CN111154747A - 一种混菌发酵提高几丁质脱乙酰基酶产量的方法 - Google Patents

一种混菌发酵提高几丁质脱乙酰基酶产量的方法 Download PDF

Info

Publication number
CN111154747A
CN111154747A CN202010058757.1A CN202010058757A CN111154747A CN 111154747 A CN111154747 A CN 111154747A CN 202010058757 A CN202010058757 A CN 202010058757A CN 111154747 A CN111154747 A CN 111154747A
Authority
CN
China
Prior art keywords
fermentation
enzyme
strain
chitin deacetylase
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010058757.1A
Other languages
English (en)
Other versions
CN111154747B (zh
Inventor
马钦元
王敏
申雁冰
屠琳娜
张兴
郭亚波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202010058757.1A priority Critical patent/CN111154747B/zh
Publication of CN111154747A publication Critical patent/CN111154747A/zh
Application granted granted Critical
Publication of CN111154747B publication Critical patent/CN111154747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01041Chitin deacetylase (3.5.1.41)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明属于生物技术领域,具体涉及一种混菌发酵提高几丁质脱乙酰基酶产量的方法。该方法是在马红球菌CGMCC No.14861(产酶菌株)发酵过程中添加表皮葡萄球菌ATCC12228(伴生菌株)进行混菌发酵,每mL发酵液酶活力可达2996.2U。较产酶菌株单菌发酵,发酵产酶提高20.2倍,相比现有技术,利用发明提供的混菌发酵工艺,可实现快速地积累几丁质脱乙酰基酶,达到高产的效果,具有广泛的工业应用前景。

Description

一种混菌发酵提高几丁质脱乙酰基酶产量的方法
技术领域:
本发明属于生物技术领域,具体涉及一种混菌发酵提高几丁质脱乙酰基酶产量的方法。
背景技术:
几丁质又名几丁质,学名为(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖,是自然界生物所含有的一种含量仅次于纤维素的氨基多糖,主要存在于无脊椎动物,如虾、昆虫、海藻、真菌及酵母中。但是几丁质不溶于水、酸、碱和有机溶剂,所以其没有太大的商业价值,而其脱去乙酰基后的产物壳聚糖则广泛应用于医药、食品、化工、化妆品等行业。目前生产壳聚糖主要使用的化学法存在诸多问题,例如,反应时间长、能耗大、产品质量不稳定,特别是排放物会造成巨大的环境污染。
几丁质脱乙酰酶可以脱掉几丁质上的乙酰基生产脱乙酰度稳定、分子质量分布范围窄的壳聚糖产品,为解决化学法生产壳聚糖存在的问题提供了一条新的途径。目前国内外关于几丁质脱乙酰酶产生菌的研究仅有少量的文献报道,微生物来源的几丁质脱乙酰酶也主要以真菌为主,细菌较少。而且目前因微生物发酵生产几丁质脱乙酰基酶存在发酵时间长、酶产量低等一系列问题,该酶一直未能实现产业化。因此,开发一种可提高几丁质脱乙酰基酶产量的方法具有重要的意义和应用价值。
发明内容:
针对现有技术的不足,本发明旨在提供一种混菌发酵提高几丁质脱乙酰基酶产量的方法。本发明提供的高产几丁质脱乙酰基酶的方法是在马红球菌CGMCC No.14861(产酶菌株)发酵过程中添加表皮葡萄球菌ATCC12228(伴生菌株)进行混菌发酵,获得发酵产酶量提高20倍的发酵工艺,易于大规模培养及产业化应用。
本发明提供的一种采用马红球菌CGMCC No.14861与伴生菌表皮葡萄球菌ATCC12228混菌发酵高产几丁质脱乙酰基酶的生产方法,具体如下:
(1)种子培养(产酶菌与伴生菌在同样的种子培养条件下进行分别培养):
培养条件:搅拌转速为160-200rpm,温度为30-37℃,发酵12-24h;
种子培养基:蛋白胨5-10g/L、酵母浸粉3-8g/L、氯化钠5-10g/L、pH6.0-7.0;
(2)发酵培养
发酵条件:将分别培养完成的产酶菌与伴生菌种子液按照1:0.2-4的混合比例混合后接种发酵;接种量2-10%,搅拌转速为160-200rpm,温度为30-40℃,发酵24-48h;
发酵培养基:酵母浸粉5-10g/L,葡萄糖0.5-2.0g/L,硫酸镁1.0g/L,磷酸二氢钾0.3g/L,磷酸氢二钾1.0g/L,氯化钠0.5-2.0g/L,pH6.0-7.0;
发酵24-48h后,发酵液中的几丁质脱乙酰基酶含量达到1782.03-2996.2U/mL。
有益效果:
本发明提供的混菌发酵工艺能够利用普通碳源和氮源,快速进行细胞培养并大量积累几丁质脱乙酰基酶。36h发酵产酶可达到稳定期,每mL发酵液酶活力为2996.2U。较产酶菌株单菌发酵,发酵产酶提高20.2倍,相比现有技术,利用发明提供的混菌发酵工艺,可实现快速地积累几丁质脱乙酰基酶,达到高产的效果,具有广泛的工业应用前景。
附图说明:
图1混菌比例1:1发酵产酶曲线;
图2不同混菌比例的发酵产酶曲线。
具体实施方式:
为了使本专利的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本专利进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本专利,并不用于限定本发明。
本发明实施例发酵生产几丁质脱乙酰酶所采用的菌株为马红球菌CGMCCNo.14861与伴生菌表皮葡萄球菌ATCC12228。
实施例1一种混菌发酵生产几丁质脱乙酰酶的方法
(1)种子培养(产酶菌与伴生菌在同样的种子培养条件下进行分别培养):
培养条件:搅拌转速为200rpm,温度为37℃,发酵24h;
种子培养基为:蛋白胨10g/L、酵母浸粉5g/L、氯化钠10g/L、pH7.0;
(2)发酵培养
将分别培养完成的产酶菌与伴生菌种子液按照1:1的混合比例混合后接种发酵;接种量10%,搅拌转速为200rpm,温度为37℃,发酵48h,定时取发酵液进行几丁质脱乙酰基酶酶活检测,同时做单独菌株(马红球菌CGMCC No.14861、表皮葡萄球菌ATCC12228)发酵产酶对照,对照接种量为10%,其余条件不变。
发酵培养基:酵母浸粉5g/L,葡萄糖0.5g/L,硫酸镁1.0g/L,磷酸二氢钾0.3g/L,磷酸氢二钾1.0g/L,氯化钠0.5g/L,pH7.0;
(3)发酵结果
混菌发酵产酶曲线如图1所示,发酵至36h时达到最大酶活,经测定为2663.6U/mL,而对照组发酵菌株为马红球菌CGMCC No.14861的最大酶活为157.6U/mL,且36h后产酶呈下降趋势;对照组发酵菌株为表皮葡萄球菌ATCC12228时,没有产酶活性。
酶活检测方法如下:
发酵液12000r/min离心5min,然后将菌体用pH=7.0的磷酸盐缓冲溶液洗涤后经超声波破碎仪进行破碎,破碎条件为:功率30%,开3s停5s,时间55min。然后再经12000r/min离心5min获得粗酶液。
0.3mL粗酶液加入0.3mL 200mg/L的对硝基乙酰苯胺溶液和0.9mL pH=7.0的磷酸盐缓冲溶液,于45℃反应15min,检测400nm吸光值,通过标准曲线计算出酶活力。
酶活单位的定义在上述反应条件下每小时产生1微克对硝基苯胺所需要的酶量定义为一个酶活力单位。
酶活力计算公式为:
Figure BDA0002373706540000031
A400:酶解液样品的吸光值;
A0:空白的吸光值;
D:稀释倍数;
T:酶促反应时间,h;
K:线性系数。
实施例2一种混菌发酵生产几丁质脱乙酰酶的方法
(1)种子培养(产酶菌与伴生菌在同样的种子培养条件下进行分别培养):
培养条件:搅拌转速为180rpm,温度为34℃,发酵24h;
种子培养基为:蛋白胨8g/L、酵母浸粉5g/L、氯化钠8g/L、pH6.5;
(2)发酵培养
分别将培养完成的产酶菌与伴生菌种子液按照1:0.5、1:1.5、1:2.0和1:4的混合比例混合后接种发酵;接种量10%,搅拌转速为180rpm,温度为37℃,发酵48h,定时取发酵液进行几丁质脱乙酰基酶酶活检测,同时做单独菌株发酵产酶对照;
发酵培养基:酵母浸粉8g/L,葡萄糖1.0g/L,硫酸镁1.0g/L,磷酸二氢钾0.3g/L,磷酸氢二钾1.0g/L,氯化钠1.0g/L,pH6.8;
酶活检测方法同实施例1。
(3)发酵结果
发酵产酶曲线如图2所示,混菌发酵至36h时达到最大酶活,其中1:0.5的混菌比例发酵产酶最高,经测定为2996.2U/mL,而单菌发酵仍然维持低于160U/mL的产酶水平。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本专利构思的前提下,上述各实施方式还可以做出若干变形、组合和改进,这些都属于本专利的保护范围。因此,本专利的保护范围应以权利要求为准。

Claims (5)

1.一种生产几丁质脱乙酰基酶的方法,其特征在于,是以马红球菌CGMCC No.14861作为产霉菌、以表皮葡萄球菌ATCC12228作为半生菌,进行混菌发酵生产的。
2.如权利要求1所述的一种生产几丁质脱乙酰基酶的方法,其特征在于,具体如下:
(1)种子培养:
将产霉菌和半生菌分别经过以下条件进行种子培养:
培养条件:搅拌转速为160-200rpm,温度为30-37℃,发酵12-24h;
种子培养基:蛋白胨5-10g/L、酵母浸粉3-8g/L、氯化钠5-10g/L、pH6.0-7.0;
(2)发酵培养
发酵条件:将分别培养完成的产酶菌与伴生菌种子液按照1:0.2-4的混合比例混合后接种发酵;接种量2-10%,搅拌转速为160-200rpm,温度为30-40℃,发酵12-48h。
3.如权利要求2所述的一种生产几丁质脱乙酰基酶的方法,其特征在于,发酵培养基组成为:酵母浸粉5-10g/L,葡萄糖0.5-2.0g/L,硫酸镁1.0g/L,磷酸二氢钾0.3g/L,磷酸氢二钾1.0g/L,氯化钠0.5-2.0g/L,pH6.0-7.0。
4.如权利要求2所述的一种生产几丁质脱乙酰基酶的方法,其特征在于,产酶菌与伴生菌种子液混菌比例为1:0.5。
5.如权利要求2所述的一种生产几丁质脱乙酰基酶的方法,其特征在于,发酵时间为36h。
CN202010058757.1A 2020-01-19 2020-01-19 一种混菌发酵提高几丁质脱乙酰基酶产量的方法 Active CN111154747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010058757.1A CN111154747B (zh) 2020-01-19 2020-01-19 一种混菌发酵提高几丁质脱乙酰基酶产量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010058757.1A CN111154747B (zh) 2020-01-19 2020-01-19 一种混菌发酵提高几丁质脱乙酰基酶产量的方法

Publications (2)

Publication Number Publication Date
CN111154747A true CN111154747A (zh) 2020-05-15
CN111154747B CN111154747B (zh) 2022-04-08

Family

ID=70564142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010058757.1A Active CN111154747B (zh) 2020-01-19 2020-01-19 一种混菌发酵提高几丁质脱乙酰基酶产量的方法

Country Status (1)

Country Link
CN (1) CN111154747B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553123A (zh) * 2020-12-25 2021-03-26 湖北工业大学 高产甲壳素脱乙酰酶的菌剂组合及其应用
CN114438063A (zh) * 2022-03-07 2022-05-06 河北农业大学 一种高效提取红球菌11-3胞内几丁质脱乙酰酶的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528888A (zh) * 2003-09-26 2004-09-15 复旦大学 表皮葡萄球菌色氨酰-tRNA合成酶及其在筛选药物中的应用
EP2607361A1 (en) * 2011-12-20 2013-06-26 Ludwig-Maximilians-Universität München Thiirane and michael acceptor compounds and their medical use
CN105392892A (zh) * 2013-03-27 2016-03-09 六品科技公司 重组噬菌体和细菌检测方法
CN108546660A (zh) * 2018-04-13 2018-09-18 天津科技大学 甲壳素脱乙酰基酶高产菌株及其应用
CN108823116A (zh) * 2018-05-28 2018-11-16 天津科技大学 一株产甲壳素脱乙酰基酶的马红球菌突变株及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528888A (zh) * 2003-09-26 2004-09-15 复旦大学 表皮葡萄球菌色氨酰-tRNA合成酶及其在筛选药物中的应用
EP2607361A1 (en) * 2011-12-20 2013-06-26 Ludwig-Maximilians-Universität München Thiirane and michael acceptor compounds and their medical use
CN105392892A (zh) * 2013-03-27 2016-03-09 六品科技公司 重组噬菌体和细菌检测方法
CN108546660A (zh) * 2018-04-13 2018-09-18 天津科技大学 甲壳素脱乙酰基酶高产菌株及其应用
CN108823116A (zh) * 2018-05-28 2018-11-16 天津科技大学 一株产甲壳素脱乙酰基酶的马红球菌突变株及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRKOVIC, S等: "Influence of the magnetic field on microorganisms in the oral cavity", 《JOURNAL OF APPLIED ORAL SCIENCE》 *
LADRÓN NÉSTOR等: "Rapid identification of Rhodococcus equi by a PCR assay targeting the choE gene", 《JOURNAL OF CLINICAL MICROBIOLOGY》 *
QINYUAN MA等: "Enhanced Chitin Deacetylase Production Ability of Rhodococcus equi CGMCC14861 by Co-culture Fermentation With Staphylococcus sp. MC7", 《FRONT MICROBIOL》 *
QINYUAN MA等: "Isolation, characterisation, and genome sequencing of Rhodococcus equi: a novel strain producing chitin deacetylase", 《SCIENTIFIC REPORTS》 *
马钦元等: "常压室温等离子诱变与微生物微滴培养选育几丁质脱乙酰基酶高产菌株", 《中国酿造》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553123A (zh) * 2020-12-25 2021-03-26 湖北工业大学 高产甲壳素脱乙酰酶的菌剂组合及其应用
CN112553123B (zh) * 2020-12-25 2021-10-15 湖北工业大学 高产甲壳素脱乙酰酶的菌剂组合及其应用
CN114438063A (zh) * 2022-03-07 2022-05-06 河北农业大学 一种高效提取红球菌11-3胞内几丁质脱乙酰酶的方法

Also Published As

Publication number Publication date
CN111154747B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Lazaridou et al. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation
US8304219B2 (en) Kluyveromyces strains metabolizing cellulosic and hemicellulosic materials
Stredansky et al. Xanthan production by solid state fermentation
Sharma et al. Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide
Zambare Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues
Kalyanasundaram et al. Production and downstream processing of (1→ 3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750
EP2369004B1 (en) Method for producing cellulosic ethanol
CN108546660B (zh) 甲壳素脱乙酰基酶高产菌株及其应用
CN100342022C (zh) 一种提高淀粉原料发酵酒精产率的方法
CN111154747B (zh) 一种混菌发酵提高几丁质脱乙酰基酶产量的方法
Wang et al. Co-generation of ethanol and l-lactic acid from corn stalk under a hybrid process
Lin et al. Screening and identification of a strain of Aureobasidium pullulans and its application in potato starch industrial waste
Yu et al. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus
CN107118980B (zh) 来自海洋的解角质素微杆菌mcda02及其产酶方法与产品
Woiciechowski et al. Xanthan gum production from cassava bagasse hydrolysate with Xanthomonas campestris using alternative sources of nitrogen
US8227220B2 (en) Process for the preparation of ethanol from starch
IE61220B1 (en) Process for producing a microbial polysaccharide
US20190071633A1 (en) Process for propagating a yeast capable to ferment glucose and xylose
CN102925495A (zh) 一种利用糖质原料连续发酵生产丁醇的方法
CN109536565A (zh) 一种利用热解糖高温厌氧菌和产琥珀酸放线杆菌混菌发酵生产丁二酸的方法
CN104845958A (zh) 一种软骨素酶的大规模生产方法
CN102051385B (zh) 橡实粉发酵生产乳酸的方法
Gao et al. An innovative strategy of recycling miscellaneous waste carbohydrates from high-fructose syrup production for Pichia pastoris fermentation
Roukas et al. Effect of the shear rate on pullulan production from beet molasses by Aureobasidium pullulans in an airlift reactor
Pranamuda et al. Ethanol production from raw sago starch under unsterile condition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant