CN111151300B - 一种单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催化氧化反应中的应用 - Google Patents

一种单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催化氧化反应中的应用 Download PDF

Info

Publication number
CN111151300B
CN111151300B CN202010003543.4A CN202010003543A CN111151300B CN 111151300 B CN111151300 B CN 111151300B CN 202010003543 A CN202010003543 A CN 202010003543A CN 111151300 B CN111151300 B CN 111151300B
Authority
CN
China
Prior art keywords
gmp
guanosine monophosphate
ptncs
platinum alloy
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010003543.4A
Other languages
English (en)
Other versions
CN111151300A (zh
Inventor
吴玉清
张春霞
李洪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202010003543.4A priority Critical patent/CN111151300B/zh
Publication of CN111151300A publication Critical patent/CN111151300A/zh
Application granted granted Critical
Publication of CN111151300B publication Critical patent/CN111151300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0222Metal clusters, i.e. complexes comprising 3 to about 1000 metal atoms with metal-metal bonds to provide one or more all-metal (M)n rings, e.g. Rh4(CO)12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/18Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种具有类过氧化酶活性的单磷酸鸟苷保护的铂金合金纳米簇(Au‑PtNCs@GMP)、制备方法及其在催化氧化反应中的应用,属于催化技术领域。本发明配体分子为单磷酸鸟苷(GMP),GMP是由前体(IMP)经C2位氧化、氨基化并消耗ATP合成而得,它是RNA的组成成分。因此,引入GMP作为配体的铂金合金纳米材料具有良好的生物相容性,使其在生物成像、传感及催化等领域存在巨大的应用潜力。该铂金合金纳米簇对底物四甲基联苯胺和2,2'‑联氮‑双‑3‑乙基苯并噻唑啉‑6‑磺酸都表现出较高的类过氧化酶催化活性,这为金属纳米簇在催化领域的应用提供了理论基础。本发明为制备简单、环保、高效、廉价的高催化纳米簇催化剂提供了一种快速的方法。

Description

一种单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催 化氧化反应中的应用
技术领域
本发明属于催化技术领域,具体涉及一种具有类过氧化酶活性的单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催化氧化反应中的应用。
背景技术
近几年来,由于“纳米酶”具有高稳定性、低成本等优势,以金属纳米粒子作为类过氧化酶已经广泛应用于有机物降解、生物传感、催化等领域。尤其是类过氧化酶纳米传感器得到了广泛的研究,并作为比色检测各种目标分子的重要工具。自Fe3O4磁性纳米颗粒具有类过氧化酶活性的首次报道以来,大量的纳米材料被证明具有类过氧化酶活性质,并被用于比色检测。然而,在这些类过氧化酶活性的反应中,由于H2O2的引入对周围环境造成破坏并且其分解过程严重阻碍了分析应用。因此,几种典型的纳米材料如铂纳米点、Ag@Ag3PO4微纳米管、PAA-CeO2纳米颗粒和Co3O4纳米粒子被报道具有类过氧化酶活性,在无强氧化剂H2O2参与时,底物TMB(3,3',5,5'-四甲基联苯胺)发生明显的颜色变化。但是,目前文献报道的纳米材料的类过氧化酶的催化活性仍然有待提高。
金属纳米簇作为有机金属配合物和等离子体纳米颗粒之间的桥梁脱颖而出。由于纳米簇直径小,金属含量高,因此具有更强的催化活性,有望替代天然类过氧化酶。报道称金纳米簇(AuNCs)在苯乙烯氧化、CO氧化、硫化物氧化等多种催化反应中具有较高的催化活性和独特的选择性。这些结果表明,纳米簇的尺寸、组成和电子结构都是影响其催化性能的重要因素。由于掺杂金属原子能引起结构和性能的显著变化,所以目前是改善金属纳米簇催化性能的一种最简单的方法。因此,双金属或多金属的纳米簇由于具有很强的金属间协同作用,将在高催化分析中具有巨大的潜力。
铂作为一种贵金属,以其优异的性能被广泛应用于多种催化领域。在本发明中,我们通过引入铂原子来制备一种新的铂金合金纳米簇:Au-PtNCs@GMP,铂的掺杂提高了类过氧化酶活性。结构表征证明我们制备的Au-PtNCs@GMP是一个核-壳结构、单分散、双金属纳米簇。双金属纳米簇的小尺寸、较大的比表面积以及不同金属之间的协同作用促进了活性位点的形成,使其与底物接触时的催化反应进行得更快。
发明内容
本发明的目的在于提供一种具有类过氧化酶活性的单磷酸鸟苷保护的铂金合金纳米簇及其在催化氧化反应中的应用。
本发明所述的基于单磷酸鸟苷保护的铂金合金纳米簇(Au-PtNCs@GMP)中,保护配体分子为单磷酸鸟苷(GMP),GMP是由前体(IMP)经C2位氧化、氨基化并消耗ATP合成而得,它是RNA的组成成分。因此,引入GMP作为配体的纳米材料具有良好的生物相容性,使其在生物成像、传感及催化等领域存在巨大的应用潜力。Au-PtNCs@GMP在醋酸缓冲溶液中,对底物四甲基联苯胺(TMB)和2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)都表现出较高的类过氧化酶催化活性,这为金属纳米簇在催化领域的应用提供了理论基础。
本发明主要基于上述单磷酸鸟苷保护的铂金合金纳米簇(Au-PtNCs@GMP)在0.1M的醋酸缓冲中(pH=4.0)对四甲基联苯胺(TMB)和2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)最大反应速度的计算。利用紫外分光光度计该催化体系涉及两种由浅入深地表征催化剂催化活性的计算方法:催化速率常数;米氏方程(Vmax,Km)。该体系的催化活性评估过程如下:
催化速率常数:通过对无色的TMB的氧化显色过程,研究Au-PtNCs@GMP的类过氧化酶活性。在1.0mL醋酸缓冲中(0.1M,pH=4.0),0.5mM TMB接触不同浓度的Au-PtNCs@GMP(0~240μg/mL),紫外可见分光光度计监测该体系在652nm处的紫外光谱图,我们通过计算在60s内652nm处的紫外吸收变化率(△A/△t)即得到了催化速率常数。在本发明中,我们用该评估方法优化Au-PtNCs@GMP的制备过程。具体优化设计如下:固定Au-PtNCs@GMP(20μg/mL)的浓度,采用单一变量法,依次改变制备条件(HAuCl4:H2PtCl6、GMP、NaOH、温度和反应时间),得到不同催化速率常数的铂金合金纳米簇,最终优化完以上制备条件后,我们得到Au-PtNCs@GMP的最佳制备条件,进而得到了催化活性最高的Au-PtNCs@GMP。
米氏方程:通过紫外可见分光光度计监测Au-PtNCs@GMP使TMB显色的酶动力学参数,具体评估过程如下:以TMB(0.1mM~1.0mM)为底物,保持Au-PtNCs@GMP(150μg/mL)浓度不变,收集动力学数据,计算初速度v=△A/t,将计算得到的v带入方程:c=A/kb,A=kbc,v=A/kbt(典型Michaelis-Menten曲线)(如图5(a)、6(a)),相应的作出其横纵坐标的倒数图(Lineweaver-Burk图线)(如图5(b)、6(b))。在倒数图中,我们拟合得到一次方程(如下列方程),该方程的截距的倒数即为最大反应速度Vmax,斜率与得到的Vmax的乘积即为米氏常数Km。(在实施例中统称为米氏常数)。米氏常数(Km)的含义是酶促反应达到最大反应速度(Vmax)一半时的底物(S)的浓度。
Figure BDA0002354339830000031
v的初速度,[S]是底物的浓度,Vmax最大反应速度,Km米氏常数。Km愈小,表示该酶对底物的亲和力愈大,酶促反应易于进行。Vmax则直观地表达了该酶促反应的速度,该数值越大表明酶的催化活性越高。我们通过这两个参数进一步评估催化剂的催化性能。
本发明所述的一种单磷酸鸟苷保护的铂金合金纳米簇,其由如下步骤制备得到:
(1)利用蒸馏水配制50mmol/L的单磷酸鸟苷溶液、10mmol/L的氯金酸溶液、10mmol/L的氯铂酸溶液、100mmol/L的氢氧化钠溶液;
制备方法1:将氯金酸溶液、氯铂酸溶液、氢氧化钠溶液混合,蒸馏水定容后室温下搅拌20~40分钟,向该混合溶液中加入单磷酸鸟苷溶液,搅拌均匀;将得到的混合溶液在110~140℃下水热反应20~40分钟,待冷却至室温,即得到单磷酸鸟苷保护的铂金合金纳米簇(Au-PtNCs@GMP)原液;
制备方法2:将氯金酸溶液、氯铂酸溶液,蒸馏水定容后混合充分,加入氢氧化钠溶液,室温下搅拌20~40分钟;再向得到的混合溶液中加入单磷酸鸟苷固体,于50~70℃下搅拌反应6~10h,待反冷却至室温,即得到单磷酸鸟苷保护的铂金合金纳米簇(Au-PtNCs@GMP)原液;
以上两种方法均可制备得到单磷酸鸟苷保护的铂金合金纳米簇(Au-PtNCs@GMP)原液,在制备过程中控制氯金酸、氯铂酸、单磷酸鸟苷、氢氧化钠的用量摩尔比为(3~5):1:(12~18):(15~25),最后将获得的Au-PtNCs@GMP原液采用透析的方法进行纯化(500Da透析袋除掉未反应的原料),透析袋内即为纯化后的Au-PtNCs@GMP,冻干该液体得到沉淀,即单磷酸鸟苷保护的铂金合金纳米簇固体,在4℃条件下避光保存。结果表明:以GMP作为配体保护的铂金合金纳米簇的平均粒径为1.70nm,发光波长为415nm。
本发明制备的单磷酸鸟苷保护的铂金合金纳米簇,根据Michaelis Menten方程计算出其对催化底物TMB和ABTS的最大反应初速度(Vmax)分别为254.065×10-8M s-1和17.980×10-8M s-1。这些结果明显高于大部分天然酶和过氧化物类纳米酶的催化性能。此外,Au-PtNCs@GMP对TMB的响应时间为60s,特别是它不需要像过氧化氢(H2O2)这样的强氧化剂的参与而直接发挥催化效应,这为高效催化和环保双性能提供了理想的纳米材料。尤其是,这些材料具有易于合成、结构简单、体积小,比表面积大、水溶性好、稳定性好、响应灵敏度高且生物相容性好等优点,与其他类型的过氧化物模拟酶相比,无需预处理,无需复杂的检测仪器,更适合于生物分析和对生物体系的催化,因而本发明制备的单磷酸鸟苷保护的铂金合金纳米簇在催化领域具有非常广阔的应用前景。
附图说明
图1:在0.1M、pH=4的醋酸缓冲中,根据Au-PtNCs@GMP(20μg/mL)与0.5mM TMB的催化速率常数来优化其制备过程。(a)对应HAuCl4与H2PtCl6不同比例(浓度比为1:9~9:1);(b)对应不同浓度单磷酸鸟苷(0.5mM~4.0mM);(c)对应不同浓度氢氧化钠(0mM~6.0mM);(d)对应不同反应温度(70℃~130℃)。(e)对应不同反应时间(15min~90min)。(本发明中催化速率常数:60s内652nm处紫外吸收的变化率)
图2:(a)在0.1M、pH=4的醋酸缓冲液中,单磷酸鸟苷保护的铂金合金纳米簇探针溶液(20μg/mL)与0.5mM TMB接触后的紫外吸收光谱图随时间变化的谱图。图中最下边的曲线对应0.5mM TMB的紫外吸收光谱图(即未加入Au-PtNCs@GMP),往上依次为Au-PtNCs@GMP(20μg/mL)与0.5mM TMB接触后1~10min的紫外吸收光谱图;(b)为0.5mM TMB在Au-PtNCs@GMP(20μg/mL)存在和不存在时,652nm处紫外吸收值与时间的关系曲线。
图3:(a)在0.1M、pH=4的醋酸缓冲液中,0.5mM TMB与不同浓度Au-PtNCs@GMP溶液(从下到上依次为0、20、40、60、80、100、120、140、160、180、200、220、240μg/mL)相互作用的紫外吸收光谱与浓度的线性响应关系曲线图;横坐标为作用时间,纵坐标为溶液在652nm处的紫外吸收值;(b)与图3(a)相对应的,不同浓度Au-PtNCs@GMP(0~240μg/mL)与0.5mM TMB的催化速率常数(60s内,652nm处紫外吸收的变化率)。
图4:Au-PtNCs@GMP(20μg/mL)在不同pH(2.0~7.0)醋酸缓冲(0.1M)中的米氏常数Km(见图4(a))与最大反应速度Vmax(见图4(b))。
图5:(a)Au-PtNCs@GMP(150.0μg/mL)在包含不同浓度TMB(0.1mM~1.0mM)的醋酸缓冲中(0.1M,pH=4.0)的最大反应速度曲线;(b)与(a)对应的1/V-1/[TMB]曲线方程。
图6:(a)Au-PtNCs@GMP探针溶液(150.0μg/mL)在包含不同浓度ABTS(0.1mM~1.0mM)的醋酸缓冲(0.1M,pH=4.0)中的最大反应速度曲线;(b)与(a)对应的1/V-1/[ABTS]曲线方程。
图7:AuNCs@GMP、PtNCs@GMP和Au-PtNCs@GMP(150.0μg/mL)探针在0.1M,pH=4.0的醋酸缓冲中与底物TMB、ABTS作用后的最大反应速度柱状图。
图8:0.1M、pH=4.0醋酸缓冲中,Au-PtNCs@GMP(20.0μg/mL)与0.5mM TMB作用后的催化速率常数图。横坐标为Au-PtNCs@GMP放置时间(1天~60天),纵坐标为催化速率常数。
图9:Au-PtNCs@GMP(150.0μg/mL)的紫外吸收光谱、荧光激发谱和发射光谱图(从左到右);
图10:Au-PtNCs@GMP(150.0μg/mL)的光电子能谱(XPS)表征。(a)为Au的光电子能谱分析图;(b)为Pt的光电子能谱分析图。
图11:Au-PtNCs@GMP(150.0μg/mL)的TEM表征及粒径分布统计图(插图)。
具体实施方式
本发明中使用的氯铂酸、氯金酸、氢氧化钠、0.1M,pH=4.0醋酸缓冲液、单磷酸鸟苷、醋酸钠和醋酸等化学试剂都购自国药集团化学试剂有限公司。氯金酸和氯铂酸都通过加入二次蒸馏水获得10mmol/L的储备液。TMB称量后,溶入DMSO溶液,配制得到10mmol/L溶液;ABTS称重后,溶于二次蒸馏水中,配制成10mmol/L溶液,以上两种试剂需现配现用。单磷酸鸟苷经称量后加入二次蒸馏水配制成浓度为50mmol/L,该试剂现配现用;氢氧化钠称量后,溶于二次蒸馏水中,配制成浓度为100mmol/L溶液。
实施例1:
我们对单磷酸鸟苷保护的铂金合金纳米簇进行制备条件优化,我们采用单一变量法针对铂金配比、配体浓度、还原剂浓度、反应温度、反应时间等五个变量根据催化速率常数进行优化。
制备方法1:在反应容器中依次加入8.0mL的蒸馏水,10mmol/L氯金酸溶液,10mmol/L氯铂酸溶液,100mmol/L氢氧化钠溶液,室温搅拌30分钟,向混合溶液中加入50mmol/L的单磷酸鸟苷溶液,搅拌均匀,并将该混合溶液转移到反应釜中,将反应釜放入120℃的干燥箱中反应30分钟停止加热,待反应釜冷却至室温,即得到单磷酸鸟苷保护的铂金合金纳米簇(Au-PtNCs@GMP)原液;
制备方法2:在反应容器中加入10mmol/L氯金酸溶液,10mmol/L氯铂酸溶液,加入8.6mL蒸馏水混合充分,100mmol/L氢氧化钠溶液,室温搅拌30分钟,向混合溶液中加入单磷酸鸟苷固体,搅拌均匀,使用电加热套于60℃搅拌8h后,停止加热,待反应容器冷却至室温,即得到单磷酸鸟苷保护的铂金合金纳米簇(Au-PtNCs@GMP)原液;
首先,我们保持铂金合金的终浓度为1.0mmol/L,然后调节氯金酸与氯铂酸的配比,使其摩尔比为0:10、1:9、2:8、3:7、4:6、5:5、6:4、7:3、8:2、9:1、10:0,通过紫外吸收光谱仪测试其在包含0.5mmol/L TMB的pH=4.0的醋酸缓冲中的催化速率常数(如图1(a)所示),得到最佳的氯金酸与氯铂酸配比为8:2(即0.8mM HAuCl4:0.2mM H2PtCl6);紧接着,我们进行配体浓度优化,通过改变单磷酸鸟苷的浓度(0.5mmol/L~4.0mmol/L),如图1(b)所示,当GMP的浓度为3.0mmol/L时催化速率常数达到最大;同样,我们优化了还原剂氢氧化钠的用量,分别使其终浓度为0、1.0、2.0、3.0、4.0、5.0、6.0mmol/L,通过图1(c)所示,当还原剂的用量为4.0mmol/L时催化速率常数最大;进而,我们优化了反应温度(70℃~130℃),如图1(d)所示;最后,我们优化了反应时间(15~90min),(如图1(e)所示)我们通过优化Au-PtNCs@GMP的制备过程,得到了催化性能最佳的单磷酸鸟苷保护的铂金合金纳米簇。
取以上反应条件制备的单磷酸鸟苷保护的铂金合金纳米簇原液10mL于500Da透析袋中,二次蒸馏水透析,每4小时换一次水,透析24小时(除掉过量的单磷酸鸟苷和氢氧化钠),透析袋内即为纯化后的Au-PtNCs@GMP溶液,冻干后得到沉淀,4℃避光保存。
实施例2:
单磷酸鸟苷保护的铂金合金纳米簇的催化性能:将实施例1制备的Au-PtNCs@GMP溶液冻干称重后的固体,用二次蒸馏水稀释,配制成浓度为1.0mg/mL的母液待使用。取0.93mL、0.1M,pH=4.0醋酸缓冲溶液,加入0.05mL、10mmol/L TMB母液,混合均匀,用紫外可见分光光度计测试其紫外吸收信号;向该混合溶液中加入0.02mL,1.0mg/mL Au-PtNCs@GMP,快速混匀。分别测试该混合溶液在反应1、2、3、4、5、6、7、8、9、10min时的紫外吸收光谱图。如图2(a)所示,随着时间的积累,其在652nm处的紫外吸收峰强度逐渐增强。同时,通过绘制该混合溶液的紫外吸收(652nm)与时间的关系曲线图(如图2(b)所示),相比较TMB自身的催化反应,在没有强氧化剂H2O2参与的前提下,Au-PtNCs@GMP表现出催化活性。因此,我们初步推断出单磷酸鸟苷保护的铂金合金纳米簇具有类过氧化酶催化活性。
实施例3:
取0.93mL、0.1M,pH=4.0醋酸缓冲溶液,加入0.05mL、10mmol/L TMB母液,取实施例1制备的浓度为1.0mg/mL的Au-PtNCs@GMP母液,使其终浓度分别为0、20、40、60、80、100、120、140、160、180、200、220、240μg/mL、快速混匀后,并利用紫外可见光谱仪记录该探针在652nm处的酶动力学参数(如图3(a)所示)。并绘制该体系在60s内的催化反应速率常数(652nm)与Au-PtNCs@GMP浓度的关系柱状图(如图3(b)所示)。我们得出Au-PtNCs@GMP是一种浓度依赖效应的催化剂。
实施例4:
取0.93mL、0.1M,pH=4.0醋酸缓冲溶液,加入不同浓度的TMB,使其终浓度分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0mmol/L,混合均匀,然后向该混合溶液中加入0.02mL、1.0mg/mL实施例1制备的Au-PtNCs@GMP母液,快速混匀,酶动力学监测其在652nm处的紫外吸收变化。做出Michaelis-Menten方程,同样,根据以下双倒数作图法,计算得到最大反应速度Vmax(如图4(a)所示)及米氏常数Km(如图4(b)所示)。
Figure BDA0002354339830000071
如图4所示,我们可以得出:Au-PtNCs@GMP与TMB在pH=4.0时Vmax较高,Km最佳,综合催化环境的温和性考虑,我们选用0.1M,pH=4的醋酸缓冲来进行后面的测试。
实施例5:
取一定量的0.1M,pH=4.0醋酸缓冲溶液,加入不同浓度的TMB,使其终浓度分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0mmol/L,混合均匀,然后向该混合溶液中加入实施例1冻干称重并配制的浓度为1.0mg/mL的Au-PtNCs@GMP母液,最终使其总体积为1.0mL。通过酶动力学测试,做出双倒数曲线,并计算得到Vmax(如图5(a)所示)及Km(如图5(b)所示)。Au-PtNCs@GMP的最大催化反应速率Vmax为254.065×10-8M·s-1,与底物的米氏常数为6.8046mM。该铂金合金纳米簇具有优异的类过氧化酶催化活性。
实施例6:
取一定量的0.1M、pH=4.0醋酸缓冲溶液,加入不同浓度的ABTS母液,使其终浓度分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0mmol/L,混合均匀,然后向该混合溶液中加入实施例1冻干称重并配制的浓度为1.0mg/mL的Au-PtNCs@GMP母液,最终使其总体积为1.0mL。通过酶动力学测试,做出双倒数曲线,并计算得到Vmax(如图5(a)所示)及Km(如图5(b)所示)。Au-PtNCs@GMP的最大反应速度Vmax为17.9791×10-8M·s-1,与底物的米氏常数为0.1321mM。该铂金合金纳米簇对底物ABTS同样具有较高的类过氧化酶催化活性,且结合能力较高。
实施例7:
与实施例1合成方法相同,分别合成单磷酸鸟苷保护的金纳米簇与铂纳米簇,透析,纯化,冻干,称重并分别在不同底物(TMB、ABTS)检测其最大反应速度Vmax。将实施例5和6中计算得到的Au-PtNCs@GMP的Vmax与AuNCs@GMP、PtNCs@GMP对比,如图7所示,Au-PtNCs@GMP表现出优异的催化性能。
实施例8:
将实施例1制备的Au-PtNCs@GMP冻干样品放在4℃保存,间隔时间为1、7、30、60天等取样并测试其催化速率常数。操作如下:取0.8mL、0.1M、pH=4.0醋酸缓冲溶液,加入0.05mL、10mmol/L TMB母液,混合均匀,然后向该混合溶液中加入0.15mL、1.0mg/mL保存不同时间的Au-PtNCs@GMP(20μg/mL),快速混匀,酶动力学监测其在652nm处的紫外吸收变化,计算其在60s内的最大催化速率常数。如图8所示,我们发现,单磷酸鸟苷保护的铂金合金纳米簇在长时间内催化速率常数变化不大,因此我们得到了一种较稳定的催化剂。
实施例9:
将实施例4制备的Au-PtNCs@GMP进行紫外吸收光谱和荧光光谱(如图9所示)表征,Au-PtNCs@GMP的激发波长为330nm,发射波长为415nm。所以,我们得到了具有荧光发射特性的金属纳米簇。
实施例10:
将实施例4制备的Au-PtNCs@GMP进行XPS表征:如图10(a)所示,在Au-PtNCs@GMP中Au(0)占66.31%,Au(Ⅰ)占33.69%。如图10(b)所示,Pt原子以Pt(Ⅱ)形式存在。综上表征,我们得到的单磷酸鸟苷保护的以Au(0)为核,Pt(Ⅱ)为壳的核-壳结构铂金合金纳米簇。
实施例11:
将实施例4制备的Au-PtNCs@GMP进行TEM表征,通过统计200个粒子得到其粒径分布图(如图11所示),该铂金合金纳米簇的平均粒径为1.70nm。因此,我们证实了具有高催化活性的材料为金属合金纳米簇。
还需要说明的是,本发明的具体实施例只是用来示例性说明,并不以任何方式限定本发明的保护范围,本领域的相关技术人员可以根据上述一些说明加以改进或变化,但所有这些改进和变化都应属于本发明权利要求的保护范围。

Claims (4)

1.一种具有类过氧化酶活性的单磷酸鸟苷保护的铂金合金纳米簇的制备方法,其步骤如下:
(1)将氯金酸溶液、氯铂酸溶液、氢氧化钠溶液混合后室温下搅拌20~40分钟,向该混合溶液中加入单磷酸鸟苷溶液,搅拌均匀;将得到的混合溶液在110~140℃下水热反应20~40分钟,待冷却至室温,即得到单磷酸鸟苷保护的铂金合金纳米簇Au-PtNCs@GMP原液;氯金酸、氯铂酸、单磷酸鸟苷、氢氧化钠的用量摩尔比为(3~5):1:(12~18):(15~25);
(2)将步骤(1)得到的Au-PtNCs@GMP原液采用透析的方法进行纯化,透析袋内即为纯化后的Au-PtNCs@GMP,冻干该液体得到沉淀,即单磷酸鸟苷保护的铂金合金纳米簇固体,在4℃条件下避光保存。
2.一种具有类过氧化酶活性的单磷酸鸟苷保护的铂金合金纳米簇的制备方法,其步骤如下:
(1)将氯金酸溶液、氯铂酸溶液混合充分,加入氢氧化钠溶液,室温下搅拌20~40分钟;再向得到的混合溶液中加入单磷酸鸟苷固体,于50~70℃下搅拌反应6~10h,待冷却至室温,即得到单磷酸鸟苷保护的铂金合金纳米簇Au-PtNCs@GMP原液;氯金酸、氯铂酸、单磷酸鸟苷、氢氧化钠的用量摩尔比为(3~5):1:(12~18):(15~25);
(2)将步骤(1)得到的Au-PtNCs@GMP原液采用透析的方法进行纯化,透析袋内即为纯化后的Au-PtNCs@GMP,冻干该液体得到沉淀,即单磷酸鸟苷保护的铂金合金纳米簇固体,在4℃条件下避光保存。
3.一种具有类过氧化酶活性的单磷酸鸟苷保护的铂金合金纳米簇,其特征在于:是由权利要求1或2所述的方法制备得到。
4.权利要求3所述的具有类过氧化酶活性的单磷酸鸟苷保护的铂金合金纳米簇在催化氧化反应中的应用。
CN202010003543.4A 2020-01-03 2020-01-03 一种单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催化氧化反应中的应用 Active CN111151300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010003543.4A CN111151300B (zh) 2020-01-03 2020-01-03 一种单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催化氧化反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010003543.4A CN111151300B (zh) 2020-01-03 2020-01-03 一种单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催化氧化反应中的应用

Publications (2)

Publication Number Publication Date
CN111151300A CN111151300A (zh) 2020-05-15
CN111151300B true CN111151300B (zh) 2022-07-05

Family

ID=70561704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010003543.4A Active CN111151300B (zh) 2020-01-03 2020-01-03 一种单磷酸鸟苷保护的铂金合金纳米簇、制备方法及其在催化氧化反应中的应用

Country Status (1)

Country Link
CN (1) CN111151300B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179794A (zh) * 1995-02-01 1998-04-22 研究发展基金会 检测dna损伤、测定dna修复速度和监测dna修复酶活性
AU2001276376B2 (en) * 2000-07-01 2006-08-03 Clondiag Chip Technologies Gmbh Method for qualitative and/or quantitative detecting of molecular interactions on probe arrays
CN103913565A (zh) * 2014-04-26 2014-07-09 济南大学 一种双功能标记物构建的免疫传感器的制备方法及其应用
CN105287383A (zh) * 2015-11-19 2016-02-03 吉林大学 新型米托蒽醌脂质体联合化疗药物在抗肿瘤治疗中的应用
CN107127354A (zh) * 2017-06-29 2017-09-05 吉林大学 一种水热法合成的由小分子单磷酸腺苷为保护配体的光敏性金银合金纳米簇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179794A (zh) * 1995-02-01 1998-04-22 研究发展基金会 检测dna损伤、测定dna修复速度和监测dna修复酶活性
AU2001276376B2 (en) * 2000-07-01 2006-08-03 Clondiag Chip Technologies Gmbh Method for qualitative and/or quantitative detecting of molecular interactions on probe arrays
CN103913565A (zh) * 2014-04-26 2014-07-09 济南大学 一种双功能标记物构建的免疫传感器的制备方法及其应用
CN105287383A (zh) * 2015-11-19 2016-02-03 吉林大学 新型米托蒽醌脂质体联合化疗药物在抗肿瘤治疗中的应用
CN107127354A (zh) * 2017-06-29 2017-09-05 吉林大学 一种水热法合成的由小分子单磷酸腺苷为保护配体的光敏性金银合金纳米簇

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Analysis of Telomerase by the Telomeric Hemin/G-Quadruplex-Controlled Aggregation of Au Nanoparticles in the Presence of Cysteine";Etery Sharon et al;《ANALYTICAL CHEMISTRY》;20140206;第86卷;第3153-3158页 *
"Gold−Platinum Bimetallic Nanoclusters for Oxidase-like Catalysis";Chun-Xia Zhang et al;《APPLIED NANO MATERIALS》;20200813;第3卷;第9318-9327页 *
"腺苷及其受体在心血管组织工程中的作用及机制研究";陈文;《中国优秀博硕士学位论文全文数据库(博士)医药卫生科技辑》;20160115(第01期);全文 *

Also Published As

Publication number Publication date
CN111151300A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
Wang et al. Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions
Jangi et al. Detection mechanism and classification of design principles of peroxidase mimic based colorimetric sensors: A brief overview
Jena et al. Enzyme‐free amperometric sensing of glucose by using gold nanoparticles
Shi et al. A nanocomposite prepared from copper (II) and nitrogen-doped graphene quantum dots with peroxidase mimicking properties for chemiluminescent determination of uric acid
Lin et al. Glucose oxidase@ Cu-hemin metal-organic framework for colorimetric analysis of glucose
Gul et al. Microwave-assisted synthesis of carbon dots as reductant and stabilizer for silver nanoparticles with enhanced-peroxidase like activity for colorimetric determination of hydrogen peroxide and glucose
Ponnaiah et al. Carbon dots doped tungstic anhydride on graphene oxide nanopanels: A new picomolar-range creatinine selective enzymeless electrochemical sensor
Zhang et al. Copper sulfide nanoclusters with multi-enzyme-like activities and its application in acid phosphatase sensing based on enzymatic cascade reaction
CN111398396B (zh) 一种用于重金属Hg2+和Pb2+同时检测的电化学传感器制备方法
Yu et al. Seed-assisted synthesis of dendritic Au–Ag bimetallic nanoparticles with chemiluminescence activity and their application in glucose detection
Ali et al. based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device
Zhang et al. Colorimetric detection of hydrogen peroxide and lactate based on the etching of the carbon based Au-Ag bimetallic nanocomposite synthesized by carbon dots as the reductant and stabilizer
Jangi Effect of daylight and air oxygen on nanozymatic activity of unmodified silver nanoparticles: Shelf-stability
Kang et al. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@ Ag core–shell nanoparticles
Hou et al. Etching and anti-etching strategy for sensitive colorimetric sensing of H2O2 and biothiols based on silver/carbon nanomaterial
Wu et al. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight
Fu et al. A molecularly imprinted electrochemical sensing platform based on the signal amplification system fabricated with the theoretically optimized monomer for specific determination of formaldehyde
Li et al. β-Cyclodextrin coated porous Pd@ Au nanostructures with enhanced peroxidase-like activity for colorimetric and paper-based determination of glucose
Zhou et al. Cu-MOF@ Pt 3D nanocomposites prepared by one-step wrapping method with peroxidase-like activity for colorimetric detection of glucose
Huang et al. Bimetallic CuCo Prussian blue analogue nanocubes induced chemiluminescence of luminol under alkaline solution for uric acid detection in human serum
He et al. Carboxylated chitosan enabled platinum nanozyme with improved stability and ascorbate oxidase-like activity for a fluorometric acid phosphatase sensor
Tang et al. Synergistic function of Au NPs/GeO2 nanozymes with enhanced peroxidase-like activity and SERS effect to detect choline iodide
Fu et al. Mixed valence state cerium metal organic framework with prominent oxidase-mimicking activity for ascorbic acid detection: Mechanism and performance
Li et al. High sensitivity and rapid detection of hepatitis B virus DNA using lateral flow biosensors based on Au@ Pt nanorods in the absence of hydrogen peroxide
Tang et al. Self-assembly synthesis of Ag@ PANI nanocomposites as a tandem enzyme utilizing a highly efficient label-free SERS method to detect saccharides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant