CN111165076B - 可控驱动器以及驱动方法 - Google Patents

可控驱动器以及驱动方法 Download PDF

Info

Publication number
CN111165076B
CN111165076B CN201880063518.6A CN201880063518A CN111165076B CN 111165076 B CN111165076 B CN 111165076B CN 201880063518 A CN201880063518 A CN 201880063518A CN 111165076 B CN111165076 B CN 111165076B
Authority
CN
China
Prior art keywords
circuit
electronic ballast
output
arrangement
lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880063518.6A
Other languages
English (en)
Other versions
CN111165076A (zh
Inventor
石亮
A·J·S·M·德万
P·J·斯托贝拉
张献辉
P·R·维尔德曼
D·郑
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Signify Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signify Holding BV filed Critical Signify Holding BV
Publication of CN111165076A publication Critical patent/CN111165076A/zh
Application granted granted Critical
Publication of CN111165076B publication Critical patent/CN111165076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Abstract

用于照明驱动器的控制回路的控制电路。照明驱动器被适配为将电子镇流器可控地连接到LED光源或灯。控制电路包括具有可调阻抗的偏置电路。调谐电路对偏置电路的阻抗进行调节来对控制回路的频率响应的参数进行调谐,从而对照明驱动器的频率响应的参数进行调谐。

Description

可控驱动器以及驱动方法
技术领域
本发明涉及用于LED光源的照明驱动器的控制电路的领域。
背景技术
在常规的照明器材中,使用改型LED灯或能够代替现有的灯(例如,荧光灯或卤素灯)的光源已呈增长趋势。通常,常规照明器材包括用于适当地驱动灯来调节其中的电流的电子或磁性镇流器。
因此,改型LED灯需要驱动器电路来将电子镇流器的输出转换为适合于驱动LED灯的形式。因此,典型的改型LED照明布置包括照明驱动器和LED灯或光源。但是,存在多种不同类型或型号的电子镇流器,它们各自与频率不同且幅度范围不同的输出相关联。改型LED照明布置(尤其是照明驱动器)与如此广泛的电子镇流器的兼容性已成为越来越公认的问题。注意,电子镇流器是本领域中公知的用于驱动放电灯(例如,管状灯、荧光灯)或高强度放电(HID)灯的设备。
当需要将光源调暗或将光源置于备用工作状态时,该兼容性问题尤为重要,因为这会导致电子镇流器的行为无法预测。特别地,当 LED灯布置与电子镇流器不兼容时(例如,处于特定的调光水平),发生由LED灯输出的光的“闪烁”或波动。
US20140375227A1公开了用于从AC输入驱动LED组的反激转换器,并且所述反激转换器包括误差放大器。US5708376A1公开了可变增益放大设备来确保相位裕度,以防止振荡。
发明内容
发明人发现,这种不兼容性的一个关键原因是(灯的)驱动器的控制回路与镇流器的输出之间的不匹配。例如,对于某些镇流器的输出,控制回路的相位裕度和增益裕度可能不足以将控制回路维持在稳定状态;而对其他镇流器的输出足够。已知的控制回路是固定的,因此改型灯可能至少与某些镇流器不兼容,即使它可能与多种其他镇流器兼容。
本发明的一个实施例的思想是使得能够根据镇流器的输出来对灯的控制回路进行灵活调谐,以确保在给定镇流器的输出的情况下将控制回路的关键参数保持在适当的范围内,使得控制回路从而保持稳定性。
本发明由权利要求书限定。
根据本发明的一个实施例的各方面,提出了用于照明驱动器的控制回路的控制电路,控制电路被适配为将电子镇流器的输出可控地连接到LED光源,控制电路包括:差分放大器,差分放大器包括被适配为接收指示输出到LED光源的电流信号的感测信号的第一输入,被适配为接收参考信号的第二输入以及被适配为输出控制信号的输出,其中控制信号是第一输入与第二输入之间的差的放大,并且其中控制信号用于控制电子镇流器的输出与LED光源的连接;连接至差分放大器的至少一个输入的偏置电路,其中偏置电路具有可调阻抗;以及调谐电路,被适配为调节偏置电路的阻抗来对以下项中的至少一项进行调谐:照明驱动器的控制回路的增益交叉频率、增益裕度、相位交叉频率和相位裕度。
照明驱动器将电子镇流器连接到LED光源。照明驱动器和LED 光源通常在相同的照明布置中形成。特别地,照明驱动器将由电子镇流器输出的供电转换为合适的供电来驱动LED光源。照明驱动器被适配为将电子镇流器可控地连接或切换(例如,使用基于开关的转换) 到LED光源来控制向光源提供的功率。照明驱动器可以进一步将适当的滤波、整流等应用于电子镇流器的输出。
照明驱动器的切换可以通过控制回路来控制。因此,通过控制回路来限定电子镇流器连接到LED光源的频率、脉冲持续时间、脉宽等。
所提出的发明涉及用于这种照明驱动器的控制回路的控制电路。控制电路被适配为输出控制信号,控制信号限定或控制照明驱动器的操作,特别是电子镇流器的输出和LED光源之间的切换或可控连接 (例如,经由切换模式供电)的操作。因此,从电子镇流器向LED光源提供的供电的(平均)幅度取决于由控制电路生成的控制信号。
由控制电路提供的控制信号可基于指示电子镇流器的输出电流的感测信号与参考信号(例如,调光信号)之间的经放大的差来进行调节。参考信号可以限定LED光源的期望调光水平(例如,期望的调光水平越低,照明驱动器将电子镇流器连接到LED光源的时间(例如,平均占空比)越短)。
控制电路由差分放大器形成,差分放大器具有输入、(多个)输出以及从(多个)输出到输入的反馈路径。输入和可选地反馈路径处存在阻抗,阻抗对差分放大器对一个或多个外部信号的响应进行调谐。
本发明提出提供可调节的偏置电路,该偏置电路调节、修改或以其他方式改变差分放大器的一个或多个阻抗。因此,偏置电路调节或修改控制电路的频率响应或增益(即,相对于电子镇流器的输出)。偏置电路的阻抗由调谐电路调节。
特别地,可以调节偏置电路的阻抗,从而调节控制电路的增益或频率响应。当控制信号控制照明驱动器的操作时,调节偏置电路的阻抗,从而影响、调节或修改照明驱动器(的控制回路)的频率响应,从而影响、调节整个照明布置的频率响应。
所描述的发明因此提出在用于照明驱动器的控制回路的控制电路中提供频率响应或增益修改器。频率响应或增益修改器包括具有可调阻抗的偏置电路,该阻抗由偏置电路调节、修改或控制。
本发明的实施例因此允许通过控制偏置电路来调节照明驱动器的各种参数,特别是照明驱动器的频率响应的参数,该偏置电路调节用于照明驱动器的控制信号。控制信号控制或限定电子镇流器的输出连接到LED光源的方式,从而限定照明驱动器的增益、相位和/或频率响应。
通过调节偏置电路的阻抗,可以精确且准确地控制照明驱动器的频率响应,从而控制整个照明布置。这允许改进照明驱动器与具有不同输出特性(例如,不同的输出电流或频率)的镇流器的兼容性。
特别地,通过调节驱动电路的增益交叉频率、增益裕度、相位交叉频率或相位裕度来匹配或以其他方式对应于电子镇流器的输出,可以跨更多的镇流器显著减少LED光源中的闪烁。
优选地,参考信号是指示LED光源的期望调光水平的调光信号。
偏置电路可以包括反馈电路,反馈电路被连接在差分放大器的输出和至少一个输入之间。
这样,偏置电路可以使得差分放大器用作误差放大器电路。通过优化误差放大器电路,通过控制反馈电路的阻抗,可以利用大量的电子镇流器来使得照明驱动器更稳定。
适当控制的反馈电路有助于减少系统振荡并改进照明驱动器的输出稳定性(即,提供给LED串的信号的稳定性)。这导致减少的光闪烁。特别地,反馈电路可以使得跨各种不同的潜在镇流器输出的输出稳定。
反馈电路可以包括可调电容电路,其中调谐电路被适配为调节可调电容电路的电容,从而改变控制电路的增益响应的第一极点的位置,进而改变整个控制回路的相位裕度。这允许对整个驱动器的频率响应进行附加控制。
反馈电路可以进一步包括与可调电容电路并联的、串联连接的固定电容电路和可调电阻电路,其中调谐电路被适配为调节可调电阻电路的电阻,从而改变差分放大器的增益曲线的第一零点和第二极点的位置,进而改变控制回路(以及整个照明驱动器)的相位裕度和增益裕度。
偏置电路可以包括第二可调电阻布置,第二可调电阻布置连接到差分放大器的至少一个输入并且不与差分放大器的输出连接,其中调谐电路被适配为调节可调电阻布置的电阻,从而调节差分放大器的增益,进而改变控制回路的增益裕度。第二可调电阻布置因此可以用作用于差分放大器的输入的电压偏置电路。
调谐电路被适配为调节偏置电路的阻抗,使得以下至少之一:与电子镇流器一起使用的照明驱动器的增益裕度不小于10dB;与电子镇流器一起使用的照明驱动器的相位裕度不小于45°,优选地不小于 60°;与电子镇流器一起使用的照明驱动器的相位交叉频率不小于照明驱动器的切换频率的一半。优选地,频率响应的带宽在照明驱动器的切换频率的五分之一至十分之一之间的范围内。
控制电路可以进一步包括检测电路,检测电路被适配为检测电子镇流器的输出处的信号的电流、频率和电压中的至少一个(但是注意,通常,检测电路应同时检测电流和频率),其中调谐电路被适配为基于至少一个所检测的电流、频率和电压来调节偏置电路的阻抗。
因此,所提出的实施例可以使得能够基于镇流器的参数来控制偏置电路的阻抗。这可以允许预测何时可能需要改变提供给LED串的信号特性(例如,以避免潜在的闪烁)。
控制电路可以被适配为使得调谐电路被适配为使用至少一个所检测的电流、频率和电压来标识电子镇流器;控制电路还包括存储设备,存储设备存储偏置电路的阻抗值与电子镇流器的标识之间的映射;并且偏置电路被适配为基于电子镇流器存储在存储设备中的标识来调节偏置电路的阻抗。
通过标识镇流器,可以很容易地优化将如何控制偏置电路的阻抗 (以及由此提供给LED串的信号的特性)的预测。例如,数据库可以存储关于何时预期发生针对特定镇流器的预期闪烁的指示,并且可以控制调谐电路来避开该镇流器的闪烁点。
差分放大器和调谐电路可以被布置为形成II型补偿布置或III型补偿布置中的一个。
优选地,差分放大器和调谐电路被布置为形成III型补偿布置,并且调谐电路还包括连接至差分放大器的至少一个输入的输入阻抗电路,其中输入阻抗电路被适配为具有可调电容,其中所述输入阻抗电路被适配为由调谐电路调谐来调节差分放大器的增益曲线的零点和极点,从而调节控制电路的相位裕度。
根据本发明的概念,提出了用于从电子镇流器的输出驱动LED 光源的照明驱动器,照明驱动器包括:包括感测电路的控制回路,感测电路被适配为生成指示从电子镇流器输出到LED光源的电流信号的感测信号;如前所述并耦接到感测电路的控制电路;耦接至控制电路并基于控制电路的输出而生成PWM信号的PWM电路;以及根据 PWM信号将电子镇流器的输出可控地连接至LED光源的切换电路。
照明驱动器的整个控制回路的频率响应可以由与电子镇流器一起使用的控制回路(不包括控制电路)的频率响应与控制电路的频率响应的组合来形成。
控制电路可以被适配为避免根据感测信号的预定点或电平进行操作。
根据本发明的一个方面,提出了用于照明驱动器的控制方法,照明驱动器被适配为将电子镇流器的输出可控地连接至LED光源,控制方法包括:在差分放大器的第一输入处接收指示电子镇流器输出处的信号电流的感测信号;以及在差分放大器的第二输入处接收参考信号;以及从差分放大器的输出来输出控制信号,其中控制信号是第一输入与第二输入之间的电压差的放大;使用控制信号来控制电子镇流器的输出到LED光源的连接;调节具有可调阻抗并连接到差分放大器的至少一个输入的偏置电路的阻抗,以调节控制信号,从而调节照明驱动器的增益交叉频率、增益裕度、相位交叉频率和相位裕度中的至少一个。
可以提供包括计算机可读存储介质的计算机程序产品,计算机可读存储介质具有体现在其上的计算机可读程序指令,当计算机可读程序指令在处理器布置上执行时,使得处理器布置实现前述方法。
本发明的另一方面的基本思想是从与镇流器一起使用的LED灯中分离、去除或分解检测镇流器的特性的功能。专用检测布置(可选地包括LED)用于检测待使用的电子镇流器并提供与限定“实际” LED照明布置和电子镇流器之间的兼容性有关的输出数据。实际LED 照明布置包括LED光源。LED照明布置因此不需要用于检测镇流器的特性来确定兼容性目的的功能或组件。相反,LED照明布置可以使用检测布置的输出数据来适当地调节其组件的阻抗以与电子镇流器兼容。由于LED照明布置不需要包括专用检测布置,因此这降低了LED照明布置的成本和复杂性。
检测布置和LED灯或照明布置因此可以是能够可选地经由中间设备彼此通信来交换关于LED灯与电子镇流器的兼容性的信息的分离设备。
根据所提出的方面,提供了用于确定电子镇流器的特性的检测布置,其中检测布置包括:被适配为确定镇流器的输出参数的值的检测电路;以及被适配为基于镇流器的输出参数的所确定的值将输出信号传输到外部设备的第一接口,其中输出信号适用于被处理来调节LED 照明布置与电子镇流器的兼容性。。
该实施例提供了用于收集必要的数据来调节或改进照明布置和电子镇流器的兼容性的专用检测布置。检测布置可以用于测试整体照明器材(包括电子镇流器)并获得用于改进与其连接的LED照明布置的兼容性的输出信号。为了与电子镇流器兼容,在设置、偏置或以其他方式调节LED照明布置时,外部设备可以使用输出信号。
在一个优选实施例中,检测布置还包括用于连接至电子镇流器的标准灯座。该实施例因此提供了用于检测目的的、易于安装和/或连接至现有镇流器的一种工具或虚拟灯。
在一个优选实施例中,外部设备包括LED照明布置或与检测布置和LED照明布置一起使用的中间设备。该实施例在检测布置和LED 照明布置之间提供了直接或间接的通信路径。
在一个优选实施例中,检测布置还包括LED照明布置,或被适配为仿真LED照明布置的LED仿真单元。检测电路可以被适配为确定将要与(检测布置的)LED照明布置或所仿真的LED照明布置一起使用的镇流器的输出参数的值。
在该实施例中,检测布置可以在实际或仿真的LED负载下检测或预测电子镇流器的行为。因此,在实际的LED负载的情况下(即,在电子镇流器通常进行操作的环境中),可以更准确地检测镇流器的输出参数的值。
优选地,LED照明布置或LED仿真单元的组件的参数或值是可调的,使得检测单元可以表示多个不同的照明布置或照明布置的不同配置。这改进了检测布置的灵活性,从而允许测试不同的照明布置或配置。
在一个实施例中,输出信号包括或提供所检测的输出参数(包括电子镇流器的阻抗、输出频率、输出电流或输出电压中的一个或多个)。因此,输出信号可以包括或提供电子镇流器的“原始数据”。
该实施例在检测布置处提供了被适配为检测和提供电子镇流器的原始数据的简单功能。可以在外部设备处实现确定如何对LED照明布置进行适当地调谐。
备选地,检测布置可以被适配为获得电子镇流器的标识信息,所述标识信息标识电子镇流器的型号、类型或身份。该标识信息可以作为输出信号提供或包含在输出信号中。因此,检测布置可以进一步包括控制器,控制器基于电子镇流器的输出参数,例如使用预存储的数据或通过与外部服务器通信来确定电子镇流器的型号或身份。
在该实施例中,检测布置对镇流器输出的原始数据进行处理并提供标识镇流器的精确输出信号。精确输出信号可以作为检测布置的输出信号提供或包含在检测布置的输出信号中,然后由外部设备使用来确定或搜索如何对LED照明布置进行调谐。
在一些实施例中,输出信号为照明驱动器的可调阻抗电路的组件提供合适的值。因此,检测布置可以进一步包括控制器,控制器基于电子镇流器的输出参数,使用例如预存储的数据或通过与外部服务器通信来确定LED照明布置的组件的合适值。
在该实施例中,检测布置对镇流器输出的原始数据进行处理,并提供关于如何对LED照明布置进行调谐的最终决策。对电子镇流器的原始数据(即,所标识的镇流器的特性)进行处理可以包括在预存储的数据中查询对应的信息或者通过与远程服务器进行通信来查询对应的信息。
在一个实施例中,其中输出信号为照明驱动器的可调阻抗电路的组件提供合适的值,检测布置还被迭代地适配为:改变LED照明布置或LED仿真单元的组件的值,确定提供给LED布置或仿真LED 照明布置的LED光源的电流;以及检查提供给LED光源或仿真LED 光源的电流中的闪烁或扰动水平。检测布置还被适配为选择具有最小闪烁/扰动的值作为合适的值。
在该实施例中,对原始数据进行处理包括对检测布置中的值进行调谐来找到最适合LED照明布置的值,并且更具适用性和准确性。
在另一实施例中,在输出信号为照明驱动器的可调阻抗电路的组件提供合适的值的情况下,检测布置可以相应地被适配为:调节检测布置的LED光源或LED仿真单元的值,检测电子镇流器的输出电流,检查输出电流中是否存在闪烁/扰动,以及将闪烁/扰动最小的值作为合适的值。
根据所述的检测布置,其中输出信号包括用于照明驱动器的可调阻抗电路的组件的合适的值,其中检测布置被适配为:改变检测布置中的组件的值,检测来自电子镇流器的输出电流,检查 LED电流中是否存在闪烁/扰动,以及将闪烁/扰动最小的值作为合适的值。
本发明还提供与用于确定电子镇流器和LED照明布置的特性的检测布置一起使用的中间设备,中间设备包括:被适配为从检测布置接收输出信号的接口,其中输出信号表示电子镇流器;以及被适配为对输出信号进行处理的控制器;其中接口还被适配为将经处理的输出信号传输至照明布置,其中经处理的输出信号适用于进行处理来调节 LED照明布置与电子镇流器的兼容性。
在该实施例中,为中间设备提供处理能力,以处理来自检测布置的输出信号并获得用于LED照明布置的更精确指令。可以在具有大存储容量和网络访问的智能或便携式设备中实现该中间设备。因此,可以通过重新使用或占用已存在的智能或便携式设备以低成本的方式来实现所提出的功能。
在一个实施例中,由中间设备接收的输出信号包括或提供电子镇流器的输出参数(包括电子镇流器的阻抗、输出频率、输出电流和/ 或输出电压中的一个或多个)。中间设备的控制器被适配为基于电子镇流器的输出参数来确定镇流器的型号、类型或身份或者为照明布置的可调阻抗电路的组件确定合适的值。
在该实施例中,中间设备对电子镇流器的原始数据进行处理并获得精确标识信息或用于对LED照明布置进行调谐的最终决策。这减轻了检测布置和/或LED照明布置处的处理或电路的复杂性。
在一个实施例中,由中间设备接收的输出信号包括或提供(信息指示)镇流器的型号、类型或身份。控制器可以被适配为基于镇流器的型号、类型或身份来确定照明布置的可调阻抗电路的组件的合适的值。
在该实施例中,中间设备对精确标识信息进行处理并获得用于对 LED照明布置进行调谐的最终决策。这减轻了LED照明布置的复杂性。
中间设备的控制器可以被适配为参考预存储的数据或外部服务器上存储的数据来处理输出信号,而不是由检测布置或LED照明布置来执行。因为中间设备通常在存储或计算数据方面具有更大的自由度或者具有与外部服务器进行通信或联网的改进的速度/能力,所以这改进了系统的效率。
在一个实施例中,输出信号包括或提供针对照明布置的可调阻抗电路的组件的合适的值,并且控制器被适配为经由接口将合适的值中继到LED照明布置。这减轻了LED照明布置的复杂性。
本发明的一个方面还提供了用于电子镇流器的LED照明布置,所述照明布置包括被适配为将电子镇流器连接到LED光源的可调阻抗布置,其中所述照明布置还被适配为与外部检测布置或检测布置的外部中间设备进行通信,接收适合于进行处理来调节照明布置与电子镇流器的兼容性的输出信号,以及根据输出信号来调节可调阻抗布置。
出于兼容性调谐的目的,这使得LED照明布置能够从外部设备获取有关镇流器的数据,而不是执行其自身的检测。这降低了LED 照明布置的复杂性。
在一个实施例中,所述可调阻抗布置包括以下任一项或两项:电子镇流器观察或看到的输入阻抗,优选地包括将镇流器连接到LED 照明布置的功率转换器的串联电容;以及LED照明布置的功率转换器的控制回路中的可调阻抗。
该实施例列出了可调阻抗布置的两个可能的示例,其阻抗可以被调节来改变、改进或修改LED照明布置与各种LED照明布置的兼容性。允许可调阻抗增加了LED照明布置与各种电子镇流器的兼容性。应当注意,只要可调阻抗布置能够改进、调节或改变LED照明布置与电子镇流器的兼容性或可操作性,照明布置可以包括其他可调谐或可调阻抗布置。
在一个实施例中,由LED照明布置接收的输出信号包括或提供针对照明布置的可调阻抗电路的组件的合适的值。
LED照明布置因此可以根据输出信号中指示的值将可调阻抗电路直接调谐并且对于LED照明布置而言是低成本的。
在另一实施例中,输出信号包括指示电子镇流器的输出参数的信息,输出参数包括以下中的一个或多个:电子镇流器的阻抗、输出频率、输出电流或输出电压;或电子镇流器的标识信息,所述标识信息标识电子镇流器的型号、类型或身份;并且LED照明布置包括控制器,控制器被适配为基于预存储的数据或外部服务器,根据输出信号来确定针对可调阻抗电路的组件的合适的值。
该实施例使得LED照明布置能够处理镇流器的原始数据或精确标识信息,并降低了外部设备的复杂性。
在一个实施例中,LED照明布置不包括用于检测电子镇流器的输出参数来调节兼容性的检测组件。该实施例降低了LED照明布置的成本。
在上述实施例中,输出信号包括或提供可以被适当地处理来确定、设置、调节或限定用于照明布置的可调阻抗的适当值的信息。实施例因此使得能够基于所检测的电子镇流器的参数来对可调阻抗进行调谐,从而改进照明布置的兼容性。
参考下文描述的(多个)实施例,本发明的这些方面和其他方面将变得显而易见。
附图说明
现在将参考附图来详细描述本发明的示例,其中:
图1图示了根据一个实施例的形成为照明布置的一个方面的控制电路;
图2是根据一般实施例的控制电路的框图;
图3是根据第一实施例的控制电路的电路图;
图4和图5是照明驱动器的说明性波特图;
图6是根据第二实施例的控制电路的电路图;
图7是根据第二实施例的控制电路的波特图;
图8是根据另一实施例的控制电路的框图;
图9图示了第一检测布置;
图10图示了第二检测布置;以及
图11图示了根据一个实施例的控制方法。
具体实施方式
根据本发明的构思,提出了用于照明驱动器的控制回路的控制电路。照明驱动器被适配为将电子镇流器可控地连接到LED光源或灯。控制回路基于控制电路提供的控制信号来控制照明驱动器执行的连接。控制电路包括差分放大器和连接到差分放大器的具有可调阻抗的偏置电路。调谐电路调节偏置电路的阻抗来对差分放大器的阻抗进行调谐,从而对照明驱动器的整个控制回路的频率响应的参数进行调谐。这允许整个驱动器对于特定的镇流器更加稳定。
实施例至少部分基于以下认识:可以通过控制(控制电路的)偏置电路的阻抗来修改照明驱动器的频率响应。这允许照明驱动器以及因此与之相关联的照明布置与多种镇流器的更大兼容性。特别地,照明驱动器的频率响应可以被调谐来满足当前使用的电子镇流器的要求。
例示性实施例可以例如用在被适配为代替由电子镇流器驱动的现有荧光灯或卤素灯的改型照明布置中。
本领域技术人员众所周知,通用电子系统与频率响应相关联,频率响应指示系统的输出如何响应输入的变化频率。频率响应可以分为增益响应或增益曲线(指示相对于不同频率的系统增益)和相位响应或相位曲线(指示针对不同频率的输入和输出之间的相位变化)。通常使用波特图绘制或表示频率响应,波特图通常同时绘制增益响应和相位响应。
图1是被适配为代替由电子镇流器2驱动的现有荧光灯或卤素灯的整体照明布置1的框图。
照明布置1包括照明驱动器3,照明驱动器3将电子镇流器2操作性地耦接到LED光源4或LED灯。
照明驱动器3包括基于开关的转换器5或切换电路,其将电子镇流器2的输出可控地连接至LED光源4。优选地,照明驱动器3还包括电容器布置6,电容器布置6在将转换器5的输出提供给LED光源 4之前对其进行过滤和/或平滑化。
在一个示例中,基于开关的转换器5是分流开关,分流开关确定是否对镇流器输出进行分流来确定来自镇流器的功率流向LED光源 4的量。一种这样的转换器在US 2013/0320869 Al中公开。其他种类的基于开关的转换器(例如,具有用于控制功率换向的功率换向组件 (例如,包括电感器和开关)的典型切换模式供电)也可以被适配用于在照明驱动器中使用。
照明驱动器3还包括控制回路7。控制回路被适配为输出信号 SPWM来控制转换器5的操作。这样,控制回路7控制提供给LED光源4的电流的量。
特别地,控制回路7包括脉宽调制PWM电路8,脉宽调制PWM 电路8被适配为输出PWM信号SPWM,PWM信号SPWM控制转换器5 的操作。本领域技术人员将知道用于使用PWM信号的转换器的控制方法。
控制回路7还包括控制电路9,控制电路9输出用于控制转换器 5的操作的控制信号SC。这里,控制信号SC被传递到脉宽调制电路8,脉宽调制电路8基于控制信号SC生成PWM信号SPWM。例如,控制信号SC的电压电平可以指示PWM信号的期望脉冲宽度或模式。限定 PWM信号的其他方法将是技术人员已知的。
控制回路7进一步包括感测电路10,感测电路10被适配为感测 (即,从电子镇流器2经由照明驱动器3)向LED光源提供的电流信号。感测电路输出指示该电流信号的感测信号SS。例如,感测信号的电压电平可以指示从电子镇流器2向LED光源4提供的电流幅度或电流的RMS。根据感测信号,控制回路决定向LED光源4提供更多或更少的功率,并因此输出控制信号SC
照明布置1可以进一步包括检测电路11,检测电路11被适配为检测在电子镇流器的输出处提供的信号(即,提供给照明驱动器的信号)的电流、频率和/或电压中的至少一个。标识信号SID可以由检测电路输出到控制电路9,标识信号SID包括关于由电子镇流器输出的所检测的电流、频率和/或电压的信息。标识信号可以对于特定的镇流器或镇流器类型基本上是唯一的。在一些实施例中,检测电路被形成为照明驱动器3的一部分。合适的检测电路和包括所述检测电路的检测布置的实施例将在下文描述。
控制电路9被适配为接收由感测电路10输出的感测信号SS和参考信号SR。如将在下面详细解释的,可以至少基于感测信号SS和参考信号SR来生成控制信号SC。参考信号SR的值(例如,电压电平) 优选地指示LED光源4的期望调光水平。参考信号SR可以由微控制器或MCU 12例如响应于用户输入或所接收的通信,在驱动器3中生成。备选地,参考信号可以直接从诸如用户接口的外部源提供给驱动器3。
控制回路7为照明驱动器3提供反馈控制。这涉及测量系统变量 (感测电流SS)、通过将系统变量SS与期望值(参考信号SR)进行比较来获得误差信号(例如,控制信号SC或PWM信号SPWM)、并基于误差信号来影响系统变量的生成。转换器5通常需要反馈控制来将输出信号维持在期望的电平。反馈控制不当会导致系统振荡,并可能导致输出不稳定。对于照明驱动器,反馈控制不当会导致LED闪烁。因此,重要的是提供对所感测的电流SS适当地做出响应的稳定的控制回路7。
控制回路7的频率响应是控制电路9的频率响应和控制回路7的其他元件(即,感测电路10和脉宽调制电路8)的频率响应的组合。期望确保选择控制回路7的适当组件和组件值,使得控制回路7相对于镇流器2的频率以及可选地到LED光源4的输出是稳定的。
整个照明驱动器3的频率响应取决于控制回路7的特性以及转换器5和电容器布置6的特性,其中驱动器的输入是电子镇流器2的输出且驱动器的输出是提供给LED光源4的信号。调节控制回路7的频率响应调节了整个照明驱动器3的频率响应。这样,调节控制电路 9的频率响应调节了照明驱动器3的频率响应。
在典型的LED照明布置中,由于镇流器2的输出频率与转换器5 执行的切换频率、切换脉宽或其他性质之间的不匹配,可能发生闪烁。调节照明驱动器的频率响应来考虑电子镇流器的特性可以避免这种不匹配,从而避免LED闪烁。
图2是图示根据本发明的一般实施例的控制电路9的框图。为了清楚起见,省略了供电轨。
控制电路9包括差分放大器21,差分放大器21具有第一输入22、第二输入23和单个输出24。第一输入22接收感测信号SS,并且第二输入23接收参考信号SR。差分放大器21将参考信号SR和感测信号SS之间的差放大,以在输出24处生成控制信号SC
贯穿所描述的实施例,参考信号SR表示LED光源4的期望调光水平。特别地,参考信号SR的电压电平指示期望的调光水平。例如,参考信号SR的电压电平可以指示照明驱动器的期望输出电流电平。以这种方式,控制电路9可以是误差放大器并且控制信号可以指示到LED光源的当前输出信号SS与到LED光源的期望输出信号SR之间的误差。
控制电路9包括偏置电路25,偏置电路25连接到差分放大器的至少一个输入22、23。偏置电路被适配为将在第一或第二输入22、 23处接收的信号中的至少一个偏置。
偏置电路25可以包括连接在输出24和第一输入22之间的反馈电路26。在一些实施例中,偏置电路25包括连接到第一输入22的阻抗布置27(即,以将感测信号SS偏置)。将理解用于偏置电路25的其他偏置布置(例如,连接在输出24和第二输入23之间的反馈电路或连接到第二输入的阻抗布置)。
在已知实施例中,用于偏置电路的组件的参数被设计为对于期望的输入/输出条件合适的足够增益和相位裕度。然而,由于存在多种不同的电子镇流器,因此对于每个类型的镇流器,单个参数集合通常不足以满足所有情况(例如,可变的调光水平)。所提出的实施例通过提供用于改变偏置电路的组件的参数的方法来克服该问题。
偏置电路25被适配为具有可调阻抗。例如,反馈电路26和阻抗布置27中的至少一个可以具有可调电容、电阻和/或电感(即,阻抗)。电可调的阻抗是技术人员众所周知的。
偏置电路25的阻抗可通过调谐电路28来调节。调谐电路因此被适配为对整个控制电路9的频率响应进行控制或调谐。特别地,通过调节偏置电路25的阻抗,可以改变控制电路9的频率响应的极点和/ 或零点的位置。因此,这使得控制电路9的增益裕度、增益交叉频率、相位裕度和/或相位交叉频率能够被调谐电路改变。
调节控制电路22的频率响应使得能够控制整个控制回路7的频率响应,从而控制照明驱动器3。这使得控制回路7能够补偿整个系统的频率响应,并使得具有各种镇流器的控制回路稳定。特别地,照明驱动器3的参数可以通过控制回路7而被适配、修改或调节为一个集合的值来匹配电子镇流器2的输出(例如,相对于频率);并被适配为另一集合的值来匹配不同电子镇流器的输出。因此,可以显著减少LED光源的闪烁。
调谐电路28可以被适配为基于标识信号SID中的标识信息来修改阻抗。如稍后所述,标识信号SID由检测电路生成。
为了避免疑问,应注意,控制电路9的频率响应指示控制SC相对于至少感测信号SS的响应。
图3图示了根据本发明的第一实施例的控制电路9。控制电路9 包括经修改的II型误差放大器。
反馈电路26包括第一电容器31和并联布置的电容器-电阻器布置 32、33。电容器-电阻器布置包括串联布置的第二电容器32和电阻器 33。当然,在一些实施例中,可以省略第一电容器31和电容器电阻器布置32、33中的一个或两个。这可以减少反馈电路所需的组件数目。
反馈电路还包括与第一电容器31和电容器-电阻器布置32、33 并联布置的第三电容器34。
第三电容器34与(电)开关35(例如,MOSFET)串联布置。调谐电路28被适配为控制开关35的操作来将第三电容器34选择性地切换到反馈电路26中。通过这种方式,反馈电路26的电容可以通过调谐电路28来修改。因此,反馈电路26包括可调电容电路31、34、 35。
调谐电路28可以被适配为根据脉宽调制方案来控制第三电容器 34的连接,从而控制反馈电路26的电容的幅度。
调节可调电容电路的电容会改变控制电路9的增益响应的第一极点的位置。因此,控制电路的增益裕度和相位裕度可以通过控制可调电容电路的电容来调节。
阻抗布置27包括可以用作可调电阻布置的可变电阻器和/或电位计。调谐电路28可以被适配为调节该可调电阻布置27的电阻。改变可调电阻布置的电阻会改变增益响应的零点的位置。因此,调谐电路可以调节控制电路9的增益,从而调谐、调节或以其他方式改变控制回路(以及整个照明驱动器)的增益裕度和相位裕度。
一般而言,控制电路9的频率响应由电路参数设计(即,各种电阻器、电容器和/或电感器的值)确定。使用可调电容电路和/或可调电阻布置来调节这些参数,从而使得能够控制控制电路9的频率响应。
图4和图5提供了根据第一实施例的整个照明驱动器3的频率响应的说明性波特图或示图。
特别地,图4图示了示出驱动器3相对于频率(x轴)的增益(y 轴)的曲线41或增益响应(有时称为增益图或增益曲线)。频率是电子镇流器2的输出的频率,并且增益表示由驱动器3向LED光源4 提供的信号的增益。
驱动器3的增益响应41是控制电路9的增益响应42与驱动器3 的其他元件(例如,转换器5、电容器布置6、PWM电路8和感测电路10)的增益响应43之和。因此,很明显,如前所述,调节控制电路9的增益响应可以调节整个驱动器3的增益响应。
以类似的方式,调节驱动器3的相位响应可以通过调节控制电路 9的相位响应来实现。因此,驱动器3的相位响应是控制电路9的相位响应和驱动器3的其他元件的相位响应之和。通过这种方式,驱动器3的整体频率响应可以通过调节控制电路9的频率响应来控制。
如将在稍后描述的,在图5提供的波特曲线或波特图的下图46 中图示了示出控制电路9的相位响应的曲线47和示出整个驱动器3 的相位响应的曲线48。
当然,将类似地理解,调节控制电路9的频率响应会影响控制回路7(包括控制电路9、PWM电路8和感测电路10)的频率响应。在计算控制电路9的组件的适当特性时考虑整个控制回路7的响应可能会有所帮助。
图5提供了根据一个实施例的照明驱动器3的频率响应的示例性波特曲线或波特图。
波特曲线或波特图包括图示了驱动器3相对于频率(x轴)的增益(y轴)的第一曲线45或增益响应(有时称为增益图或增益曲线)。波特曲线或波特图还包括图示了驱动器3相对于频率(x轴)的相位变化(y轴)的第二曲线48或相位响应(有时称为相位图或相位曲线)。为了更好地理解,还提供了控制电路9的相位响应的曲线49。
增益交叉频率fg是驱动器3的增益为零(0)的频率。相位交叉频率fP是驱动器3的相位变化的幅度为360°(或0°)的频率。增益裕度gm是相位交叉频率和增益交叉频率之间的增益差。相位裕度 pm是相位交叉频率和增益交叉频率之间的相位变化之差。
本领域技术人员将理解,相位交叉频率位置可以根据电子系统是提供反相输出还是非反相输出而变化。
如果在输入信号的频率处的相位滞后幅度小于360°,则通常认为系统(对于特定的输入信号)是稳定的。通常还期望跨越感兴趣的频率区域来将系统的增益最大化和/或保持平坦的增益响应。因此,显然期望为驱动器提供对各种不同电子镇流器的适当频率响应。
本领域技术人员将众所周知,诸如照明驱动器3的系统的频率响应由一个或多个极点和零点限定。这些极点和零点的位置或定位取决于该系统的组件(即,照明驱动器)的值。
本发明提出(动态地)调节控制电路9的极点和零点,从而影响和控制控制回路7以及整个驱动器3的极点和零点的位置。如前所述,控制电路的频率响应有助于整个驱动器3的频率响应。这使得控制驱动器3能够使得驱动器适配于各种电子镇流器。
根据已知的控制系统,控制电路9的增益响应42与第一零点44A 和第一极点44B相关联。通过修改反馈电路(例如,可调电容电路或可调电阻电路27的反馈电路)的阻抗,可以控制第一零点44A 和/或第一极点44B的位置。
控制第一零点44A和第一极点44B的位置来调节驱动器3的频率响应,从而改变驱动器3的增益/相位交叉频率、增益裕度和/或相位裕度。因此,控制驱动器3的频率响应可以通过控制在控制电路9中提供的可调阻抗来实现。
仅作为示例,将第一极点44B移位将调节驱动器3的增益交叉频率fg
控制可调阻抗因此允许控制电路将驱动器3适配于可能输出不同频率的不同镇流器。例如,可以调节零点和/或极点的位置来相对于特定频率将驱动器3稳定。例如,对于具有较低输出频率的镇流器,第一极点44B的位置可以向左移位(即,移位至较低频率)。
调节可调电容电路31、34、35的电容会改变增益响应的第一极点44B的位置。
优选地,应控制驱动器的频率响应(可通过调节控制电路9的频率响应来控制)来满足某些标准。
特别地,优选地,驱动器的相位裕度足以防止振荡(最小约45 °,优选不小于60°)。优选地,驱动器的增益裕度不小于10dB。优选地,驱动器的增益响应在通过0dB时(即,在增益交叉频率处) 具有-20dB/decade的斜率和/或驱动器的带宽在(由转换器5限定的) 切换频率的1/5至1/10之间。
以这种方式来控制控制电路的特性提供了更稳定的整体驱动器 3。所确定的标准提供了特别灵活和高质量的驱动器3。
图6图示了根据本发明的第二实施例的控制电路9。第二实施例实质上是第一实施例的另一修改版本,并且图示了经修改的III型误差放大器。相同的附图标记已用于标识相似或相同的组件。
电容器-电阻器布置32、33的电阻器33已被修改为替代地包括可变电阻器或电位计。因此,反馈电路26可以进一步包括允许改进对控制电路9的频率响应的控制的可变电阻布置。反馈电路26由此包括第一可变电容电路31、34、35和第一可变电阻电路32、33。
阻抗布置27已被修改为代替地包括第二可变电容布置51和第二可变电阻布置55、56。
第二可变电容布置控制感测信号SS与差分放大器21的第一输入 22之间的电容。第二可变电容布置51的操作与前述的第一可变电容布置31、34、35基本相同(包括电容器52和并联布置的电容器开关 53、54)。第二可变电容布置可以进一步包括与电容器52串联的电阻器57。
第一可变电阻布置55、56包括可变电阻器55和布置为分压器的电阻器56。调节可变电阻器55的电阻可以调节第一输入22相对于感测信号的偏置。因此,可变电阻布置55、56可以可控地调节感测信号SS与第一输入22之间的电阻。可变电阻布置55、56可以替代地包括例如电位计来实现相同的效果。
根据已知原理,在阻抗布置27中提供可变电容布置51和可变电阻布置55、56在控制电路9的频率响应中提供了附加的(可控的) 极点和零点。因此,通过提供这样的附加布置,可以实现对控制电路 9的频率响应的进一步且更精确的控制。特别地,控制可变电阻布置 27的电容和电阻使得调谐电路能够控制控制电路9的频率响应的极点和零点的位置,从而控制控制回路和照明驱动器的频率响应。
图7是根据第二实施例的控制电路9的频率响应的代表性波特曲线或波特图,图示了增益响应61和相位响应65。这些响应已以与图 4相同的方式图示。
如前所述,调节控制电路9的频率响应控制、影响或以其他方式调节整个照明驱动器3的频率响应。
显然,增益响应至少与第一零点62、第二零点63、第一极点64 和第二极点65相关联。
调节第一可变电阻布置32、33的电阻来修改第一零点62的位置。调节第二可变电容布置51的电容来修改第一极点64的位置。调节第二电阻的电阻和/或第二电容器布置的电容来调节第二零点63的位置。调节第一电阻布置33的电阻或第一电容布置31、34、35的电容来调节第二极点65的位置。
因此,通过改变控制电路9的偏置电路的组件的阻抗,可以容易地修改与控制电路9相关联的极点/零点的位置。这样,控制回路7 和整个照明驱动器3的频率响应可以通过改变偏置电路的组件的阻抗来调节。
在至少一个实施例中,第二电容器32的电容也可以是可调的(例如,由先前描述的可变电容布置代替)。这使得能够进一步控制频率响应的零点和极点的位置。特别地,修改第二电容器32的电容将修改第一零点62的位置。
在至少一个实施例中,电阻器57的电阻也可以是可调的(例如,由先前描述的可变电阻布置代替)。这使得能够进一步控制频率响应的零点和极点的位置。
因此,实施例使得能够对控制电路9的频率响应的极点和/或零点的位置进行调节。这使得能够有效地控制控制电路9的增益裕度和/ 或相位裕度,并由此控制控制回路7和整个照明驱动器3的增益裕度和/或相位裕度。
技术人员可以容易地实现用于可调电阻电路的其他布置(例如,与电流电阻器串联的选择性连接的电阻器等)。技术人员也将实现用于可调电容电路的其他布置(例如,电压或数字调谐电容器)。当然,一些可调阻抗电路可以包括可调电感电路。
图8图示了根据本发明的另一实施例的控制电路9。如前所述,控制电路包括差分放大器21、偏置电路25和调谐电路28。偏置电路 25可以包括先前描述的任何偏置电路。
调谐电路28可以被适配为与存储系统71或存储器通信来确定如何调节偏置电路的阻抗。存储系统可以是控制电路9的一部分或者可以位于控制电路的外部(例如,在云计算网络或服务器上)。
在一个实施例中,控制电路9获得标识信号SID,该标识信号SID指示镇流器输出的信号的电流、电压和/或频率中的至少一个。
标识信号SID可以被处理来标识电子镇流器。在一个实施例中,调谐电路28使用数据库(例如,存储在存储系统中)来标识与标识信号SID中包含的信息相关联的电子镇流器或镇流器类型。例如,特定的镇流器或镇流器类型可以利用特定的输出频率来标识。在一个示例中,已知的镇流器类型ICN-2P32-N与约50kHz的输出频率相关联,而另一已知的镇流器类型ICN-4P32-N与约51kHz的输出频率相关联。
电子镇流器的输出特性(频率、电压、电流)可以根据LED光源的期望操作(例如,照明布置的调光水平或导通/关断状态)而变化。在一些实施例中,调谐电路可以因此使用参考信号或确定照明布置的导通/关断状态来标识电子镇流器或镇流器类型。
电子镇流器的输出特性(频率、电压、电流)也可以取决于镇流器的输出处的阻抗(例如,镇流器看到的整个照明布置的阻抗)。在一些实施例中,当标识电子镇流器时,调谐电路因此可以确定并使用镇流器输出处的阻抗。
有利地认识到,所确定的由镇流器输出的信号的电流和频率足以准确地标识镇流器或镇流器类型。因此,使用这样的参数显著提高了标识正确的镇流器的准确性,从而使得调谐电路能够进行精确的操作。
调谐电路然后可以基于电子镇流器的身份来确定偏置电路25的期望阻抗值。特别地,存储设备可以将电子镇流器的身份映射到期望的阻抗值(例如,在数据库或表格中)。调谐电路可以从存储设备提取期望的阻抗值。所存储的期望阻抗值可以对应于使得控制电路9的阻抗或频率响应能够匹配所标识的电子镇流器的输出的已知或优选的阻抗值。
调谐电路然后可以基于所获得的期望阻抗值来调节偏置电路的阻抗。例如,调谐电路可以选择性地切换一个或多个可变电容布置或可变电阻布置来改变阻抗值。
以这种方式,可以根据标识信号来确定电子镇流器的身份,并将其用于确定阻抗值或如何控制控制电路9的可变阻抗布置。
在至少一个优选的实施例中,所存储的期望阻抗值标识参考信号的特定值或参考信号所指示的特定调光水平的期望阻抗值。
在其他实施例中,方法70替代地包括基于电子镇流器的测量参数来直接控制或计算适当的阻抗值。例如,阻抗值可以直接取决于电子镇流器输出的信号的频率或电压。在一个示例中,电子镇流器输出的供电的频率被确定并用于限定控制电路的零点和/或极点的位置。
控制电路9可以进一步包括参考信号处理器72。参考信号处理器 72被适配为对参考信号SR进行处理来确定是否调节参考信号。
如先前所讨论的,参考信号SR可以指示LED光源的期望调光水平。本发明认识到特定的调光水平或期望的调光水平可能导致针对特定镇流器的LED光源的闪烁(例如,由于控制电路9的不兼容性)。不同的镇流器可能以不同的期望调光水平使得LED灯闪烁。这是由于照明驱动器执行切换的切换频率与电子镇流器的输出频率之间的关系。
参考信号处理器可以确定参考信号是否在预定值附近的范围 (即,预定范围)内。预定值可以是使得LED光源针对特定镇流器闪烁的参考信号SR的值。可以修改参考信号SR来避开预定值附近的范围(例如,跳过该范围),以防止LED闪烁。
例如,如果参考信号的值降低到预定范围内,则参考信号处理器可以(向第二输入23)输出低于预定范围的下限的信号。因此,如果已知具有在0.60V-0.70V范围内的值的参考信号引起LED光源中的闪烁,则如果参考信号从0.71V降低到0.65V,参考信号处理器的输出可以替代地为0.59V(从而跳过预定范围)。
如果参考信号的值位于预定范围之外,则参考信号处理器可以输出未经修改的参考信号SR。如果参考信号位于预定范围内,则参考信号处理器可以输出经修改的参考信号(位于预定范围之外)。选择输出经修改的参考信号可以取决于参考信号SR的先前历史。例如,如果参考信号先前在预定范围之上,则输出的经修改的参考信号可以在预定范围之下,反之亦然。
预定值和/或预定范围可以根据电子镇流器的身份或其他参数而变化。在一个实施例中,控制电路9确定电子镇流器的身份(例如,使用前述方法)并且存储系统71存储与每个镇流器相关联的预定值或范围。参考信号处理器可以在存储系统中查找当前标识的镇流器的预定值。
当然,预定值还可以取决于照明驱动器和/或由照明驱动器驱动的 LED光源的操作。可以考虑到这一点。
因此,所提出的方法允许控制电路避免潜在有问题的参考信号和 /或调光水平。由此可以快速简单地避免错误。
在一个优选实施例中,控制电路9基于至少电子镇流器的身份,使用调谐电路28来确定其是否能够适当地调节偏置电路的阻抗。响应于控制电路9确定其能够适当地调节偏置电路的阻抗,调谐电路适当地修改偏置电路的阻抗并且参考信号处理器不调节参考信号的值 (例如,当它在预定范围内时)。响应于调谐电路确定不能适当地调节偏置电路的阻抗,参考信号处理器被适配为在参考信号的值落入预定范围内时对其进行调节。
实施例通过避免在导致闪烁或其他不期望效果的调光水平下操作而增加了与LED照明布置可兼容的电子镇流器的种类。
参考信号处理器72的概念也可以与包括具有可调阻抗的偏置电路的实施例分开考虑。即,一个概念提出了在不需要具有可调阻抗的偏置电路25和/或调谐电路28的情况下,包括参考信号处理器来标识潜在有问题的调光水平的控制电路。
为了减少组件的数目,参考信号处理器72和调谐电路28可以并入单个处理布置(例如,CPU或MCU)中。
本文还提出了被适配为确定电子镇流器的特性的检测布置的概念。检测布置可以与先前描述的(多个)控制电路分开形成并且可以形成为照明布置1的一部分或与照明布置1分离。检测布置可以用作先前描述的照明驱动器或其他照明布置的驱动器的检测电路。
基于LED的照明布置的组件可以具有可调值来匹配电子镇流器的不同输出特性。照明布置可包括一个或多个可调阻抗布置,该一个或多个可调阻抗布置包括可变电阻器、电位计、可变电容器和/或可变电感器。通过控制一个或多个可调阻抗布置的阻抗,照明布置可因此具有可调阻抗和/或频率响应。由于照明布置的阻抗或频率响应可以被调谐来匹配各种不同的电子镇流器,所以这样的照明布置具有与电子镇流器的改进的兼容性。
基于LED的照明布置的其他设置(例如,PWM操作等)也可以取决于与其连接的电子镇流器的特性。
照明布置的电子电路可以是可重新编程的或者可以例如通过燃烧特定的电子组件而在特定状态下仅被编程一次。
因此,为了与所测量的电子镇流器兼容,期望精确地确定电子镇流器的输出特性或参数。特别地,应限定照明布置的可调组件(例如,可调阻抗布置的组件)的值。
前述控制电路是用于照明布置的可调阻抗布置的一个优选实施例。其他合适的可调阻抗布置和/或具有可调阻抗的照明布置对于技术人员将是众所周知的。因此,很显然,调节可调阻抗布置的阻抗可以由此调节照明布置的阻抗、频率响应和/或兼容性(范围)。
使用检测布置来标识电子镇流器的输出参数和/或电子镇流器的身份使得能够容易地(例如,预先)计算用于照明布置的可调阻抗布置的适当的组件值。
根据一个概念,提供了用于确定电子镇流器的特性的检测布置,其中检测布置包括:被适配为确定镇流器的输出参数的值的检测电路;以及被适配为基于所确定的镇流器的输出参数的值,将输出信号传输到外部设备的第一接口。
输出信号可以以其他方式被标记为电子镇流器的/针对电子镇流器的标识信号。显然,输出信号根据电子镇流器的类型、型号或身份而变化,从而标识电子镇流器和/或将所述电子镇流器与其他电子镇流器区分开。
所提出的检测布置因此包括检测电路,检测电路被适配为连接至电子镇流器的输出并检测、感测、获得或记录该电子镇流器的输出参数或特性。基于所检测的参数或特性来生成输出信号(即,标识信号)。
输出参数可以包括例如电子镇流器的阻抗、输出频率、输出电流或输出电压。检测电路可以使用例如电磁传感器、电容传感器、变压器、电压表、电流表、频率检测电路等中的任一个或多个来感测这样的参数。其他适当的感测布置对于技术人员将是显而易见的。
在一些实施例中,检测布置可以使用标准灯座(以连接至电子镇流器)并且优选地包含广泛的测试和测量电路以及配置为测试和测量待测灯具的电子镇流器的协议。
这些输出特性可用于确定可调阻抗布置的组件的合适的值。例如,照明布置的阻抗可以被调谐为匹配电子镇流器的阻抗或者组件的阻抗可以被改变来更改照明驱动器的频率响应(如本文所述)。这将改进效率并减少照明布置的功耗并且防止照明布置的光源的潜在闪烁。在此,阻抗可以是与灯的控制回路有关的上述阻抗;备选地,阻抗可以是整流器看到的灯的输入阻抗。例如,可以对镇流器和灯的转换器之间的串联电容进行调谐来匹配镇流器。
优选地,检测电路被适配为检测电子镇流器输出的信号的频率和 /或振幅。已将电子镇流器的这些特性标识为与确定所需的阻抗、防止闪烁以及连接到电子镇流器的照明布置的适当频率响应最为相关,因此可以最大程度地利用电子镇流器的这些特性。
检测布置还包括第一接口,第一接口被适配为基于所检测的输出参数来输出、提供或以其他方式供应携带电子镇流器的标识信息的输出信号。第一接口还被适配为将该输出信号传递到外部设备(例如,照明布置、中间设备或外部服务器)。
输出信号可以被标记为标识信号。第一接口可以使用任何已知的有线协议(例如,通过以太网或DALI连接)或无线协议(例如, WiFi、Bluetooth、3G、ZigBee、4G等)将输出信号传递到外部设备。
在一个实施例中,所传输的输出信号携带关于输出参数的确定值的信息。第一接口可以因此充当桥接器,以将由检测电路检测的输出参数的值传递到外部设备。输出参数的值根据镇流器的类型、型号或身份而变化,从而可以用作电子镇流器的标识信息。
在一些实施例中,检测布置被适配为基于输出参数来确定电子镇流器的身份、型号或类型。特别地,检测布置可以包括处理器,处理器被适配为对所确定的输出参数的值进行处理来标识电子镇流器。
处理器可以通过将所确定的电子镇流器的输出参数与相应参考电子镇流器的不同类型、型号或身份相关联的参考输出参数进行比较来标识电子镇流器(例如,使用数据库系统)。在一些实施例中,由处理器生成所确定的输出参数与参考输出参数之间的距离测量。选择具有与最低距离测量相关联的参考输出参数的参考电子镇流器的型号/类型/身份作为所测量的电子镇流器的型号/类型/身份。
第一接口传输的输出信号由此可以携带直接标识电子镇流器的型号/类型/身份的信息。
检测布置可以被适配为确定适用于照明布置(待连接到电子镇流器)的可调阻抗的值。特别地,检测布置可以包括处理器,处理器被适配为对所确定的输出参数的值进行处理来标识适用于照明布置的可调阻抗的值。
处理器可以被适配为接收携带电子镇流器的标识信息和照明布置的标识信息的信号。处理器可以使用所接收的信息来确定适用于照明驱动器的可调阻抗电路的组件的值。
照明驱动器的标识信息可以包括照明驱动器的身份或设计、照明驱动器的电路布局、照明驱动器的可调参数的指示等。
处理器可以使用照明布置的信息(例如,如何调节照明布置的阻抗)来确定适用于照明布置的可调阻抗的值。例如,照明布置的标识信息可以详细说明或指示可以调节照明布置的哪些组件值以及这如何影响整个照明布置的阻抗或频率响应。这可以用于生成用于对照明布置进行适当地调节的组件值。
照明驱动器的标识信息可以从例如用户输入获得,该标识信息标识照明驱动器的型号、类型或身份和/或指示照明驱动器的参数。标识或获得标识信息的其他方法(例如,条形码扫描仪、照明驱动器传输的信号等)对于技术人员将是众所周知的。
在一些实施例中,检测布置可以进一步包括LED仿真单元。检测布置由此可以形成用于在待连接到电子镇流器的照明布置的情况下更准确地检测电子镇流器的输出参数的测试单元或测试设备。
LED仿真单元被适配为仿真照明布置的LED光源。电子镇流器的一些输出参数(例如,输出电压)可能取决于照明布置的阻抗或类型。使用LED仿真单元来仿真LED光源,从而允许检测布置检测用于特定照明布置的电子镇流器的输出参数。
这使得在待连接到光源的照明布置的情况下,能够更准确且相关地确定电子镇流器的输出参数。因此,电子镇流器的输出参数可以被更准确地表征。
LED仿真单元可以包括:至少一个LED串;至少一个LED串配置用于仿真特定的LED配置和/或在电子器件处仿真各种LED配置 (例如,仿真LED光源的阻抗和/或频率响应)。因此,LED仿真单元可以包括一个或多个LED串和/或用于仿真特定LED配置的串配置或者可以包含电子器件来仿真各种LED串配置。实施例由此可以使得各种照明布置能够被检测布置(即,可变测试设备)仿真。
LED仿真单元可以具有可调阻抗、功率需求和/或其他特性,以使得LED仿真单元能够仿真不同的照明布置和/或LED光源。
LED仿真单元可以由此仿真待连接到电子镇流器的照明布置。控制器/处理器可以基于所仿真的照明布置和所确定的电子镇流器的输出特性来确定由LED仿真单元仿真的照明布置的可调阻抗的适当组件值。因此,可以计算出适合于照明布置的阻抗匹配的值(例如,电容器、电感器或电阻器的值)。由于可以精确地仿真照明布置,因此这种计算具有改进的准确性和相关性。
检测布置的控制器可以被适配为控制、偏置或调谐LED仿真单元来仿真特定的照明布置。例如,控制器可以接收(例如,经由第一驱动器或用户输入)照明驱动器的标识信息。该标识信息可用于限定LED仿真单元的特性、参数、电路布局、开关配置或组件值,以匹配所标识的照明布置。这允许LED仿真来标识或仿真各种照明布置。
实施例因此有利地允许在将这样的照明布置连接到电子镇流器之前(通过使用LED仿真单元而不是照明布置本身)来确定照明布置的可调组件的值。因此,当照明布置从电子镇流器断开连接时,可以对其进行编程或调谐,从而允许在连接至电子镇流器之前对照明布置进行适配。这降低了针对电子镇流器对照明布置进行调谐的风险或成本(例如,由于不需要提供专业设备,并且可以在照明布置不通电时执行调谐)。
特别地,安装者可以在将照明布置运送到待安装的位置之前对其进行编程。这提高了对照明布置进行编程的容易性。此外,安装者可以测试(例如,根据需要)照明布置作为替换的准备,从而安装者可以提前验证和/订购正确的照明布置来减少将安装不正确或不兼容的照明布置的机会。
实施例还使得能够在将照明布置连接到电子镇流器之前确定照明布置是否适合于电子镇流器或与电子镇流器兼容。这降低了将不兼容的照明布置连接到电子镇流器的可能性,从而减少了对照明布置的潜在损坏和/或减少了评估不起作用或不兼容的照明布置所花费的时间长度。也可以避免闪烁和其他不期望特性。
检测布置的控制器可被适配为生成与电子镇流器一起使用的适当照明驱动器或照明布置的指示。例如,控制器可以确定仅具有某些特性或能力的照明布置可以利用电子镇流器进行操作(例如,在阻抗或频率响应的特定范围内)。这可以通过查询照明布置的数据库或列表并确定所述照明布置是否适合于电子镇流器来执行。因此,检测布置可以被适配为建议与电子镇流器一起使用的照明布置的特定类型或型号。
在一些实施例中,检测布置可以包括LED光源(例如,代替LED 仿真单元)。检测布置由此可以形成包括检测电路的照明布置。因此,检测布置可以充当照明布置。
这对于确保可以在安装了所有照明布置之后执行照明布置的调谐是有利的。例如,建筑物中的功率波动可能影响电子镇流器的输出,镇流器的输出可以由(光的)检测布置检测并用于对附近的所有照明布置进行适当的偏置(通过将适当的标识信号输出至所述照明布置)。
图9图示了根据第一实施例的检测布置80。所图示的检测布置 80被适配用于与前述的控制电路/回路一起使用。特别地,当照明驱动器3处于“原位”时,所图示的检测电路11可操作,从而其连接至电子镇流器2。
检测布置80包括被适配为检测电子镇流器2的输出特性的检测电路11以及被适配为基于所检测的输出特性将输出信号或标识信号 SID传输到外部设备的第一接口82。在此,外部设备是照明驱动器3。
检测电路11被适配为从电磁耦接到镇流器2的输出的电磁传感器81检测镇流器2的电流或频率。检测电路11还直接从镇流器的输出检测电压(例如,使用连接在电镇流器的差分输出之间的已知电压表)。
第一接口82被适配为基于所检测的电子镇流器的特性来生成标识信号SID(输出信号)。
第一接口82被适配为与检测电路11和照明驱动器3两者通信。第一接口82由此可以用作检测电路11和照明驱动器3之间的桥接器。这提供了将标识信号通信到控制回路7的简单且安全的方法。
标识信号SID(输出信号)携带关于所检测的电子镇流器2的参数的信息。例如,标识信号SID可以包括标识所测量的镇流器的各种参数的值的经编码的数据流。在其他实施例中,标识信号可以是指示所检测的电子镇流器的频率的简单电压电平。
用于将所检测的信息传递到照明驱动器3的各种其他实施例对于技术人员将是显而易见的。
照明驱动器3或控制回路7可以包括被适配为与第一接口82通信的互补接口或通信模块。
单个检测布置80可以获得用于多个不同照明布置的电子镇流器参数。例如,可以假定同一建筑物、房间或位置中的所有电子镇流器是具有相同输出特性的相同型号。本发明认识到仅需要提供单个检测布置80(从而单个检测电路11)来标识每个电子镇流器。
第一接口82因此可以与多个不同的照明布置/驱动器通信,并且将标识信号SID传递到这些照明布置/驱动器中的每一个。因此,可以针对多个照明驱动器/布置同时生成电子镇流器的标识信息。
因此,可以通过提供单个单独的检测电路或布置(其可以与所述照明布置进行通信)来确定镇流器的特性,而不是通过每个照明布置包括检测电路来降低照明布置的成本。单个检测电路可以与每个照明布置通信,以使得照明布置能够修改驱动器和/或LED光源的阻抗来匹配电子镇流器。
图10图示了根据更一般概念的检测电路90的第二实施例。检测电路被适配为检测电子镇流器2的输出特性。
检测布置90包括检测电路11、LED仿真单元91和第一接口92。检测布置90由此形成测试设备或测试单元。
LED仿真单元91被适配为仿真可以连接到电子镇流器2的照明布置1的LED光源。照明布置1包括照明驱动器3和LED光源4。
第一接口92被适配为将输出信号SID(也称为标识信号)输出、传输或传递到外部设备。第一接口92由此与测试设备外部的设备(例如,另一灯的照明驱动器3)直接通信,或者与中间设备94、服务器 99或存储设备(未示出)通信。
输出信号SID包括基于所检测的电子镇流器的操作参数的电子镇流器2的标识信息。
检测布置(形成为测试设备)的目的是避免需要针对镇流器兼容性,包括具有可调阻抗的一个或多个组件的照明驱动器或照明布置 (例如,灯1)来包括专用检测电路。而是,单个测试设备可以针对不同电子镇流器来仿真各种照明驱动器/布置。
因此,检测布置90(体现为测试设备)被适配为使用LED仿真单元91来仿真一个或多个类型的照明布置,以在特定照明布置的情况下获得电子镇流器的操作参数。
当为仿真照明布置供电时,第一接口92可以由此传输携带关于电子镇流器的输出特性的信息的输出信号SID
在其他实施例中,检测电路还包括控制器93,控制器93被适配为根据所检测的参数来确定镇流器的型号、类型或身份。第一接口92 由此可以传输输出信号SID,输出信号SID携带指示型号、类型或身份信息的信息。这可以根据先前描述的任何方法(例如,查询数据库或与外部服务器通信)来执行。如上所述,该实施例将需要存储和比较组件来将所检测的参数与预存储的数据映射。在一些实施例中,控制器93可以与外部服务器99通信、上传所检测的电子镇流器的参数并接收电子镇流器的型号/身份或照明驱动器的偏置电路或其他阻抗匹配电路的适当参数。因此,外部服务器99可以向检测布置90提供附加的处理能力和/或存储能力。
在其他实施例中,检测电路包括控制器93,控制器93被适配为确定诸如灯1的照明布置的可调阻抗布置的组件的合适的值。这可以通过搜索与镇流器的每个型号、类型或身份匹配的预存储值来执行。这也可以通过更改测试灯中组件的值、检测输出电流并检查LED电流中是否存在闪烁/扰动并采用具有最小扰动的值来执行。
因此,第一接口传输的输出信号SID可以携带标识信息,标识信息指示:
所检测的电子镇流器的参数,
电子镇流器的型号或身份,和/或
照明驱动器的可调阻抗电路的组件的已确定的合适值。
以这种方式,在不需要照明驱动器的单独或专用分析的情况下,照明布置的可调阻抗布置的参数可以被适当地调谐。因此,可以显著减少照明布置中专用组件的数目(因为它们不需要包括检测电路)。
根据一个概念,提供了中间设备94,中间设备94包括:被适配为从检测布置90接收输出信号SID的接口95;被适配为对输出信号进行处理的控制器96。接口还被适配为例如以经处理的输出信号的形式将经处理的输出信号传输至照明布置。接口95可以是NFC接口。
类似于外部服务器99,中间设备94可以用于向测试设备90提供补充的存储或处理功能、能力或效率。因此,控制器96可以执行测试设备90的控制器93的操作中的任一个或多个。
例如,控制器96可以被适配为根据电子镇流器的所检测的参数来确定镇流器的型号、类型或身份或者针对照明布置的可调阻抗电路的组件来确定合适的值。在一些示例中,可以省略测试设备90的控制器93,而所有处理都由中间设备的处理器96执行。
中间设备可以包括被适配为存储标识信息或经处理的标识信息的存储系统(未示出)。
中间设备可以是运行特定程序或应用程序的消费电子设备。消费电子设备的示例包括:便携式计算机、笔记本计算机、平板计算机、智能电话或类似设备。这有利地允许中间设备被远程升级(例如,执行应用更新)来反映改进的测试和/或测量协议和/或阻抗值计算方法。
接口95可以使用任何已知的有线或无线协议与检测布置90或照明布置1通信。
在特定实施例中,中间设备94可以用作用于对照明驱动器3的可调阻抗电路进行编程或调谐的编程设备。例如,中间设备94可以经由接口95,向照明布置1上传期望的设置(即,用于可调阻抗布置的合适值)。
优选地,中间设备94可以经由照明布置1的功率端盖(例如,在管状LED照明布置中存在的功率端盖)与照明布置通信。这使得能够省略无线接口电子器件并将照明布置的成本最小化。优选地,中间设备94经由位于照明布置的功率端盖处的NFC标签/读取器与照明布置通信。
接口95还可以或以其他方式包括电话连接器、插孔插头或耳机输出插孔,其被配置和/或控制为将包括经处理的标识信息的所有信息通信和/或接收标识信息SID并将适用于照明布置1中的组件的值通信。接口95可以经由有线连接器或适配器连接到测试设备90和/或照明驱动器3。
例如,照明驱动器可能能够使用可在数字可寻址照明接口(DALI) 协议下操作的接口进行通信。中间设备的包括电话连接器的接口95 可以通过适配器连接至照明驱动器,适配器将电话连接器输出转换为 DALI接口。
提供使用具有电话连接器的接口与照明驱动器进行通信的方法将中间设备的兼容性扩展到更大数目的现有消费产品(即,更多的消费产品可以充当中间设备)。这可以降低成本并改进调节照明驱动器或照明布置的可调阻抗电路的阻抗的效率。
此外,实施例使得照明布置的编程能够在没有诸如市电或电池的专用供电的情况下发生。
此外,这样的方法避免了对照明驱动器和/或检测布置包括无线通信能力的需求。因此,可以显著减少照明驱动器和/或检测布置的尺寸和/或成本。
接口95可以类似地被适配为使用相同的适配器和/或协议与检测电路90通信。
当然,在一些实施例中,第一接口92被适配为执行接口95的先前描述的动作(例如,与照明布置1直接通信),使得可以省略中间设备。检测布置90由此可以使用任何通信协议、方法或设备(例如,先前描述的耳机插孔)与照明布置1直接通信。
在一些实施例中,中间设备94可以将所检测的(多个)参数上传到外部服务器99并且接收电子镇流器的型号/身份或照明驱动器的偏置电路或其他阻抗匹配电路的适当参数。因此,外部服务器99可以向中间设备94提供附加的处理能力和/或存储能力。
在另一实施例中,将编程设备作为单独的实体提供给中间设备和 /或检测布置。因此,中间设备和/或检测布置可以进一步将经处理的标识信息(例如,照明布置的组件的合适值)传递给编程设备。编程设备可以随后与照明布置通信(例如,使用诸如DALI连接的直接有线连接)来控制或限定照明驱动器和/或照明布置的参数。
这样的编程设备可以包含无线或有线通信接口来与中间设备和/ 或检测布置进行通信。
编程设备可以特别地被适配用于对照明布置进行编程(例如,限定照明布置组件的阻抗值)。在实施例中,编程设备可能无法计算合适的值(相反,这只能由检测布置和/或中间设备执行)。
还提出了被适配为从镇流器2驱动LED光源4的照明驱动器3 的概念。照明驱动器包括被适配为接收镇流器的标识信息的第二接口以及被适配为基于所接收的标识信息,对驱动器进行调谐的调谐电路。
标识信息可以例如从前面描述的测试电路和/或中间设备接收。所接收的标识信息因此可以包括已由中间设备处理的标识信息。
优选地,驱动器包括连接在LED光源和镇流器之间的阻抗匹配电路和/或用于将镇流器可控地连接到LED光源的控制回路(如前所述)。控制器被适配为基于所接收的标识信息来修改阻抗匹配电路和 /或控制回路的阻抗。
特别地,所接收的标识信息可以包括用于阻抗匹配电路的值和/ 或用于控制回路的组件的值。控制器从而可以根据所接收的来调节照明驱动器的组件。
在稍微修改的实施例中,LED仿真单元可以包括照明驱动器和 LED光源(如前所述)。
图11图示了根据一个实施例的用于照明驱动器的控制方法,其中照明驱动器被适配为将电子镇流器的输出可控地连接至LED光源。
控制方法包括步骤101:在差分放大器的第一输入处接收指示电子镇流器输出处的信号电流的感测信号。
控制方法还包括步骤102:在差分放大器的第二输入处接收参考信号;以及步骤103:从差分放大器的输出来输出控制信号,其中控制信号是第一输入与第二输入之间的电压差的放大。
控制方法100还包括步骤104:使用控制信号来控制电子镇流器的输出到LED光源的连接;以及步骤105:调节偏置电路的阻抗,偏置电路具有可调阻抗并连接到差分放大器的至少一个输入来调节控制信号,从而对控制电路和照明驱动器的控制回路的增益交叉频率、增益裕度、相位交叉频率和相位裕度中的至少一个进行调谐。
方法可以由充当控制器的控制电路来执行。
控制器可以利用软件和/或硬件以多种方式来实现,以执行所需的各种功能。处理器是采用一个或多个微处理器的控制器的一个示例,微处理器可以使用软件(例如,微代码)进行编程来执行所需的功能。然而,可以在采用或不采用处理器的情况下实现控制器,并且还可以将控制器实现为执行某些功能的专用硬件与执行其他功能的处理器 (例如,一个或多个编程的微处理器和相关电路)的组合。
可以在本公开的各种实施例中采用的控制器组件的示例包括但不限于常规微处理器、专用集成电路(ASIC)和现场可编程门阵列 (FPGA)。
在各种实现中,处理器或控制器可以与一个或多个存储介质(例如,诸如RAM、PROM、EPROM和EEPROM的易失性和非易失性计算机存储器)相关联。可以利用一个或多个程序对存储介质进行编码,程序在一个或多个处理器和/或控制器上执行时,执行所需的功能。各种存储介质可以固定在处理器或控制器内,或者可以是可移动的,使得可以将存储在其上的一个或多个程序加载到处理器或控制器中。
通过研究附图、公开内容和所附权利要求,本领域技术人员在实践所要求保护的发明时可以理解和实现所公开的实施例的其他变型。在权利要求中,词语“包括”不排除其他元素或步骤,并且不定冠词“一(a)”或“一个(an)”不排除多个。在互不相同的从属权利要求中记载某些措施的事实并不表示这些措施的组合不能用于有利。权利要求中的任何附图标记不应被解释为限制范围。

Claims (16)

1.一种用于照明驱动器(3)的控制回路(7)的控制电路(9),所述照明驱动器(3)被适配为将电子镇流器(2)的输出可控地连接至LED光源(4),所述控制电路包括:
差分放大器(21),包括:
第一输入(22),被适配为接收感测信号(SS),所述感测信号(SS)指示输出到所述LED光源的电流信号;
第二输入(23),被适配为接收参考信号(SR);以及
输出(24),被适配为输出控制信号(SC),其中所述控制信号是所述第一输入与所述第二输入之间的差的放大,并且其中所述控制信号用于控制所述电子镇流器的所述输出到所述LED光源的连接;
偏置电路(25),连接至所述差分放大器的至少一个输入,其中所述偏置电路具有可调阻抗;
到检测电路(11)的输入,用于获得所述电子镇流器的标识信息,所述标识信息标识所述电子镇流器的型号、类型或身份;以及
调谐电路(28),被适配为基于标识所述镇流器的型号、类型或身份的所述标识信息来调节所述偏置电路的所述阻抗,以对以下项中的至少一项进行调谐:所述控制电路和由此的所述照明驱动器的所述控制回路的增益交叉频率、增益裕度、相位交叉频率和相位裕度。
2.根据权利要求1所述的控制电路,其中所述偏置电路包括反馈电路(26),所述反馈电路(26)被连接在所述差分放大器的所述输出(24)与至少一个输入(22、23)之间。
3.根据权利要求2所述的控制电路,其中所述反馈电路(26)包括可调电容电路(31、34、35),其中所述调谐电路被适配为调节所述可调电容电路的电容,从而改变所述差分放大器的增益响应的第一极点的位置,进而改变所述控制电路的所述增益裕度和所述相位裕度。
4.根据权利要求3所述的控制电路,其中所述反馈电路还包括与所述可调电容电路并联的、串联连接的固定电容电路(32)和可调电阻电路(33);
其中所述调谐电路被适配为调节所述可调电阻电路的电阻,从而改变所述差分放大器的增益曲线的第一零点和第二极点的位置,进而改变所述控制电路的所述相位裕度和所述增益裕度。
5.根据前述权利要求中的任一项所述的控制电路,其中所述偏置电路包括第二可调电阻布置(27、55、56),所述第二可调电阻布置被连接至所述差分放大器的至少一个输入并且从所述差分放大器的所述输出断开连接,
其中所述调谐电路被适配为调节所述可调电阻布置的电阻,从而调节所述差分放大器的所述增益,进而改变所述控制电路的所述相位裕度和所述增益裕度。
6.根据权利要求1至4中任一项所述的控制电路,其中所述调谐电路被适配为调节所述偏置电路的所述阻抗,以使得以下至少之一:
与所述电子镇流器一起使用的所述照明驱动器的所述增益裕度不小于10dB;
与所述电子镇流器一起使用的所述照明驱动器的所述相位裕度不小于45°;
与所述电子镇流器一起使用的所述照明驱动器的所述相位交叉频率不小于所述照明驱动器的切换频率的一半。
7.根据权利要求1至4中任一项所述的控制电路,其中所述调谐电路被适配为调节所述偏置电路的所述阻抗,以使得以下至少之一:
与所述电子镇流器一起使用的所述照明驱动器的所述增益裕度不小于10dB;
与所述电子镇流器一起使用的所述照明驱动器的所述相位裕度不小于60°;
与所述电子镇流器一起使用的所述照明驱动器的所述相位交叉频率不小于所述照明驱动器的切换频率的一半。
8.根据权利要求1至4中任一项所述的控制电路,其中所述差分放大器和所述调谐电路被布置为形成以下项中的一项:II型补偿布置或III型补偿布置。
9.根据权利要求8所述的控制电路,其中所述差分放大器和所述调谐电路被布置为形成III型补偿布置,并且所述调谐电路还包括:
输入阻抗电路(51),被连接至所述差分放大器的至少一个输入,其中所述输入阻抗电路被适配为具有可调电容,
其中所述输入阻抗电路被适配为能够由所述调谐电路调谐,以调节所述差分放大器的所述增益曲线的零点和极点,从而调节所述控制电路的所述相位裕度。
10.一种照明驱动器(3),所述照明驱动器(3)用于从电子镇流器(2)的输出驱动LED光源(4),所述照明驱动器包括:
控制回路(7),包括:
感测电路(10),被适配为生成感测信号(SS),所述感测信号指示从所述电子镇流器输出到所述LED光源的电流信号;
根据权利要求1至9中的任一项所述的控制电路(9),所述控制电路(9)被耦接到所述感测电路;
PWM电路(8),被耦接到所述控制电路并且被适配为基于所述控制电路的所述输出而生成PWM信号(SPWM);以及
切换电路(5),被适配为根据所述PWM信号而将所述电子镇流器的所述输出可控地连接至所述LED光源。
11.根据权利要求10所述的照明驱动器(3),其中所述照明驱动器的整个控制回路的频率响应由与所述电子镇流器一起使用的、除所述控制电路之外的所述控制回路的频率响应和所述控制电路的频率响应的组合形成。
12.根据权利要求10或11中的任一项所述的照明驱动器(3),其中所述控制电路被适配为避免根据所述参考信号的预定点或电平进行操作。
13.一种照明布置(1),包括根据权利要求10到12中的任一项所述的照明驱动器(3),并且进一步包括所述检测电路(11)和LED光源(4),其中所述检测电路(11)被适配为检测所述电子镇流器的所述输出处的信号的电流、频率和电压中的至少一项,其中所述调谐电路被适配为基于至少一个所检测的电流、频率和电压来调节所述偏置电路的所述阻抗。
14.根据权利要求13所述的照明布置,其中:
所述检测电路被适配为使用至少一个所检测的电流、频率和电压来获得所述电子镇流器的所述标识信息,其中所述电子镇流器与荧光灯或卤素灯一起使用;
所述控制电路还包括存储设备(71),所述存储设备将所述电子镇流器的可能身份映射到所述偏置电路的期望阻抗值;
所述调谐电路被适配为基于所述期望阻抗值来调节所述偏置电路的所述阻抗,所述期望阻抗值由所述存储设备映射到所述电子镇流器的被所述控制电路标识的所述身份。
15.一种用于照明驱动器的控制回路的控制方法(100),所述照明驱动器被适配为将电子镇流器的输出可控地连接至LED光源,所述控制方法包括:
在差分放大器的第一输入处接收(101)感测信号,所述感测信号指示所述电子镇流器的所述输出处的信号的电流;以及
在所述差分放大器的第二输入处接收(102)参考信号;以及
从所述差分放大器的输出来输出(103)控制信号,其中所述控制信号是所述第一输入与所述第二输入之间的电压差的放大;以及
使用所述控制信号来控制(104)所述电子镇流器的所述输出到所述LED光源的连接;
所述控制方法进一步包括:
获取所述电子镇流器的标识信息,所述标识信息标识所述电子镇流器的型号、类型或身份;
基于标识所述镇流器的所述型号、类型或身份的所述标识信息来调节偏置电路的阻抗,以便调节(105)所述控制信号,并且从而对包括所述差分放大器和所述偏置电路的控制电路的增益交叉频率、增益裕度、相位交叉频率和相位裕度中的至少一者进行调谐,并且进而对所述照明驱动器的所述控制回路的增益交叉频率、增益裕度、相位交叉频率和相位裕度中的至少一者进行调谐,所述偏置电路具有可调阻抗并被连接至所述差分放大器的至少一个输入。
16.一种处理器可读存储介质,所述处理器可读存储介质具有体现在其上的处理器可读程序指令,所述处理器可读程序指令在处理器布置上被执行时,使得所述处理器布置实现根据权利要求15所述的方法。
CN201880063518.6A 2017-09-30 2018-09-25 可控驱动器以及驱动方法 Active CN111165076B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/105067 2017-09-30
CN2017105067 2017-09-30
EP17203006 2017-11-22
EP17203045 2017-11-22
EP17203045.4 2017-11-22
EP17203006.6 2017-11-22
PCT/EP2018/075846 WO2019063497A1 (en) 2017-09-30 2018-09-25 COMMANDABLE ATTACK CIRCUIT AND ATTACK METHOD

Publications (2)

Publication Number Publication Date
CN111165076A CN111165076A (zh) 2020-05-15
CN111165076B true CN111165076B (zh) 2022-11-25

Family

ID=63592748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880063518.6A Active CN111165076B (zh) 2017-09-30 2018-09-25 可控驱动器以及驱动方法

Country Status (4)

Country Link
US (1) US10986712B2 (zh)
EP (1) EP3689108B1 (zh)
CN (1) CN111165076B (zh)
WO (2) WO2019063505A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112106410A (zh) * 2018-05-10 2020-12-18 索尼公司 Drx工作期间空闲模式下同步信令的过程
US10976764B2 (en) * 2019-09-18 2021-04-13 Intel Corporation Differential to single-ended high bandwidth compensator
US11881779B2 (en) 2020-11-24 2024-01-23 Stmicroelectronics S.R.L. Adaptive compensation sytem for switching power converters
CN115616439B (zh) * 2022-12-19 2023-10-20 南昌大学 一种能够测量led全向频率响应的测试装置及测试方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106576409A (zh) * 2014-08-18 2017-04-19 艾酷瑞克有限责任公司 镇流器电路

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095175A (en) 1977-03-24 1978-06-13 Gte Sylvania Incorporated Arc discharge lamp ballast tester
US4695803A (en) 1983-08-15 1987-09-22 Harvey Hubbell Incorporated HID lamp ballast tester
JPH0927722A (ja) * 1995-07-12 1997-01-28 Fuji Xerox Co Ltd ゲイン可変増幅装置
JP3628334B2 (ja) * 1995-11-07 2005-03-09 池田 毅 同調増幅器
US7061313B2 (en) * 2000-05-05 2006-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Dual feedback linear amplifier
US6642669B1 (en) * 2002-06-01 2003-11-04 Lutron Electronics Co., Inc. Electronic dimming ballast for compact fluorescent lamps
JP5007587B2 (ja) 2007-03-20 2012-08-22 富士電機株式会社 誤差増幅器の起動回路および該回路を有するdc−dcコンバータ
CA2722958C (en) * 2008-04-24 2013-06-18 Panasonic Electric Works Co., Ltd. Smoke sensor
US20120013351A1 (en) * 2008-09-19 2012-01-19 Physical Logic Ag Method for converting a sensor capacitance under parasitic capacitance conditions and a capacitance-to-voltage converter circuit
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
WO2011084525A1 (en) 2009-12-16 2011-07-14 Exclara, Inc. Adaptive current regulation for solid state lighting
RU2013142062A (ru) 2011-02-16 2015-03-27 Конинклейке Филипс Н.В. Формирователь питания освещения, совместимый с электромагнитным балластом, для лампы на основе светоизлучающих диодов
US8575856B2 (en) 2011-06-01 2013-11-05 City University Of Hong Kong Driver circuit for powering a DC lamp in a non-DC lamp fitting
CN103748961B (zh) 2011-08-15 2017-09-22 飞利浦照明控股有限公司 用于发光二极管灯的兼容电子镇流器的照明驱动器
US9913330B2 (en) 2012-06-15 2018-03-06 Lightel Technologies, Inc. Solid-state lighting operable with compact fluorescent ballasts and AC mains
US9204504B2 (en) 2012-09-17 2015-12-01 Energy Focus, Inc. LED lamp system
US9439249B2 (en) 2013-01-24 2016-09-06 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
JP6248430B2 (ja) 2013-06-24 2017-12-20 サンケン電気株式会社 Led駆動装置及びled点灯装置並びに誤差増幅回路
US9557044B2 (en) 2014-10-20 2017-01-31 Energy Focus, Inc. LED lamp with dual mode operation
CN105848375B (zh) * 2015-01-13 2019-09-24 朗德万斯公司 驱动装置、照明装置、照明系统和控制该照明系统的方法
DE112015006565T5 (de) * 2015-05-27 2018-03-01 Dialog Semiconductor (Uk) Limited Festkörperbeleuchtungs-Treiberschaltung mit Vorschaltgerät-Kompatibilität
US10423746B2 (en) * 2015-07-23 2019-09-24 Texas Instruments Incorporated Compensation design of power converters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106576409A (zh) * 2014-08-18 2017-04-19 艾酷瑞克有限责任公司 镇流器电路

Also Published As

Publication number Publication date
CN111165076A (zh) 2020-05-15
WO2019063497A1 (en) 2019-04-04
US10986712B2 (en) 2021-04-20
US20200236761A1 (en) 2020-07-23
EP3689108B1 (en) 2023-02-08
EP3689108A1 (en) 2020-08-05
WO2019063505A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
CN111165076B (zh) 可控驱动器以及驱动方法
CN109315055B (zh) 智能照明控制灯泡检测设备、系统和方法
TWI528856B (zh) Led調光驅動器
US11445592B2 (en) Intelligent lighting control power measurement apparatuses, systems, and methods
EP3468304B1 (en) Closed-loop load control circuit having a wide output range
US9078327B2 (en) Apparatus and method for dimming signal generation for a distributed solid state lighting system
CN103025337B (zh) Led电源的检测和控制
JP2019537824A (ja) 照明のモニタリング
US8350494B2 (en) Fluorescent lamp dimming controller apparatus and system
US20210227661A1 (en) Tuneable lighting systems and methods
US9780875B2 (en) Visible light communication modulation circuit, illumination device, illumination apparatus and visible light communication system
CN111165075A (zh) 智能开关设备及其中央控制系统
US9497828B2 (en) Two-wire flyback dimmer and a metod of operation thereof
CA3191629A1 (en) Apparatus and methods for communicating information and power via phase-cut ac waveforms
US11683875B2 (en) Power line communication to control lighting
US20130229120A1 (en) Solid State Lighting System, Apparatus and Method with Flicker Removal
US10356873B1 (en) Multiple interface LED driver with inherent overvoltage protection
JP6320455B2 (ja) Led点灯装置
RU2656875C1 (ru) Модуль твердотельного освещения, цепь освещения и способы управления освещением
US10172200B2 (en) System for regulating the minimum output current of an LED dimming power supply
US20210136897A1 (en) Techniques for implementing a certain light characteristic
US20120235595A1 (en) Method for Setting an Electronic Ballast, an Electronic Ballast and a Compensating Unit
US10973104B2 (en) Intelligent lighting control system detection apparatuses, systems, and methods
KR101645919B1 (ko) 전류센서를 이용한 조명장치 제어시스템
KR20160076024A (ko) Ac 스위치 조작에 따른 smps 2차측 dc 출력 변화를 감지하여 디밍 기능을 수행할 수 있는 컨버터 내장형 디밍 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant