CN111158528B - 提高压电触摸屏在阶梯力下测力准确度的装置及方法 - Google Patents

提高压电触摸屏在阶梯力下测力准确度的装置及方法 Download PDF

Info

Publication number
CN111158528B
CN111158528B CN201911412163.XA CN201911412163A CN111158528B CN 111158528 B CN111158528 B CN 111158528B CN 201911412163 A CN201911412163 A CN 201911412163A CN 111158528 B CN111158528 B CN 111158528B
Authority
CN
China
Prior art keywords
piezoelectric
microcontroller
force
material layer
static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911412163.XA
Other languages
English (en)
Other versions
CN111158528A (zh
Inventor
高硕�
石佳卉
陈君亮
代晏宁
徐立军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201911412163.XA priority Critical patent/CN111158528B/zh
Publication of CN111158528A publication Critical patent/CN111158528A/zh
Application granted granted Critical
Publication of CN111158528B publication Critical patent/CN111158528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Abstract

本发明公开了一种提高压电触摸屏在阶梯力下测力准确度的装置,包括预应力检测电路、压电信号检测电路和信号采集单元;预应力检测电路包括微控制器;微控制器的控制引脚与多路复用器的开关控制引脚相连,微控制器的定时器输出引脚通过多路复用器与压电材料层相连,压电材料层通过多路复用器与比较器的正输入端相连,比较器的负输入端与微控制器的DAC引脚相连、输出端与微控制器的中断引脚相连;压电信号检测电路包括电荷‑电压转换电路。本发明还公开了提高压电触摸屏在阶梯力下测力准确度的方法。本发明结构简洁,确定了在压电薄膜上预应力的大小,并由此来矫正压电系数,提升了压电材料测力的准确度,适用于压电触屏设备技术领域。

Description

提高压电触摸屏在阶梯力下测力准确度的装置及方法
技术领域
本发明属于触摸屏设备技术领域,用于提高触屏精度,具体地说是一种提高压电触摸屏在阶梯力下测力准确度的装置及方法。
背景技术
从大众日常使用的手机到医疗设备,许多电子产品上正大规模使用触摸屏。传统的触摸屏定位与检测利用的是电容或电阻,而无论是电容屏还是压阻屏,它们都各有缺陷。随着人们对触摸屏交互的要求的提高,压电屏自身的结构优势和性能优势将使得压电材料在触摸屏上的广泛应用成为未来的必然趋势。
近年来,围绕着触摸屏的特性,许多科研人员开展了多方位的研究,证明了基于压电材料的触摸屏可以实现更高的检测精度。然而成功的压电屏商业应用还很少见,其中需要克服的一个重要的缺陷就在于输出电压值与加载在压电材料上的力之间不稳定的响应关系。已有研究表明,施加于压电材料上的预加静态力对该响应相关系数有重要影响,即不同预加静态力下,相同动态力将产生不同的输出的电荷变化。此外,在触摸屏的应用场景中,常出现用户对触摸屏施加阶梯变化力的情形,即在某一近似为稳定恒力的基础上再施加一定大小的力。因此,在不同预应力大小的情况下矫正压电系数将能显著提高用户施加阶梯压力的时候对力检测的准确性,对于触屏书写体验及某些娱乐交互体验有着重要的意义。
发明内容
本发明的目的,是要提供一种提高压电触摸屏在阶梯力下测力准确度的装置;以矫正压电材料在预应力(静态力)情况下压电系数;
本发明的另外一个目的是提供利用上述装置实现的提高提高压电触摸屏在阶梯力下测力准确度的方法。
本发明为实现上述目的,所采用的技术方案如下:
一种提高压电触摸屏在阶梯力下测力准确度的装置,包括预应力检测电路、压电信号检测电路和信号采集单元;
所述信号采集单元包括压电材料层与电荷引出部分;
所述预应力检测电路包括微控制器、多路复用器、比较器;所述微控制器的控制引脚与多路复用器的开关控制引脚相连,微控制器的定时器输出引脚通过多路复用器与压电材料层相连,向压电材料层发出脉宽为Δt的脉冲;压电材料层通过多路复用器与比较器的正输入端相连,比较器的负输入端与微控制器的DAC引脚相连,比较器的输出端与微控制器的中断引脚相连;
所述压电信号检测电路包括电荷-电压转换电路,信号采集单元的输出端与电荷-电压转换电路的输入端相连;
所述电荷-电压转换电路通过模数转换器与微控制器的数字信号输入端相连。
作为限定:所述信号采集单元包括自上而下依次设置的第一保护层、第一电极层、压电材料层、地电极层和第二保护层,第一电极层、第二电极层作为信号采集单元的输出端。
一种提高压电触摸屏在阶梯力下测力准确度的方法,采用上述的提高压电触摸屏在阶梯力下测力准确度的装置来实现,该方法按照以下步骤顺序进行,
一、检测预应力Fstatic
S1、微控制器的控制引脚通过多路复用器的开关控制引脚向多路复用器发出命令,将微控制器的定时器输出引脚与压电材料层接通,微控制器由定时器向压电材料层发送脉宽为Δt的脉冲,将压电材料层充电至V0
S2、微控制器的控制引脚通过多路复用器的开关控制引脚向多路复用器发出命令,将压电材料层与比较器的正输入端接通,压电材料层开始放电,同时微控制器开始计数,直至压电材料层的输出电压小于V1,比较器输出极性翻转,触发微控制器的中断引脚;
S3、记录微控制器的计数值X1,由计数值X1计算得到放电时间τ1
S4、重复执行步骤S1-S3 n次,得到放电时间τ2~τn
S5、计算n次放电时间的平均值
Figure GDA0002843766560000031
S6、将
Figure GDA0002843766560000032
代入时间常数与静态力关系曲线
Figure GDA0002843766560000033
得到预应力值Fstatic
其中,n≥0;
二、得出压电系数d33(Fstatic)
将Fstatic代入压电系数与预应力关系曲线d33-Fstatic,可确定在预应力Fstatic下的压电系数d33(Fstatic);
三、压电信号检测
P1、当有动态力加载在信号采集单元上时,压电材料层表面产生动态电荷Q,公式如下
Q=d33(Fstatic)·F
P2、动态电荷Q进入电荷-电压转换电路,以预先设定好的增益G将动态电荷Q转换为相应的正比于动态电荷量Q的模拟信号电压值VQ,转换公式如下
VQ=GQ
并将转换结果输出至模数转换器;
P3、模数转换器将收到的模拟信号电压值VQ转换成数字电压值并输出至微控制器;
四、计算动态力的大小F
微控制器根据收到的数字电压值,结合压电系数d33(Fstatic),根据公式F=VQ/(G·d33(Fstatic)),即可计算出在所述预应力Fstatic下所加的动态力F的准确大小。
本发明由于采用了上述的技术方案,其与现有技术相比,所取得的技术进步在于:
(1)本发明的硬件结构简单,只需要多加入一路的程控开关即可实现,系统结构可靠简洁,可移植性强;
(2)压电传感器制作过程中,或多或少都会引入预应力,本发明确定了在压电材料上预应力的大小,并由此来矫正压电系数,使得压电材料测力的准确度得以进一步的提升;
(3)本发明提供的装置和方法能够被应用于压电触摸屏等领域,只需要在出厂前对压电系数进行一次矫正,来矫正因制造工艺等缺陷引入的预应力而变化的压电系数;
(4)本发明还提供了一种潜在的矫正压电系数方法,在每次使用压电器件之前,先通过该方法矫正因温度、湿度、电场而变化压电系数,可以提高压电材料检测动态力的准确性;
(5)本发明能够提高压电触摸屏书写体验、娱乐交互体验,提高压电触摸屏在阶梯力加载情况下的测力准确性,也可以用于压电触摸屏、压电传感器的矫正过程。
本发明适用于触摸屏设备技术领域,用于提高压电触摸屏在阶梯力下测力准确度。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1为本发明实施例1的压电器件结构示意图;
图2为本发明实施例1的压电材料层等效电路图;
图3为本发明实施例1的预应力检测电路原理图;
图4为本发明实施例1的压电信号检测原理图;
图5为本发明实施例2的流程图;
图6本发明实施例2的压电材料层放电曲线;
图7为本发明实施例2的时间常数与静态力关系曲线
Figure DA00028437665639028375
-Fstatic
图8为本发明实施例2的bode图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明。应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1一种提高压电触摸屏在阶梯力下测力准确度的装置
本实施例包括预应力检测电路、压电信号检测电路和信号采集单元。
如图1所示,信号采集单元采用压电器件来实现,该压电器件包括自上而下依次设置的第一保护层、第一电极层、压电材料层、地电极层和第二保护层,第一电极层、第二电极层作为信号采集单元的输出端,正向压电效应产生的电荷由第一电极层和第二电极层引出,地电极层通过所连接的引线接地。其中,第一保护层和第二保护层的材质是PET塑料材质,压电材料层采用PVDF材质的压电薄膜。
在实际使用中,压电材料层的等效电路模型如图2所示,预应力的加载会使得压电材料层等效模型中的RLC发生变化,并且变化的量与所加预应力一一相关;可以通过该RLC电路的充放电的时间τ来反映预应力的大小。
如图3所示,预应力检测电路包括微控制器、多路复用器和比较器。微控制器的控制引脚与多路复用器的开关控制引脚相连,微控制器的定时器输出引脚通过多路复用器与压电材料层相连,向压电材料层发出脉宽为Δt的脉冲;第一电极层通过所连接的引线、多路复用器与比较器的正输入端相连,比较器的负输入端与微控制器的DAC引脚相连,比较器的输出端与微控制器的中断引脚相连。
如图4所示,压电信号检测电路包括电荷-电压转换电路,信号采集单元的输出端与电荷-电压转换电路的输入端相连。
电荷-电压转换电路通过模数转换器与微控制器的数字信号输入端相连。
实施例2一种提高压电触摸屏在阶梯力下测力准确度的方法
本实施例采用实施例1来实现,如图5所示,按照以下步骤顺序进行:
一、检测预应力Fstatic
S1、微控制器的控制引脚通过多路复用器的开关控制引脚向多路复用器发出命令,将微控制器的定时器输出引脚与压电材料层接通,微控制器由定时器产生一个长度为1us的3.3V脉冲信号,并加载在压电材料层上,将压电材料层充电至3.3V;
S2、1us的时间一到,微控制器的控制引脚通过多路复用器的开关控制引脚向多路复用器发出命令,将压电材料层与比较器的正输入端相连,压电材料层开始放电,放电曲线如图6所示;
压电材料层开始放电的同时微控制器内部的计数器开始计数,计数的间隔为6ns(1/168MHz=6ns),直至压电材料层的输出电压下降到3.3V的1/e时,比较器输出极性翻转输出低电平,触发微控制器的中断引脚,计数停止;
S3、记录微控制器的计数值X1,由计数值X1计算得到放电时间τ1,实际上放电时间要大于100us;
S4、重复执行步骤S1-S3五次,得到放电时间τ2~τ5
S5、计算五次放电时间的平均值
Figure GDA0002843766560000061
S6、将
Figure GDA0002843766560000062
代入如图7所示的时间常数与静态力关系曲线
Figure GDA0002843766560000063
得到预应力值Fstatic
二、得出压电系数d33(Fstatic)
将Fstatic代入压电系数与预应力关系曲线d33-Fstatic,可确定在预应力Fstatic下的压电系数d33(Fstatic);
三、压电信号检测
P1、当有动态力加载在信号采集单元上时,压电材料层表面产生动态电荷Q,公式如下
Q=d33(Fstatic)·F
产生的动态电荷Q被第一电极层和第二电极层引出;
P2、动态电荷Q进入电荷-电压转换电路,在电荷-电压转换电路中,电荷Q通过阻容反馈式的负反馈电路,最终被以预先设定好的增益G转换为相应的正比于动态电荷量Q的模拟信号电压值VQ,转换公式如下
VQ=GQ
并将转换结果输出至模数转换器;
考虑相关的电路分布参数,bode图如图8所示,在中频段(>10Hz),电压与所加产生的电荷成正比关系;
P3、模数转换器将收到的模拟信号电压值VQ转换成数字电压值并输出至微控制器;
四、计算动态力F
由步骤二和步骤三的计算可得公式F=VQ/(G·d33(Fstatic));
微控制器根据收到的数字电压值,并结合压电系数d33(Fstatic),根据公式F=VQ/(G·d33(Fstatic)),计算出在所述预应力Fstatic下所加的动态力F的准确大小。

Claims (3)

1.一种提高压电触摸屏在阶梯力下测力准确度的装置,其特征在于:包括预应力检测电路、压电信号检测电路和信号采集单元;
所述信号采集单元包括压电材料层与电荷引出部分;
所述预应力检测电路包括微控制器、多路复用器、比较器;所述微控制器的控制引脚与多路复用器的开关控制引脚相连,微控制器的定时器输出引脚通过多路复用器与压电材料层相连,向压电材料层发出脉宽为Δt的脉冲;压电材料层通过多路复用器与比较器的正输入端相连,比较器的负输入端与微控制器的DAC引脚相连,比较器的输出端与微控制器的中断引脚相连;
所述压电信号检测电路包括电荷-电压转换电路,信号采集单元的输出端与电荷-电压转换电路的输入端相连;
所述电荷-电压转换电路通过模数转换器与微控制器的数字信号输入端相连。
2.根据权利要求1所述的提高压电触摸屏在阶梯力下测力准确度的装置,其特征在于:所述信号采集单元包括自上而下依次设置的第一保护层、第一电极层、压电材料层、地电极层和第二保护层,第一电极层、第二电极层作为信号采集单元的输出端。
3.一种提高压电触摸屏在阶梯力下测力准确度的方法,采用权利要求1或2所述的提高压电触摸屏在阶梯力下测力准确度的装置来实现,其特征在于:该方法按照以下步骤顺序进行,
一、检测预应力Fstatic
S1、微控制器的控制引脚通过多路复用器的开关控制引脚向多路复用器发出命令,将微控制器的定时器输出引脚与压电材料层接通,微控制器由定时器向压电材料层发送脉宽为Δt的脉冲,将压电材料层充电至V0
S2、微控制器的控制引脚通过多路复用器的开关控制引脚向多路复用器发出命令,将压电材料层与比较器的正输入端接通,压电材料层开始放电,同时微控制器开始计数,直至压电材料层的输出电压小于V1,比较器输出极性翻转,触发微控制器的中断引脚;
S3、记录微控制器的计数值X1,由计数值X1计算得到放电时间τ1
S4、重复执行步骤S1-S3 n次,得到放电时间τ2~τn
S5、计算n次放电时间的平均值
Figure FDA0002843766550000021
S6、将
Figure FDA0002843766550000022
代入时间常数与静态力关系曲线
Figure FDA0002843766550000023
得到预应力值Fstatic
其中,n≥0;
二、得出压电系数d33(Fstatic)
将Fstatic代入压电系数与预应力关系曲线d33-Fstatic,可确定在预应力Fstatic下的压电系数d33(Fstatic);
三、压电信号检测
P1、当有动态力加载在信号采集单元上时,压电材料层表面产生动态电荷Q,公式如下
Q=d33(Fstatic)·F
P2、动态电荷Q进入电荷-电压转换电路,以预先设定好的增益G将动态电荷Q转换为相应的正比于动态电荷量Q的模拟信号电压值VQ,转换公式如下
VQ=GQ
并将转换结果输出至模数转换器;
P3、模数转换器将收到的模拟信号电压值VQ转换成数字电压值并输出至微控制器;
四、计算动态力的大小F
微控制器根据收到的数字电压值,结合压电系数d33(Fstatic),根据公式F=VQ/(G·d33(Fstatic)),即可计算出在所述预应力Fstatic下所加的动态力F的准确大小。
CN201911412163.XA 2019-12-31 2019-12-31 提高压电触摸屏在阶梯力下测力准确度的装置及方法 Active CN111158528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911412163.XA CN111158528B (zh) 2019-12-31 2019-12-31 提高压电触摸屏在阶梯力下测力准确度的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911412163.XA CN111158528B (zh) 2019-12-31 2019-12-31 提高压电触摸屏在阶梯力下测力准确度的装置及方法

Publications (2)

Publication Number Publication Date
CN111158528A CN111158528A (zh) 2020-05-15
CN111158528B true CN111158528B (zh) 2021-06-29

Family

ID=70560202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911412163.XA Active CN111158528B (zh) 2019-12-31 2019-12-31 提高压电触摸屏在阶梯力下测力准确度的装置及方法

Country Status (1)

Country Link
CN (1) CN111158528B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3676060D1 (de) * 1985-12-21 1991-01-17 Fev Forsch Energietech Verbr Druckaufnehmer fuer druckmessungen unter hohen temperaturen.
CN201348773Y (zh) * 2009-02-13 2009-11-18 崔伟 点读笔
CN103354921A (zh) * 2010-12-30 2013-10-16 通力股份公司 触摸感应显示器
CN104734204B (zh) * 2015-03-19 2017-03-08 大连理工大学 一种基于超声波的穿透金属板无线电能传输装置
CN107272948A (zh) * 2017-06-12 2017-10-20 北京中硕众联智能电子科技有限公司 基于压电材料的电容触屏系统及相应的压力检测方法
CN109211281A (zh) * 2018-08-06 2019-01-15 歌尔股份有限公司 一种传感器
CN110304841A (zh) * 2018-03-20 2019-10-08 苹果公司 非对称化学强化
CN110427126A (zh) * 2019-08-07 2019-11-08 北京航空航天大学 一种压力信号的校正方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3676060D1 (de) * 1985-12-21 1991-01-17 Fev Forsch Energietech Verbr Druckaufnehmer fuer druckmessungen unter hohen temperaturen.
CN201348773Y (zh) * 2009-02-13 2009-11-18 崔伟 点读笔
CN103354921A (zh) * 2010-12-30 2013-10-16 通力股份公司 触摸感应显示器
CN104734204B (zh) * 2015-03-19 2017-03-08 大连理工大学 一种基于超声波的穿透金属板无线电能传输装置
CN107272948A (zh) * 2017-06-12 2017-10-20 北京中硕众联智能电子科技有限公司 基于压电材料的电容触屏系统及相应的压力检测方法
CN110304841A (zh) * 2018-03-20 2019-10-08 苹果公司 非对称化学强化
CN109211281A (zh) * 2018-08-06 2019-01-15 歌尔股份有限公司 一种传感器
CN110427126A (zh) * 2019-08-07 2019-11-08 北京航空航天大学 一种压力信号的校正方法及装置

Also Published As

Publication number Publication date
CN111158528A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
US10845926B2 (en) Capacitance detecting circuit, touch device and terminal device
US7816838B2 (en) Piezoelectric force sensing
US20090167720A1 (en) Multiple capacitance measuring circuits and methods
CN105046194B (zh) 一种包含积分器的电容指纹传感器
KR101239844B1 (ko) 터치 감지 장치
WO2021174428A1 (zh) 电容检测电路、传感器、芯片以及电子设备
JP5923585B2 (ja) 圧力検出装置、圧力検出装置の制御方法、及びプログラム
CN208013309U (zh) 电容检测电路、触控装置和终端设备
JP2022535388A (ja) 圧力検知装置及び方法
EP3543668A1 (en) Capacitance detection circuit, touch detection apparatus and terminal device
JPWO2007032305A1 (ja) 座標位置検出装置
CN108693400B (zh) 一种双斜分数阶积分式模数转换器
US9437169B2 (en) Touch panel control circuit and semiconductor integrated circuit using the same
TW201339931A (zh) 改善電容式觸控裝置之可信度的感測裝置及方法
JP2016080549A (ja) 圧力検出装置、圧力検出装置の制御方法、及びプログラム
CN111158528B (zh) 提高压电触摸屏在阶梯力下测力准确度的装置及方法
CN105024699A (zh) 基于开关电容反馈数模转换的双坡积分模数转换器
US20170163260A1 (en) Impedance-to-digital converter, impedance-to-digital converting device, and method for adjustment of impedance-to-digital converting device
KR101109495B1 (ko) 커패시턴스 측정 회로의 캘리브레이션 방법 및 캘리브레이션이 적용된 터치스크린 장치
KR101501126B1 (ko) 정전 용량 측정 방법 및 이를 이용한 정전용량센서
US9859887B2 (en) Impedance-to-digital converter, impedance-to-digital converting device, and method for adjustment of impedance-to-digital converting device
JP2013015444A (ja) 信号処理装置、信号処理方法、及び信号処理プログラム
CN105024681A (zh) 一种可调节灵敏度和范围的触摸检测电路
US20140062346A1 (en) Switched capacitor charge pump driver for piezoelectric actuator
CN100409162C (zh) 移动侦测系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant