤气包括CH4、H2、CO、CO2以及少量焦油、萘、氨、苯、H2S杂质;
c)将步骤b)中热解生成的基础材料送入气化炉,在气化炉内与气化剂水蒸气、O2发生反应,制得含有CO、CO2、H2气体的粗煤气;
d)将步骤c)中产生的粗煤气送往水煤气变换反应器,发生水煤气变换反应CO+H2O=CO2+H2,制得富氢气体;
e)将步骤b)中热解煤气和步骤d)中富氢气体通入电捕焦油器,脱除焦油、萘、氨、苯等杂质,获得净化气体I;
f)将e)中净化气体I通入酸性气体脱除塔,除去大部分CO2和H2S气体,获得净化气体II;
g)将步骤f)中净化气体II通入干法脱硫塔顶部,在催化剂的作用下将残余的硫化物杂质基本完全脱除,获得净化气体III;
h)将步骤g)中净化气体III分成两路气流A和B,其中气体流A送往气体分离单元,分离出H2,获得H2产品,其剩余贫氢气体为气体流C;
I)将步骤h)中气体流B与气体流C在储气缓冲罐混合后得到还原性气体D,直接送往竖炉,通过还原性气体D与铁矿石或者废弃钢材反应获得高纯铁素材料。
上述一种生产生产高纯钢铁和氢气的方法,其特征在于:所述步骤d)中水煤气变换反应程度(即CO转化率)为0%到100%,根据下游H2和还原铁产量分配要求决定。
上述一种生产高纯钢铁和氢气的方法,其特征在于:所述步骤f)中酸性气体脱除塔采用的净化技术为低温甲醇法、聚乙二醇二甲醚法、碳酸丙烯酯法、N-甲基吡咯烷酮法、一乙醇胺法或二乙醇胺法中的任意一种。
上述一种生产高纯钢铁和氢气的方法,其特征在于:所述步骤g)中干法脱硫装置采用的催化剂为氧化铁、氧化锌、氧化钼或者氧化锰中的任意一种或几种。
上述一种生产高纯钢铁和氢气的方法,其特征在于:所述步骤f)中气体分离单元采用变压吸附、膜分离技术中的一种或者组合。
上述一种生产高纯钢铁和氢气的方法,其特征在于:所述步骤f) 中气流A与气流B的流量比例为1:0 -1:10。
上述一种生产高纯钢铁和氢气的系统及方法,所述步骤h)中还原性气体D中所含CH4体积分数不超过10%。
本发明的有益效果:
1)将低阶非粘结性煤通过改性用于可热解-气化的原材料,并通过热解-气化一体化技术将低阶煤分级转化利用,获得高品质的煤基富氢气体,并将其用于直接还原铁生产高纯钢铁和H2产品,实现了廉价低阶煤的高效高附加值转化利用;
2)利用煤基富氢气体直接还原铁矿石/废钢材生产钢铁,可以有效避免传统焦炭炼钢过程中,焦炭所含灰分以及其他杂质元素进入铁水,提高钢铁材料纯净度,从而满足后续中高端铸造铁素原材料的要求;
3)可基于现有焦化行业生产要素,充分利用非炼焦煤资源,对现有焦化行业进行升级改造,不仅节省投资,同时解决了低质煤炭资源的利用问题,缓解优质炼焦煤资源紧缺,降低原料成本,还能化解过剩焦炭产能,解决氢能产业链中规模化氢源问题,将带来巨大的经济效益和社会效益。
附图说明
图1为一种生产高纯钢铁和氢气的系统的流程图。
1−煤改性装置;2−立式高温煤热解炉;3−气化炉;4−水煤气变换反应器;5−电捕焦油器;6−酸性气体脱除塔; 7−干法脱硫塔;8−气体分离单元;9−储气缓冲罐;10−竖炉。
A-低阶非粘结性煤;B−煤炭原料;C−焦油;D−基础材料;E−水蒸气、O2;F−粗煤气;G−热解煤气;H-净化气体Ι;I-焦油、萘、苯等杂质;J−净化气体Ⅱ;K−H2S与CO2;L−硫杂质;M−净化气体III;N−气流体A;O−气流体B;P−H2;Q−气流体C;R−还原气体D;S−铁素体材料。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
如图1所示,一种生产高纯钢铁和氢气的多联产能源系统,包括依次连接的下列装置:煤改性装置1(包括配煤装置与型煤装置)、立式高温煤热解炉2、气化炉3、水煤气变换(CO+H2O=CO2+H2)反应器4、电捕焦油器5、酸性气体脱除塔6、干法脱硫塔7、气体分离单元8、储气缓冲罐9、竖炉10;
煤改性装置1设有低阶非粘结性煤入口,通过改性后的煤原料送入立式高温煤热解炉2,热解获得的固体热解基础材料进入气化炉气化3,热解炉的气体产物热解煤气与水煤气变换反应器4的出口气体混合后共同进入电捕焦油器5,脱除焦油、萘、氨、苯等杂质,电捕焦油器5的出口气体送往酸性气体脱除塔6,除去大部分CO2与H2S,初步净化后的气体在干法脱硫塔7中将H2S进一步脱除,达到产品硫含量要求,从干法脱硫塔7出来的净化气体分为两路,一路通入气体分离单元8,分离出高纯度的H2产品,剩余贫氢气体与另一路净化气体混合后进入储气缓冲罐9,从储气缓冲罐9出来的富氢气体送入竖炉10,富氢气体在竖炉10内与铁矿石/废钢材发生还原反应,获得高纯度的铁素体材。
实施例1:
如图1所示,将145万吨的低阶非粘结煤经煤改性后得到可直接热解的煤炭原料,将煤炭原料送入立式高温煤热解炉中,经热解后得到焦油(4.4万吨)、热解气(4.2亿Nm3),以及可直接气化的基础材料(100万吨)。100 万吨基础材料进入气化炉发生气化反应获得含CO、CO2、H2等气体的粗煤气(22.8亿Nm3),粗煤气经过水煤气变化(变换反应程度为1.0)后产生主要包含H2和CO2的富氢气体,与煤热解炉中产生的热解煤气混合后,依次送往电捕焦油器,酸性气体脱除塔,采用低温甲醇洗方法,脱除焦油、萘、氨、苯、H2S等杂质以及95% CO2,获得净化气体II。净化气体II进入干法脱硫塔,在氧化铁催化剂的作用下将残余的含硫杂质基本完全脱除,获得净化气体III。净化气体III 分为两路气体流A和B (比例1:3),其中气体流A送往气体分离单元,采用变压吸附分离技术获得高纯度H2(99.99 vol.%)产品约3.0万吨 (3.40亿Nm3),分离出的气体流C与气体流B混合后得到还原气体D (11.05亿Nm3)直接送入竖炉与铁矿石(Fe2O3 280万吨)反应,可以得到高纯铁素体材料约200万吨。
实施例2
如图1所示,将145万吨的低阶非粘结煤经煤改性后得到可直接热解的煤炭原料,将煤炭原料送入立式高温煤热解炉中,经热解后得到焦油(4.4万吨)、热解气(4.2亿Nm3),以及可直接气化的基础材料(100万吨)。100万吨基础材料进入气化炉发生气化反应获得含CO、CO2、H2等气体的粗煤气(22.8亿Nm3),粗煤气经过水煤气变化(变换反应程度为1.0)后产生主要包含H2和CO2的富氢气体,与煤热解炉中产生的热解气混合后,依次送往电捕焦油器,酸性气体脱除塔,采用低温甲醇洗方法,脱除焦油、萘、氨、苯、H2S等杂质以及95% CO2,获得净化气体II。净化气体II进入干法脱硫塔,在氧化锌催化剂的作用下将残余的含硫杂质基本完全脱除,获得净化气体III。净化气体III 分为两路气体流A和B (比例2:3),其中气体流A送往气体分离单元,采用变压吸附分离技术获得高纯度H2(99.99 vol.%)产品约4.9万吨(5.45亿Nm3),分离出的气体流C与气体流B混合后得到还原气体D(9.0亿Nm3)直接送入竖炉与铁矿石(Fe2O3 230万吨)反应,可以得到铁素体材料约162万吨。
实施例3
如图1所示,将145万吨的低阶非粘结煤经煤改性后得到可直接热解的煤炭原料,将煤炭原料送入立式高温煤热解炉中,经热解后得到焦油(4.4万吨)、热解气(4.2亿Nm3),以及可直接气化的基础材料(100万吨)。100万吨基础材料进入气化炉发生气化反应获得含CO、CO2、H2等气体的粗煤气(22.8亿Nm3),粗煤气经过水煤气变化(变换反应程度为1.0)后产生主要包含H2和CO2的富氢气体,与煤热解炉中产生的热解气混合后,依次送往电捕焦油器,酸性气体脱除塔,采用低温甲醇洗方法,脱除焦油、萘、氨、苯、H2S等杂质以及95% CO2,获得净化气体II。净化气体II进入干法脱硫塔,在氧化铁与氧化钼复合催化剂的作用下将残余的含硫杂质基本完全脱除,获得净化气体III。净化气体III 分为两路气体流A和B (比例4:1),其中气体流A送往气体分离单元,采用膜分离技术获得高纯度H2(99.99 vol.%)产品约9.7万吨 (10.9亿Nm3),分离出的气体流C与气体流B混合后得到还原气体D(3.55亿Nm3)直接送入竖炉与铁矿石(Fe2O3 100万吨)反应,可以得到铁素体材料约70万吨。
实施例4
如图1所示,将145万吨的低阶非粘结煤经煤改性后得到可直接热解的煤炭原料,将煤炭原料送入立式高温煤热解炉中,经热解后得到焦油(4.4万吨)、热解气(4.2亿Nm3),以及可直接气化的基础材料(100万吨)。100 万吨基础材料进入气化炉发生气化反应获得含CO、CO2、H2等气体的粗煤气(22.8亿Nm3),粗煤气经过水煤气变化(变换反应程度为0.8)后产生主要包含H2和CO2的富氢气体,与煤热解炉中产生的热解气混合后,依次送往电捕焦油器,酸性气体脱除塔,采用二乙醇胺法,脱除焦油、萘、氨、苯、H2S等杂质以及95% CO2,获得净化气体II。净化气体II进入干法脱硫塔,在氧化铁与氧化钼复合催化剂的作用下将残余的含硫杂质基本完全脱除,获得净化气体III。净化气体III 分为两路气体流A和B (比例1:3),其中气体流A送往气体分离单元,采用膜分离技术获得高纯度H2(99.99 vol.%)产品约2.9万吨 (3.3亿Nm3),分离出的气体流C与气体流B混合后得到还原气体D (10.7亿Nm3)直接送入竖炉与铁矿石(Fe2O3 270万吨)反应,可以得到铁素体材料约190万吨。
实施例5
如图1所示,将145万吨的低阶非粘结煤经煤改性后得到可直接热解的煤炭原料,将煤炭原料送入立式高温煤热解炉中,经热解后得到焦油(4.4万吨)、热解气(4.2亿Nm3),以及可直接气化的基础材料(100万吨)。100万吨基础材料进入气化炉发生气化反应获得含CO、CO2、H2等气体的粗煤气(22.8亿Nm3),粗煤气经过水煤气变化(变换反应程度为0.8)后产生主要包含H2和CO2的富氢气体,与煤热解炉中产生的热解气混合后,依次送往电捕焦油器,酸性气体脱除塔,采用二乙醇胺法,脱除焦油、萘、氨、苯、H2S等杂质以及95% CO2,获得净化气体II。净化气体II进入干法脱硫塔,在氧化锌与氧化锰复合催化剂的作用下将残余的含硫杂质基本完全脱除,获得净化气体III。净化气体III 分为两路气体流A和B (比例2:3),其中气体流A送往气体分离单元,采用变压吸附与膜分离结合技术获得高纯度H2(99.99vol.%)产品约4.7万吨 (5.26亿Nm3),分离出的气体流C与气体流B混合后得到还原气体D(8.74亿Nm3)直接送入竖炉与铁矿石(Fe2O3 225万吨)反应,可以得到铁素体材料约160万吨。
实施例6
如图1所示,将145万吨的低阶非粘结煤经煤改性后得到可直接热解的煤炭原料,将煤炭原料送入立式高温煤热解炉中,经热解后得到焦油(4.4万吨)、热解气(4.2亿Nm3),以及可直接气化的基础材料(100万吨)。100 万吨基础材料进入气化炉发生气化反应获得含CO、CO2、H2等气体的粗煤气(22.8亿Nm3),粗煤气经过水煤气变化(变换反应程度为0.8)后产生主要包含H2和CO2的富氢气体,与煤热解炉中产生的热解气混合后,依次送往电捕焦油器,酸性气体脱除塔,采用N-甲基吡咯烷酮法,脱除焦油、萘、氨、苯、H2S等杂质以及95% CO2,获得净化气体II。净化气体II进入干法脱硫塔,在氧化铁催化剂的作用下将残余的含硫杂质基本完全脱除,获得净化气体III。净化气体III 分为两路气体流A和B (比例4:1),其中气体流A送往气体分离单元,采用变压吸附与膜分离结合技术获得高纯度H2(99.99 vol.%)产品约9.4万吨 (10.52亿Nm3),分离出的气体流C与气体流B混合后得到还原气体D (3.5亿Nm3)直接送入竖炉与铁矿石(Fe2O3 100万吨)反应,可以得到铁素体材料约70万吨。
对从事本领域的技术人员来说,可以根据以上的描述方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

Claims (9)

1.一种生产高纯钢铁和氢气的系统,其特征在于包括:煤改性装置、立式高温煤热解炉、气化炉、水煤气变换反应器、电捕焦油器、酸性气体脱除塔、干法脱硫塔、气体分离单元、储气缓冲罐、竖炉;煤改性装置包括配煤装置与型煤装置;
煤改性装置设有低阶非粘结性煤入口,通过改性后的煤原料送入立式高温煤热解炉,热解获得的固体热解基础材料进入气化炉气化,热解炉的气体产物热解煤气与水煤气变换反应器的出口气体混合后共同进入电捕焦油器,脱除焦油、萘、氨、苯杂质,电捕焦油器的出口气体送往酸性气体脱除塔,除去大部分CO2与H2S,初步净化后的气体在干法脱硫塔中将H2S进一步脱除,达到产品硫含量要求,从干法脱硫塔出来的净化气体分为两路,一路通入气体分离单元,分离出高纯度的H2产品,剩余贫氢气体与另一路净化气体混合后进入储气缓冲罐,从储气缓冲罐出来的富氢气体送入竖炉,富氢气体在竖炉内与铁矿石/废钢材发生还原反应,获得高纯度的铁素体材。
2.一种生产高纯钢铁和氢气的方法,采用权利要求1所述的生产高纯钢铁和氢气的系统,其特征在于:该方法利用煤改性技术、热解-气化一体化技术将低阶非粘结性劣质煤转化成富氢煤气,并将其用于生产氢气和直接还原铁矿石或者废弃钢材生产钢铁,实现低阶煤的高效高附加值利用。
3.根据权利要求2所述的生产高纯钢铁和氢气的方法,其特征在于包括以下步骤:
a)将低阶非粘结性煤送入煤改性装置,通过配煤与成型后制得可直接热解的煤炭原料;
b)将步骤a)产生的煤炭原料送往立式高温煤热解炉,反应温度为900 - 1400 oC,压力为1 atm,生成用于直接气化的基础材料,热解煤气和焦油;
所述热解煤气包括CH4、H2、CO、CO2以及少量焦油、萘、氨、苯、H2S杂质;
c)将步骤b)中热解生成的基础材料送入气化炉,在气化炉内与气化剂水蒸气、O2发生反应,制得含有CO、CO2、H2气体的粗煤气;
d)将步骤c)中产生的粗煤气送往水煤气变换反应器,发生水煤气变换反应CO+H2O=CO2+H2,制得富氢气体;
e)将步骤b)中热解煤气和步骤d)中富氢气体通入电捕焦油器,脱除焦油、萘、氨、苯杂质,获得净化气体I;
f)将e)中净化气体I通入酸性气体脱除塔,除去大部分CO2和H2S气体,获得净化气体II;
g)将步骤f)中净化气体II通入干法脱硫塔顶部,在催化剂的作用下将残余的硫化物杂质脱除,获得净化气体III;
h)将步骤g)中净化气体III分成两路气流A和B,其中气体流A送往气体分离单元,分离出H2,获得H2产品,其剩余贫氢气体为气体流C;
I)将步骤h)中气体流B与气体流C在储气缓冲罐混合后得到还原性气体D,直接送往竖炉,通过还原性气体D与铁矿石或者废弃钢材反应获得高纯铁素材料。
4.根据权利要求3所述的生产高纯钢铁和氢气的方法,其特征在于:所述步骤d)中水煤气变换反应程度,即CO转化率为0%到100%,根据下游H2和还原铁产量分配要求决定。
5.根据权利要求3所述的生产高纯钢铁和氢气的方法,其特征在于:所述步骤f)中酸性气体脱除塔采用的净化技术为低温甲醇法、聚乙二醇二甲醚法、碳酸丙烯酯法、N-甲基吡咯烷酮法、一乙醇胺法或二乙醇胺法中的任意一种。
6.根据权利要求3所述的生产高纯钢铁和氢气的方法,其特征在于:所述步骤g)中干法脱硫装置采用的催化剂为氧化铁、氧化锌、氧化钼或者氧化锰中的任意一种或几种。
7.根据权利要求3所述的生产高纯钢铁和氢气的方法,其特征在于:所述步骤f)中气体分离单元采用变压吸附、膜分离技术中的一种或者组合。
8.根据权利要求3所述的生产高纯钢铁和氢气的方法,其特征在于:所述步骤f) 中气流A与气流B的流量比例为1:0 -1:10。
9.根据权利要求3所述的生产高纯钢铁和氢气的方法,其特征在于:所述步骤h)中还原性气体D中所含CH4体积分数不超过10%。
CN202010070537.0A 2020-01-21 2020-01-21 一种生产高纯钢铁和氢气的系统及方法 Active CN111171848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010070537.0A CN111171848B (zh) 2020-01-21 2020-01-21 一种生产高纯钢铁和氢气的系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010070537.0A CN111171848B (zh) 2020-01-21 2020-01-21 一种生产高纯钢铁和氢气的系统及方法

Publications (2)

Publication Number Publication Date
CN111171848A true CN111171848A (zh) 2020-05-19
CN111171848B CN111171848B (zh) 2021-05-28

Family

ID=70651134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010070537.0A Active CN111171848B (zh) 2020-01-21 2020-01-21 一种生产高纯钢铁和氢气的系统及方法

Country Status (1)

Country Link
CN (1) CN111171848B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662824A (zh) * 2020-12-18 2021-04-16 昆明理工大学 一种高效利用冶金废气的高炉富氢冶炼工艺
CN113481338A (zh) * 2021-07-07 2021-10-08 山西晋南钢铁集团有限公司 一种乙二醇副产氢气的高值化梯级利用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068120A1 (en) * 2009-05-25 2012-03-22 Johannes Menzel Syngas production method
CN105733689A (zh) * 2016-04-26 2016-07-06 北京神雾环境能源科技集团股份有限公司 一种气基竖炉用还原气的制备系统以及方法
CN106276795A (zh) * 2016-08-03 2017-01-04 西南化工研究设计院有限公司 一种利用焦炉煤气制取冶金还原气的组合工艺
CN106755690A (zh) * 2016-12-22 2017-05-31 泸天化(集团)有限责任公司 一种煤制合成气竖炉还原硫铁矿生产海绵铁的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068120A1 (en) * 2009-05-25 2012-03-22 Johannes Menzel Syngas production method
CN105733689A (zh) * 2016-04-26 2016-07-06 北京神雾环境能源科技集团股份有限公司 一种气基竖炉用还原气的制备系统以及方法
CN106276795A (zh) * 2016-08-03 2017-01-04 西南化工研究设计院有限公司 一种利用焦炉煤气制取冶金还原气的组合工艺
CN106755690A (zh) * 2016-12-22 2017-05-31 泸天化(集团)有限责任公司 一种煤制合成气竖炉还原硫铁矿生产海绵铁的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
广东省海绵铁试验组: "《水煤气竖炉海绵铁》", 31 December 1978, 广东科技出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662824A (zh) * 2020-12-18 2021-04-16 昆明理工大学 一种高效利用冶金废气的高炉富氢冶炼工艺
CN113481338A (zh) * 2021-07-07 2021-10-08 山西晋南钢铁集团有限公司 一种乙二醇副产氢气的高值化梯级利用方法

Also Published As

Publication number Publication date
CN111171848B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CA2930469C (en) Plant complex for steel production and method for operating the plant complex
CN101245262B (zh) 基于煤气化与甲烷化的燃气-蒸汽联合循环系统及工艺
CN103898265A (zh) 一种焦炉煤气改质直接还原铁矿石系统装置及方法
CN102703108B (zh) 一种费托合成及尾气利用的工艺方法
CN104803819B (zh) 一种利用粉煤制取乙烯的方法及系统
CN1974732A (zh) 气化煤气和热解煤气共制合成气工艺
CN105883851B (zh) 一种新型气化与热解耦合煤气多联产工艺
CN111171848B (zh) 一种生产高纯钢铁和氢气的系统及方法
CN103694074A (zh) 一种以煤和焦炉气为原料制烯烃的系统及工艺
CN110776941A (zh) 一种带有甲烷三重整的生物质制氢装置及方法
CN101870479B (zh) 费托合成联产合成氨工艺
CN107446635B (zh) 一种焦炉煤气利用新方法
CN113402362B (zh) 化学制氢的co2零排放煤制甲醇系统和方法及应用
CN110862839A (zh) 一种煤制天然气联产甲醇的系统及方法
CN204529700U (zh) 一种利用粉煤制取乙烯的系统
CN104119972A (zh) 一种适应于煤制气的多功能耐硫甲烷化变换工艺
CN103484181B (zh) 一种煤制代用天然气的系统及工艺
CN100400420C (zh) 电石炉尾气用于合成甲醇生产的工艺
CN209854029U (zh) 一种无变换系统的合成气制甲醇装置
CN113753896B (zh) 一种利用电能联合逆变换反应实现零碳排放的合成气制备方法
CN205170754U (zh) 一种煤热解气与电石尾气混合甲烷化系统
CN103113010A (zh) 一种同步实现焦炉气甲烷化及沼气原位提纯的方法
CN106241736A (zh) 一种利用焦炉煤气制取冶金还原气的工艺
CN101643221A (zh) 一种利用焦炉气和高炉气联合生产合成氨与甲醇的工艺
CN106929107B (zh) 以碎焦气化联合焦炉气部分氧化和干重整制化工产品系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant