CN111151298B - 一种二维双金属点位导电金属有机框架材料及其制备方法 - Google Patents

一种二维双金属点位导电金属有机框架材料及其制备方法 Download PDF

Info

Publication number
CN111151298B
CN111151298B CN202010062549.9A CN202010062549A CN111151298B CN 111151298 B CN111151298 B CN 111151298B CN 202010062549 A CN202010062549 A CN 202010062549A CN 111151298 B CN111151298 B CN 111151298B
Authority
CN
China
Prior art keywords
dimensional
organic framework
framework material
conductive metal
bimetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010062549.9A
Other languages
English (en)
Other versions
CN111151298A (zh
Inventor
黄昊
张颖
邹永瑾
杨楠
赵心毓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202010062549.9A priority Critical patent/CN111151298B/zh
Publication of CN111151298A publication Critical patent/CN111151298A/zh
Application granted granted Critical
Publication of CN111151298B publication Critical patent/CN111151298B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二维双金属点位导电金属有机框架材料及其制备方法,该材料的结构单元为M23(M13·HAHATN)2,式中M1、M2均代表Ni、Cu、Co中任意一种,HAHATN代表失去六个氢原子的六氨基六氮杂苯六价阴离子。本发明通过双点位的共轭有机配体分子经过两步选择络合反应构筑具有额外金属点位的二维导电MOF。本发明方法简单绿色,制备条件温和,所制备导电MOF材料具有超薄稳定的刚性二维结构和扩大的平面内介孔结构,且其孔道内暴露着高度不饱和的可变价过渡金属点位,在电催化、光催化、超级电容器、锂离子电池等新能源应用方面都具有潜在的应用价值。本发明方法也可通过调控配体分子的化学组成用于制备多过渡金属络合的二维导电MOF材料。

Description

一种二维双金属点位导电金属有机框架材料及其制备方法
技术领域
本发明属于金属有机框架材料技术领域,具体涉及一种双金属点位导电金属有机框架材料,以及该材料的制备方法。
背景技术
金属有机框架(MOF)材料是一种多孔材料,由金属节点和多元有机连接体构成。这种独特的结构不仅带来了较大的表面积,而且将每个金属原子作为活性位点暴露在框架的孔隙中,具有潜在的气体分离、催化、检测等应用前景。另外,MOF的框架结构有极大的可控性,可根据不同的需要定向设计或修饰特定结构的MOF材料。这些特性使MOF材料成为各种反应类型的首选多相催化剂。但由于化学结构的限制,MOF材料仅能表现出较低的电荷转移能力,这严重限制了MOF材料在电催化、超级电容器、锂离子电池等新能源方面的研究与应用。
二维导电MOF材料作为一种完全共轭的MOF结构,具有极高的电子转移能力,使MOF材料在新能源方面的应用成为现实。导电MOF材料由过渡金属原子与有机配体共轭M-N4联结,从而达到高效的π-共轭结构,使其具有狭窄的带隙和优异的导电性。到目前为止,这些独特的MOF材料已被用作电催化析氢反应(HER)和氧还原反应(ORR)的催化剂应用于能源催化研究。导电MOF材料似乎有电催化的最佳结构,但在实践应用中活性依然较低。在理论和实验研究中,M-N4键中的金属原子在电催化过程中仍然保持原有的氧化状态,很难产生有效的电催化活性。同时,六烷基三苯(HITP)或其类似物通常被用作导电MOF材料的共轭有机配体,几乎不为电催化的高活性中心提供其他的配位位点。因此,设计新的偶联有机配体以结合额外的有效催化位点是提高导电MOF材料电催化性能的首要任务。
发明内容
本发明的目的是提供一种具有超薄稳定的刚性二维结构和扩大的平面内介孔结构,且其孔道内暴露着高度不饱和的可变价过渡金属点位,可作为高效电催化剂的二维双金属点位导电金属有机框架材料,并为其提供一种简单绿色、条件温和的制备方法。
针对上述目的,本发明的二维双金属点位导电金属有机框架材料的结构式为M23(M13·HAHATN)2,式中M1、M2各自独立的代表Ni、Cu、Co中任意一种,HAHATN代表失去六个氢原子的六氨基六氮杂苯六价阴离子。
上述导电金属有机框架材料的结构式为Ni3(Ni3·HAHATN)2时,其属于六方晶系,P6/mmm空间群,晶胞参数为:
Figure BDA0002374954330000021
α=90°,β=90°,γ=120°;所述导电金属有机框架材料的结构式为Ni3(Co3·HAHATN)2或Ni3(Cu3·HAHATN)2时,其属于六方晶系,P6/mmm空间群,晶胞参数为:
Figure BDA0002374954330000022
Figure BDA0002374954330000023
α=90°,β=90°,γ=120°;所述导电金属有机框架材料的结构式为Cu3(Cu3·HAHATN)2时,其属于属于六方晶系,P6/mmm空间群,晶胞参数为:
Figure BDA0002374954330000024
α=90°,β=90°,γ=120°。
本发明二维双金属点位导电金属有机框架材料的制备方法由下述步骤组成:
1、制备过渡金属合六氨基六氮杂苯
将过渡金属盐酸盐M1溶于乙醇中,用盐酸调节溶液的pH值至1~6,加入六氨基六氮杂苯(根据文献“J.Am.Chem.Soc.2018,140,18200-18207.”中的方法合成),在60~80℃水浴下回流3~6小时,所得溶液旋蒸至干燥,再将所得固体用乙醇进行重结晶,得到过渡金属合六氨基六氮杂苯。
2、制备二维双金属点位导电金属有机框架材料
将过渡金属盐酸盐M2溶于pH为8~12的碱性水溶液中,在空气环境下50~70℃搅拌均匀,再向其中加入过渡金属合六氨基六氮杂苯,继续在该温度下搅拌回流1~4小时,所得溶液浓缩后进行抽滤、洗涤,得到二维双金属点位导电金属有机框架材料。
上述过渡金属盐酸盐M1和过渡金属盐酸盐M2均选自氯化镍、氯化铜、氯化钴中任意一种,优选所述过渡金属盐酸盐M1与六氨基六氮杂苯的摩尔比为1:0.1~0.6,优选所述过渡金属盐酸盐M2与过渡金属合六氨基六氮杂苯的摩尔比为1:0.2~1。
上述步骤1中,进一步优选用盐酸调节溶液的pH值至4~5。
上述步骤2中,进一步优选碱性水溶液是pH为9~10的氨水。
本发明的有益效果如下:
本发明通过双络合点位的共轭有机分子构建二维导电MOF材料,通过一个选择络合反应合成出具有高不饱和度过渡金属的共轭有机配体,再经第二步络合过程实现具有额外金属点位的二维导电MOF的构筑。
本发明方法简单绿色,制备条件温和,所制备导电MOF材料具有超薄稳定的刚性二维结构和扩大的平面内介孔结构,且其孔道内暴露着高度不饱和的可变价过渡金属点位,可作为高效电催化剂,用于电催化析氢反应(HER)表现出良好的电化学稳定性。
附图说明
图1是实施例1制备的Ni3(Ni3·HAHATN)2导电MOF材料的晶体结构。
图2是实施例1制备的Ni3(Ni3·HAHATN)2导电MOF材料的X射线衍射图谱及拟合谱图。
图3是实施例1制备的Ni3(Ni3·HAHATN)2导电MOF材料的扫描电镜图。
图4是实施例1制备的Ni3(Ni3·HAHATN)2导电MOF材料的透射电镜图。
图5是实施例2制备的Ni3(Co3·HAHATN)2导电MOF材料的扫描电镜图。
图6是实施例3制备的Ni3(Cu3·HAHATN)2导电MOF材料的扫描电镜图。
图7是实施例4制备的Cu3(Ni3·HAHATN)2导电MOF材料的扫描电镜图。
图8是实施例1~4制备的导电MOF材料的极化曲线图。
图9是实施例1~4制备的导电MOF材料的Tafel斜率图。
图10是实施例1制备的Ni3(Ni3·HAHATN)2导电MOF材料的计时电流图。
图11是实施例1制备的Ni3(Ni3·HAHATN)2导电MOF材料经电化学催化后的透射电镜图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、制备镍合六氨基六氮杂苯
将162mg(0.684mmol)氯化镍溶于30mL乙醇中,用盐酸调节pH至4,然后加入100mg(0.210mmol)六氨基六氮杂苯,并在70℃水浴下回流反应4小时,反应完后降温,所得溶液旋转蒸发至干燥,再将所得固体用乙醇溶解,进行重结晶,得到的黑色固体在表面皿上烘干,即得镍合六氨基六氮杂苯粉末。
2、二维双金属点位导电金属有机框架材料
将51mg(0.216mmol)氯化镍溶于40mL去离子水中,并加入2mL氨水,在空气环境下65℃搅拌均匀,再向其中加入100mg(0.147mmol)镍合六氨基六氮杂苯粉末,继续在该温度下搅拌回流2小时。所得溶液减压浓缩后,用乙醇和去离子水进行抽滤洗涤,然后烘干,得到二维双金属点位导电金属有机框架材料(以下简称导电MOF材料),其结构式为Ni3(Ni3·HAHATN)2(HAHATN代表失去六个氢原子的六氨基六氮杂苯六价阴离子),属于六方晶系,P6/mmm空间群,晶胞参数为:
Figure BDA0002374954330000041
α=90°、β=90°、γ=120°(见图1)。所制备的导电MOF材料采用D/Max-3cX′Pert X射线衍射仪、JEM-2100型透射电子显微镜和Tecnai G2F20型场发射透射电子显微镜进行表征,结果见图2~4。从图2可以看出,所得导电MOF材料具有良好的结晶度,并完全可以与理论模拟相一致,可认为制备出的导电MOF材料具有理论模拟的晶体结构。从图3可以看出,制备的导电MOF材料的微观结构为二维片层结构,并且该层状结构具有明显的褶皱形貌。由图4可以判断出,该导电MOF材料具有薄层结构,厚度大约为1.6nm。
实施例2
本实施例的步骤1中,用等摩尔氯化钴替换实施例1步骤1中的氯化镍,得到钴合六氨基六氮杂苯粉末,再经步骤2制备出结构式为Ni3(Co3·HAHATN)2的二维双金属点位导电金属有机框架材料(见图5),其属于六方晶系,P6/mmm空间群,晶胞参数为:
Figure BDA0002374954330000042
α=90°,β=90°,γ=120°。
实施例3
本实施例的步骤1中,用等摩尔氯化铜替换实施例1步骤1中的氯化镍,得到铜合六氨基六氮杂苯粉末,再经步骤2制备出结构式为Ni3(Cu3·HAHATN)2的二维双金属点位导电金属有机框架材料(见图6),其属于六方晶系,P6/mmm空间群,晶胞参数为:
Figure BDA0002374954330000043
α=90°,β=90°,γ=120°。
实施例4
本实施例的步骤1与实施例3相同。本实施例的步骤2中,用等摩尔氯化铜替换实施例1步骤2中的氯化镍,制备出结构式为Cu3(Cu3·HAHATN)2的二维双金属点位导电金属有机框架材料(见图7),其属于六方晶系,P6/mmm空间群,晶胞参数为:
Figure BDA0002374954330000051
α=90°,β=90°,γ=120°。
为了证明本发明的有益效果,将实施例1~4制备的导电MOF材料分别超声分散于N,N-二甲基乙酰胺中,配制成浓度为4mg/mL的导电MOF材料悬浊液,然后将配制的悬浊液滴涂于抛光处理的玻碳电极表面,制得修饰电极,以其为工作电极,使用电化学工作站采用三电极体系测试导电MOF材料的电催化析氢性能,其中饱和甘汞电极为参比电极,碳棒为对电极,0.1M KOH作为电解液。在氮气保护条件下,线性扫描伏安法测试表明实施例1~4制备的导电MOF材料具有明显的催化析氢电流,并且电催化活性顺序为Ni3(Ni3·HAHATN)2>Ni3(Co3·HAHATN)2>Ni3(Cu3·HAHATN)2>Cu3(Cu3·HAHATN)2(见图8)。Tafel斜率同样表明Ni3(Ni3·HAHATN)2导电MOF材料具有最优的催化动力学(见图9)。计时电流法测试表明Ni3(Ni3·HAHATN)2导电MOF材料拥有良好的电催化稳定性,在电流密度是10mA/cm2时经过10小时测试电催化析氢电流依然保持83.4%(见图10),经10小时电化学测试的场发射透射电子照片表明这种导电MOF材料依然保持二维片层形貌,说明其刚性二维结构为其提供了良好的电催化稳定性(见图11)。

Claims (6)

1.一种二维双金属点位导电金属有机框架材料,其特征在于:所述导电金属有机框架材料的结构式为M23(M13·HAHATN)2,式中M1、M2各自独立的代表Ni、Cu、Co中任意一种,HAHATN代表失去六个氢原子的六氨基六氮杂苯六价阴离子;
所述导电金属有机框架材料的结构式为Ni3(Ni3·HAHATN)2时,其属于六方晶系,P6/mmm空间群,晶胞参数为:a=29.5Å,b=29.5Å,c=3.43Å,α=90°,β=90°,γ=120°;所述导电金属有机框架材料的结构式为Ni3(Co3·HAHATN)2或Ni3(Cu3·HAHATN)2时,其属于六方晶系,P6/mmm空间群,晶胞参数为:a=29.4Å,b=29.4Å,c=3.42Å,α=90°,β=90°,γ=120°;所述导电金属有机框架材料的结构式为Cu3(Cu3·HAHATN)2时,其属于六方晶系,P6/mmm空间群,晶胞参数为:a=29.6Å,b=29.6Å,c=3.44Å,α=90°,β=90°,γ=120°。
2.一种权利要求1所述的二维双金属点位导电金属有机框架材料的制备方法,其特征在于它由下述步骤组成:
(1)制备过渡金属合六氨基六氮杂苯
将过渡金属M1 盐酸盐溶于乙醇中,用盐酸调节溶液的pH值至1~6,加入六氨基六氮杂苯,在60~80℃水浴下回流3~6小时,所得溶液旋蒸至干燥,再将所得固体用乙醇进行重结晶,得到过渡金属合六氨基六氮杂苯;
(2)制备二维双金属点位导电金属有机框架材料
将过渡金属M2 盐酸盐溶于pH为8~12的碱性水溶液中,在空气环境下50~70℃搅拌均匀,再向其中加入过渡金属合六氨基六氮杂苯,继续在该温度下搅拌回流1~4小时,所得溶液浓缩后进行抽滤、洗涤,得到二维双金属点位导电金属有机框架材料;
上述过渡金属M1 盐酸盐和过渡金属M2 盐酸盐均选自氯化镍、氯化铜、氯化钴中任意一种。
3.根据权利要求2所述的二维双金属点位导电金属有机框架材料的制备方法,其特征在于:步骤(1)中,用盐酸调节溶液的pH值至4~5。
4.根据权利要求2所述的二维双金属点位导电金属有机框架材料的制备方法,其特征在于:其特征在于:步骤(1)中,所述过渡金属M1 盐酸盐与六氨基六氮杂苯的摩尔比为1:0.1~0.6。
5.根据权利要求2所述的二维双金属点位导电金属有机框架材料的制备方法,其特征在于:步骤(2)中,所述过渡金属M2 盐酸盐与过渡金属合六氨基六氮杂苯的摩尔比为1:0.2~1。
6.根据权利要求2所述的二维双金属点位导电金属有机框架材料的制备方法,其特征在于:步骤(2)中,所述碱性水溶液是pH为9~10的氨水。
CN202010062549.9A 2020-01-19 2020-01-19 一种二维双金属点位导电金属有机框架材料及其制备方法 Expired - Fee Related CN111151298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010062549.9A CN111151298B (zh) 2020-01-19 2020-01-19 一种二维双金属点位导电金属有机框架材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010062549.9A CN111151298B (zh) 2020-01-19 2020-01-19 一种二维双金属点位导电金属有机框架材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111151298A CN111151298A (zh) 2020-05-15
CN111151298B true CN111151298B (zh) 2022-08-09

Family

ID=70564422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010062549.9A Expired - Fee Related CN111151298B (zh) 2020-01-19 2020-01-19 一种二维双金属点位导电金属有机框架材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111151298B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433235A (zh) * 2021-12-22 2022-05-06 陕西师范大学 金属有机框架负载基底复合材料及其制备方法和应用
CN114768878B (zh) * 2022-05-07 2024-05-10 中国科学技术大学 一种双金属导电mof催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105949443A (zh) * 2016-04-21 2016-09-21 复旦大学 一种二维片层结构的氮杂稠环芳烃多孔骨架及其制备方法和应用
JP2017043580A (ja) * 2015-08-28 2017-03-02 学校法人近畿大学 半導体材料
CN109081781A (zh) * 2018-05-17 2018-12-25 北京理工大学 一种六氨基苯盐酸盐的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043580A (ja) * 2015-08-28 2017-03-02 学校法人近畿大学 半導体材料
CN105949443A (zh) * 2016-04-21 2016-09-21 复旦大学 一种二维片层结构的氮杂稠环芳烃多孔骨架及其制备方法和应用
CN109081781A (zh) * 2018-05-17 2018-12-25 北京理工大学 一种六氨基苯盐酸盐的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction;Norini Tahir et al.;《Journal of Catalysis》;20190620;第375卷;第242–248页 *

Also Published As

Publication number Publication date
CN111151298A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
Xie et al. Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis
Zhang et al. Co/MoC nanoparticles embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn–air battery and water electrocatalysis
Huang et al. Active site and intermediate modulation of 3D CoSe2 nanosheet array on Ni foam by Mo doping for high-efficiency overall water splitting in alkaline media
Chinnadurai et al. Mn-Co bimetallic phosphate on electrodeposited PANI nanowires with composition modulated structural morphology for efficient electrocatalytic water splitting
Gao et al. One-step preparation of cobalt-doped NiS@ MoS2 core-shell nanorods as bifunctional electrocatalyst for overall water splitting
CN110739463B (zh) 一种双金属有机框架复合材料的制备方法及其应用
Wang et al. A highly efficient Fe-doped Ni 3 S 2 electrocatalyst for overall water splitting
Li et al. Synthesis of 3D flower-like cobalt nickel phosphate grown on Ni foam as an excellent electrocatalyst for the oxygen evolution reaction
Wan et al. Oxygen-evolution catalysts based on iron-mediated nickel metal–organic frameworks
Kuang et al. Metal organic framework nanofibers derived Co3O4-doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution
Wang et al. Increased nucleation sites in nickel foam for the synthesis of MoP@ Ni3P/NF nanosheets for bifunctional water splitting
Zhang et al. Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution
Du et al. Controllable synthesized CoP-MP (M= Fe, Mn) as efficient and stable electrocatalyst for hydrogen evolution reaction at all pH values
Liu et al. Ultrafine CoP/Co2P nanorods encapsulated in janus/twins-type honeycomb 3D nitrogen-doped carbon nanosheets for efficient hydrogen evolution
CN108048868B (zh) 一种氮化钼纳米棒电极材料及其制备方法和应用
Cheng et al. Hierarchical Ni3S2@ 2D Co MOF nanosheets as efficient hetero-electrocatalyst for hydrogen evolution reaction in alkaline solution
CN111151298B (zh) 一种二维双金属点位导电金属有机框架材料及其制备方法
Li et al. Multi‐Anion Intercalated Layered Double Hydroxide Nanosheet‐Assembled Hollow Nanoprisms with Improved Pseudocapacitive and Electrocatalytic Properties
Wei et al. NiCo bimetal organic frames derived well-matched electrocatalyst pair for highly efficient overall urea solution electrolysis
Ji et al. Anchoring nitrogen-doped Co2P nanoflakes on NiCo2O4 nanorod arrays over nickel foam as high-performance 3D electrode for alkaline hydrogen evolution
Zhao et al. Noble-Metal-Free FeMn-NC catalyst for efficient oxygen reduction reaction in both alkaline and acidic media
Qin et al. Dual core-shell structured g-C3N4@ Fe/Sr@ g-C3N4 porous nanosphere as high efficient oxygen reduction reaction electrocatalyst in both acidic and alkaline media for fuel cells
CN113373471A (zh) 一种用于电催化还原co2制低碳醇的铟基催化剂的制备方法及应用
Ge et al. 3D self-standing grass-like cobalt phosphide vesicles-decorated nanocones grown on Ni-foam as an efficient electrocatalyst for hydrogen evolution reaction
Li et al. Rational design of self-supported WC/Co3W3N/Co@ NC yolk/shell nitrogen-doped porous carbon catalyst for highly efficient overall water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220809