CN111161203A - 一种基于忆阻脉冲耦合神经网络的多聚焦图像融合方法 - Google Patents
一种基于忆阻脉冲耦合神经网络的多聚焦图像融合方法 Download PDFInfo
- Publication number
- CN111161203A CN111161203A CN201911404624.9A CN201911404624A CN111161203A CN 111161203 A CN111161203 A CN 111161203A CN 201911404624 A CN201911404624 A CN 201911404624A CN 111161203 A CN111161203 A CN 111161203A
- Authority
- CN
- China
- Prior art keywords
- image
- memristor
- neural network
- input
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 20
- 238000007500 overflow downdraw method Methods 0.000 title claims abstract description 13
- 230000008878 coupling Effects 0.000 title claims abstract description 9
- 238000010168 coupling process Methods 0.000 title claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 9
- 230000004927 fusion Effects 0.000 claims abstract description 29
- 230000003044 adaptive effect Effects 0.000 claims abstract description 14
- 238000013507 mapping Methods 0.000 claims abstract description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 210000002569 neuron Anatomy 0.000 claims description 7
- 238000009499 grossing Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000014509 gene expression Effects 0.000 claims description 4
- 239000002070 nanowire Substances 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 238000007499 fusion processing Methods 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 19
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000005094 computer simulation Methods 0.000 abstract description 3
- 238000003062 neural network model Methods 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 210000000857 visual cortex Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911404624.9A CN111161203A (zh) | 2019-12-30 | 2019-12-30 | 一种基于忆阻脉冲耦合神经网络的多聚焦图像融合方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911404624.9A CN111161203A (zh) | 2019-12-30 | 2019-12-30 | 一种基于忆阻脉冲耦合神经网络的多聚焦图像融合方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111161203A true CN111161203A (zh) | 2020-05-15 |
Family
ID=70559565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911404624.9A Pending CN111161203A (zh) | 2019-12-30 | 2019-12-30 | 一种基于忆阻脉冲耦合神经网络的多聚焦图像融合方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111161203A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111340746A (zh) * | 2020-05-19 | 2020-06-26 | 深圳应急者安全技术有限公司 | 一种基于物联网的消防方法及消防系统 |
CN111625760A (zh) * | 2020-06-01 | 2020-09-04 | 山东大学 | 基于闪存电学特性的存算一体方法 |
CN114581354A (zh) * | 2022-03-31 | 2022-06-03 | 昆明理工大学 | 一种采用特征相似性分析和多卷积稀疏表示的矿山掘进巷道顶板变形图像融合方法 |
CN115861359A (zh) * | 2022-12-16 | 2023-03-28 | 兰州交通大学 | 一种水面漂浮垃圾图像自适应分割提取方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102722877A (zh) * | 2012-06-07 | 2012-10-10 | 内蒙古科技大学 | 基于双通道pcnn的多聚焦图像融合方法 |
CN103679670A (zh) * | 2012-09-25 | 2014-03-26 | 中国航天科工集团第二研究院二〇七所 | 一种基于改进模型的pcnn多源图像融合方法 |
US20140172937A1 (en) * | 2012-12-19 | 2014-06-19 | United States Of America As Represented By The Secretary Of The Air Force | Apparatus for performing matrix vector multiplication approximation using crossbar arrays of resistive memory devices |
CN105139371A (zh) * | 2015-09-07 | 2015-12-09 | 云南大学 | 一种基于pcnn与lp变换的多聚焦图像融合方法 |
CN109389576A (zh) * | 2018-10-10 | 2019-02-26 | 青岛大学 | 基于多通道机制的脉冲耦合图像融合方法 |
-
2019
- 2019-12-30 CN CN201911404624.9A patent/CN111161203A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102722877A (zh) * | 2012-06-07 | 2012-10-10 | 内蒙古科技大学 | 基于双通道pcnn的多聚焦图像融合方法 |
CN103679670A (zh) * | 2012-09-25 | 2014-03-26 | 中国航天科工集团第二研究院二〇七所 | 一种基于改进模型的pcnn多源图像融合方法 |
US20140172937A1 (en) * | 2012-12-19 | 2014-06-19 | United States Of America As Represented By The Secretary Of The Air Force | Apparatus for performing matrix vector multiplication approximation using crossbar arrays of resistive memory devices |
CN105139371A (zh) * | 2015-09-07 | 2015-12-09 | 云南大学 | 一种基于pcnn与lp变换的多聚焦图像融合方法 |
CN109389576A (zh) * | 2018-10-10 | 2019-02-26 | 青岛大学 | 基于多通道机制的脉冲耦合图像融合方法 |
Non-Patent Citations (1)
Title |
---|
董哲康: "基于忆阻器的电路分析及其在神经形态系统中的应用", 《中国优秀博硕士学位论文全文数据库(博士) 信息科技辑》, no. 08, 15 August 2019 (2019-08-15), pages 1 - 5 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111340746A (zh) * | 2020-05-19 | 2020-06-26 | 深圳应急者安全技术有限公司 | 一种基于物联网的消防方法及消防系统 |
CN111625760A (zh) * | 2020-06-01 | 2020-09-04 | 山东大学 | 基于闪存电学特性的存算一体方法 |
CN111625760B (zh) * | 2020-06-01 | 2022-07-05 | 山东大学 | 基于闪存电学特性的存算一体方法 |
CN114581354A (zh) * | 2022-03-31 | 2022-06-03 | 昆明理工大学 | 一种采用特征相似性分析和多卷积稀疏表示的矿山掘进巷道顶板变形图像融合方法 |
CN115861359A (zh) * | 2022-12-16 | 2023-03-28 | 兰州交通大学 | 一种水面漂浮垃圾图像自适应分割提取方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111161203A (zh) | 一种基于忆阻脉冲耦合神经网络的多聚焦图像融合方法 | |
Liu et al. | Multi-focus image fusion with a deep convolutional neural network | |
CN109961396B (zh) | 一种基于卷积神经网络的图像超分辨率重建方法 | |
CN108198184B (zh) | 造影图像中血管分割的方法和系统 | |
CN108876737A (zh) | 一种联合残差学习和结构相似度的图像去噪方法 | |
CN108876797B (zh) | 一种基于Spiking-SOM神经网络聚类的图像分割系统及方法 | |
CN108399611B (zh) | 基于梯度正则化的多聚焦图像融合方法 | |
Civit-Masot et al. | TPU cloud-based generalized U-Net for eye fundus image segmentation | |
CN108053398A (zh) | 一种半监督特征学习的黑色素瘤自动检测方法 | |
CN110084288B (zh) | 一种基于自学习神经单元的图像融合方法 | |
Zhang et al. | IID-MEF: A multi-exposure fusion network based on intrinsic image decomposition | |
CN111652817B (zh) | 一种基于人眼视觉感知机理的水下图像清晰化方法 | |
CN107424145A (zh) | 基于三维全卷积神经网络的核磁共振图像的分割方法 | |
CN106372719B (zh) | 一种医学x光影像处理控制参量的智能优选方法 | |
CN112785539B (zh) | 基于图像自适应分解及参数自适应的多聚焦图像融合方法 | |
CN107909588A (zh) | 基于三维全卷积神经网络的mri皮质下分区系统 | |
Reddy et al. | Novel algorithm based on region growing method for better image segmentation | |
CN107169958A (zh) | 机器学习、背景抑制与感知正反馈相结合的视觉显著性检测方法 | |
CN114565620A (zh) | 一种基于骨架先验和对比损失的眼底图像血管分割方法 | |
CN108765431B (zh) | 一种图像的分割方法及其在医学领域的应用 | |
CN110400307A (zh) | 一种基于区域差异的屏幕图像质量评估方法 | |
CN116091832B (zh) | 基于自编码器网络的肿瘤细胞切片高光谱图像分类方法 | |
Trivedi et al. | MOSAICFUSION: Merging modalities with Partial differential equation and Discrete cosine transformation | |
Zahedinasab et al. | Using deep convolutional neural networks with adaptive activation functions for medical CT brain image Classification | |
CN114972787A (zh) | 一种基于深度学习的仿生目标轮廓提取算法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Jidong Inventor after: Zhang Wenchao Inventor after: Feng Hao Inventor after: Zhao Jie Inventor after: Huang Ling Inventor after: Qi Donglian Inventor after: Yan Yunfeng Inventor after: Dong Zhekang Inventor after: Han Yifeng Inventor after: Yu Kefei Inventor before: Li Jidong Inventor before: Zhang Wenchao Inventor before: Feng Hao Inventor before: Zhao Jie Inventor before: Huang Ling Inventor before: Qi Donglian Inventor before: Yan Yunfeng Inventor before: Dong Zhekang Inventor before: Han Yifeng Inventor before: Yu Kefei |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200515 |