CN111144715B - 一种基于边云协同的工厂电能管控系统及方法 - Google Patents

一种基于边云协同的工厂电能管控系统及方法 Download PDF

Info

Publication number
CN111144715B
CN111144715B CN201911270941.6A CN201911270941A CN111144715B CN 111144715 B CN111144715 B CN 111144715B CN 201911270941 A CN201911270941 A CN 201911270941A CN 111144715 B CN111144715 B CN 111144715B
Authority
CN
China
Prior art keywords
power
time
task
complexity
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911270941.6A
Other languages
English (en)
Other versions
CN111144715A (zh
Inventor
王平
杨旭
魏旻
李彩芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201911270941.6A priority Critical patent/CN111144715B/zh
Publication of CN111144715A publication Critical patent/CN111144715A/zh
Priority to US17/261,875 priority patent/US11822417B2/en
Priority to PCT/CN2020/102200 priority patent/WO2021114661A1/zh
Priority to KR1020217040190A priority patent/KR20220007644A/ko
Application granted granted Critical
Publication of CN111144715B publication Critical patent/CN111144715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/329Power saving characterised by the action undertaken by task scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5072Grid computing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • G06F9/5088Techniques for rebalancing the load in a distributed system involving task migration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0633Workflow analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种基于边云协同的工厂电能管控系统,包括云电能管理层、边缘计算层、设备层、供电侧;提供一种基于边云协同的工厂电能管控方法,包括:1)设备层中的现场节点,路由节点以及执行生产任务的设备组成工业现场网络;2)解析生产任务信息数据并发送;3)将生产现场的STN模型下发到边缘节点;4)供电代理将发电模型、储电模型、电价模型发给边缘节点;5)边缘节点计算完成生产任务所需电量;6)计算综合等级的值;7)等级高的由边缘节点执行,等级低的由云电能管理中心执行;8)边缘节点执行需求响应算法;9)生产设备根据计算结果执行生产任务;工厂发电站、储电站、工厂外供电站根据结果执行相应方案。

Description

一种基于边云协同的工厂电能管控系统及方法
技术领域
本发明属于工厂电能管控领域,涉及一种基于边云协同的工厂电能管控系统及方法。
背景技术
边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。它可以作为联接物理和数字世界的桥梁,使能智能资产、智能网关、智能系统和智能服务。由于边缘侧需要支持多种网络接口、协议与拓扑,业务实时处理与确定性时延,数据处理与分析,分布式智能和安全与隐私保护。云端难以满足上述要求,需要边缘计算与云计算在网络、业务、应用和智能方面进行协同。
边云协同会放大边缘计算与云计算价值。边缘计算与云计算各有所长,云计算擅长全局性、非实时、长周期的大数据处理与分析,能够在长周期维护、业务决策支撑等领域发挥优势;边缘计算更适用局部性、实时、短周期数据的处理与分析,能更好地支撑本地业务的实时智能化决策与执行。
因此,边缘计算与云计算之间不是替代关系,而是互补协同关系。边缘计算与云计算需要通过紧密协同才能更好的满足各种需求场景的匹配,从而放大边缘计算和云计算的应用价值。边缘计算既靠近执行单元,更是云端所需高价值数据的采集和初步处理单元,可以更好地支撑云端应用;反之,云计算通过大数据分析优化输出的业务规则或模型可以下发到边缘侧,边缘计算基于新的业务规则或模型运行。边缘协同涉及到资源协同、数据协同、智能协同、应用管理协同、业务管理协同、服务协同等方面。
在工厂电能管控方面,国内外的研究主要关注集中管控工厂电能、解决传统电能管控方式受限、工厂用电成本高的问题。集中管控方法有几大局限:
①实时性不够:工厂现场电能数据信息巨大,将电能数据全部移动到云中集中计算,会造成控制指令传输延迟,导致用电成本增加。
②供电-用电不能联合管控:工厂用电层与工厂供电层不能实现联合管控,造成供电不足或供电过剩,导致用电成本增加。
③安全性不够:工厂云作为集中式计算中心,对整个工厂电能管控系统起到集中调度的作用,一旦面临安全威胁,后果极为严重。
发明内容
有鉴于此,本发明不再拘泥于云计算,进一步研究边缘计算并将其也融入工厂电能管控中,利用边云协同计算来提升工厂电能管控系统的灵活性、安全性、实时性,通过同时降低用电成本及供电成本两方面来降低工厂用电成本。提供一种基于边云协同的工厂电能管控系统及方法。
为达到上述目的,本发明提供如下技术方案:
一方面,本发明提供一种基于边云协同的工厂电能管控系统,包括云电能管理层、边缘计算层、设备层、供电侧;
所述云电能管理层包括云电能管理中心、工业云服务器;所述云电能管理中心用于执行部分计算任务,并将计算结果返回到边缘节点,还用于存储生产现场的STN任务模型并下发到边缘节点;所述工业云服务器用于存储边缘节点已生成的供电用电方案,在将来的生成方案过程中作为参考;
所述边缘计算层包括若干边缘节点,所述边缘节点用于:①计算生产任务电量需求值Ed;②根据云电能管理中心下发的STN任务模型信息和工厂设备层发送的实时任务信息,计算出完成既定生产任务电量的需求值;③接收来自供电侧的供电信息数据,包括实时电价模型,储电模型及发电模型;④判断算法复杂度等级O、判断数据实时性等级TIME_priority、计算出综合等级R;⑤用于根据综合等级R将部分计算任务发送到云电能管理中心,并接受该部分计算结果,在边缘节点执行剩余部分任务的计算;⑥根据计算结果综合得出用电方案Schemei及供电方案Schemep;⑦将用电方案Schemep发送给工厂设备层执行生产任务,将供电方案发送给供电侧执行供电任务;
所述设备层包括现场节点、路由节点、生产设备;所述现场节点组成工业现场网络采集生产设备的生产信息,并通过路由节点发送给边缘节点;通过路由节点接收来自边缘节点的用电方案,依据该方案控制设备层执行生产任务;所述生产设备即工业现场执行计划的设备,执行用电方案中的生产任务;
所述供电侧包括供电代理、工厂外电站、工厂发电站、工厂储电站;所述供电代理用于存储工厂外电站电价模型、工厂发电站的发电模型及工厂储电站的储电模型,当有模型更新时,发送给边缘节点;所述工厂外电站用于连接工厂电网,对工厂进行供电;所述工厂发电站是工厂自建的发电站,对工厂进行供电;所述工厂储电站在电价较低时进行储电,在电价较高时进行给工厂供电。
另一方面,本发明提供一种基于边云协同的工厂电能管控方法,包括以下步骤:
S1:将生产现场的STN任务模型Mt存储在云电能管理中心处,将供电侧的发电模型Mg、储电模型Ms、电价模型Mp存储在供电代理处,并规定算法复杂度等级;
S2:设备层中的现场节点,路由节点以及执行生产任务的设备组成工业现场网络;
S3:现场节点解析生产任务信息数据Ip并发送给边缘节点;
S4:云电能管理中心将生产现场的STN模型下发到边缘节点;
S5:供电侧的供电代理将发电模型Mg、储电模型Ms及电价模型Mp发给边缘节点;
S6:边缘节点根据生产任务信息数据Ip,STN任务模型Mt计算完成这些生产任务所需电量Ed
S7:边缘节点依据算法头部O的值和表1判断算法复杂度等级;
S8:边缘节点通过数据帧中TIME_priority的值依据表2判断数据实时性等级;
S9:边缘节点通过算法复杂度等级O的值及数据实时性等级TIME_priority的值依据表3计算综合等级R的值:
表3边云协同计算
序号 计算类别 实时性等级 算法复杂度 综合等级 边云协同
1 实时性低,复杂度极高 1 1 2 云计算
2 实时性中,复杂度极高 2 1 3 云计算
3 实时性低,复杂度高 1 2 3 云计算
4 实时性中,复杂度高 2 2 4 云计算
5 实时性低,复杂度中 1 3 4 云计算
6 实时性低,复杂度极高 3 1 4 云计算
7 实时性低,复杂度低 1 4 5 边缘计算
8 实时性低,复杂度极高 4 1 5 边缘计算
9 实时性中,复杂度中 2 3 5 边缘计算
10 实时性低,复杂度高 3 2 5 边缘计算
11 实时性中,复杂度低 2 4 6 边缘计算
12 实时性极高,复杂度高 4 2 6 边缘计算
13 实时性低,复杂度中 3 3 6 边缘计算
14 实时性高,复杂度低 3 4 7 边缘计算
15 实时性极高,复杂度中 4 3 7 边缘计算
16 实时性极高,复杂度低 4 4 8 边缘计算
S10:边缘节点将综合等级R值为5,6,7,8的计算存储到本地;
S11:边缘节点将综合等级R值为2,3,4的计算发送到云电能管理中心;
S12:边缘节点执行综合等级R值为5,6,7,8的计算,并且将计算结果保存到本地;云电能管理中心执行边缘节点发送的综合等级值为2,3,4的计算;
S13:云电能管理中心将计算结果返回给边缘节点;
S14:在边缘节点执行需求响应算法;
S15:边缘节点将用电方案Schemei发送给现场节点,将供电方案Schemep发送给供电代理;
S16:现场节点将Schemei发送给生产设备执行生产任务;供电代理控制工厂发电站、储电站、工厂外供电站执行相应方案;
S17:边缘节点将同时方案存储在云电能管理中心,以供未来的操作方案参考。
进一步,步骤S1具体包括以下内容:
(1)工厂电能系统管理人员需要事先把生产现场的STN任务模型Mt存储在云电能管理中心处,Mt={Task_number=i,Electricityi=Ei,},Ei为任务i在单位时间内运行所需耗电量。
(2)需要事先把供电侧的发电模型Mg,储电模型Ms,电价模型Mp存储在供电代理处。
(3)算法复杂度计算:工厂电能系统管理人员在边缘节点将所有需要执行的算法上机测试,在综合考虑空间复杂度和时间复杂度的情况下,分析出算法复杂度属性为{复杂度极高,复杂度高,复杂度中,复杂度低}。并且将算法按照算法复杂度属性分级,用O表示。算法复杂度等级对应表1,O∈[1-4]。并且将O的值标记在算法的头部。
算法复杂度分为4个等级,算法复杂度依次递减,1级表示算法复杂度极高,4级表示算法复杂度低。算法复杂度不同,其计算时间不同,执行计算时所占用的存储空间也不一样,复杂度等级对应复杂度属性如表1所示。
表1算法复杂度等级
算法复杂度等级 算法复杂度属性
O=1 复杂度极高
O=2 复杂度高
O=3 复杂度中
O=4 复杂度低
进一步,步骤S2具体包括:现场节点从生产设备处采集到的数据帧信息表为{Task_number,Ti,protocol,ID,data_source,Task_type},分别表示任务编号、任务执行所需时间,工业协议、网络ID、数据源地址、任务类型。现场节点在MAC层根据数据帧信息表中的任务类型Task_type对数据帧进行不同实时性等级的标记,标记后的帧信息表变为{Task_number,Ti,protocol,ID,data_source,Task_type,TIME_priority},其中TIME_priority∈[1-4];TIME_priority表示数据实时性等级,其值表征的数据属性查表2可知。TIME_priority的值对应为4个实时性等级,依次为1~4,优先等级依次递增,1为对实时性要求不高,4表示对实时性要求极高;实时性等级对应实时性属性如表2所示。
表2数据实时性等级
实时性等级 实时性属性
TIME_priority=1
TIME_priority=2
TIME_priority=3
TIME_priority=4 极高
进一步,步骤S3中,Ip可从帧信息表中解析出来,Ip={Task_number=i,i∈N*,Ti,Ti∈R+},i表示任务编号,Ti表示任务执行所需时间。
进一步,步骤S14中所述需求响应算法的输入为电量需求值Ed,发电模型Mg,储电模型Ms,电价模型Mp;输出为用电方案Schemei,供电方案Schemep
1)结合生产任务信息数据Ip,STN任务模型Mt计算电量需求值Ed
Figure BDA0002312899190000051
2)发电模型为Mg={Pg,xg,Eg,Tg},其中Pg为一台发电机单位时间内发电成本,xg为工厂需要运行的发电机数,Eg表示工厂内发电站单位时间供电量,Tg表示每台发电价发电时间;
3)储电模型为Ms={Es,Esp,Ss,Ts,Ps},其中,假设一台储电机充电功率为Es,放电功率Esp为当前设备功率,且只在工厂外供电站供电的情况下充电,Ss表示储电机的状态,Ss=0时表示处于放电状态,Ss=1时表示处于充电状态,Ts表示储电机处于充/放电状态的时间,Ps表示储电机充电时的电价;
4)电价模型为Mp={P,Ep},P表示给工厂供电的价格,Ep表示工厂外电站单位时间供电量;
5)在计算出所有结果之后,边缘节点生成用电方案Schemei,Schemei={Task_number=i,i∈N*;T_exe;Period;T_exe,Period∈R+},其中Task_number为任务编号,T_exe为任务执行时刻,Period为任务执行持续时间;
6)在计算出所有结果之后,边缘节点生成供电方案Schemep,Schemep={xg,Tg,Ss,Ts,P,Sp,Tp_01,Tp_10},其中
xg表示需要工厂内发电站运行的发电机的数量;
Tg表示每台发电机发电时间;
Ss表示储电机的状态,Ss=0时表示处于放电状态,Ss=1时表示处于充电状态;
Ts表示储电机处于充/放电状态的时间;
P表示当前电价;
Sp表示工厂外电站的供电状态,当Sp=00时表示休眠,Sp=01时表示只给生产设备供电,当Sp=10时表示只给储电站供电,Sp=11表示同时给设备层和储电站供电;
Tp_Sp表示在Sp状态下的供电时间,Tp_01表示只给生产设备供电时间,Tp_10表示只给储电站供电时间;
7)计算如下公式
Ed=Esp*Ts+Tp_01*Ep+Eg*Tg
C=Tp_10*Ps+Tp_01*P+xg*Pg*Tg
在满足用电侧电量Ed需求的情况下,算出在满足上述两式的情况下,选取C较小的参数组合作为最终方案;
8)生成方案:经过以上计算,生成用电方案Schemei,供电方案Schemep
本发明的有益效果在于:
边云协同计算提高实时性:本方案中边缘节点本地化处理来自设备层的生产任务数据,与现场设备形成实时反馈控制回路,有效提高管控效率,缩短指令传输时间,实时生成供电用电方案,并提供给生产设备及供电侧各电站执行。该方法能够云端存储电厂电能数据及已生成的方案,能够缩短以后方案生成时间。本方法利用边缘计算及云计算的优点,将算法复杂度及数据实时性进行分级,并得出一个综合等级。将综合等级为2,3,4的计算上传到云端执行,综合等级为5,6,7,8的计算放在边缘本地化执行。在提高整个电能管控系统实时性的前提下,实时地更新方案,缩短了方案生成及指令传输时间,从而降低了用电成本。相比于集中调度机制来说,实时性将极大提升电能管控系统性能。
供-用电联合调度提高灵活性:本方案中对用电侧及供电侧进行联合调度,不仅“削峰填谷”,即在低电价时不仅在设备层开启大功率设备,供电侧也启动储电系统的充电功能。高电价时设备层开启小功率设备,供电侧系统启动储电系统的放电功能。用电侧成本的降低主要是从在低电价时增加生产任务来实现,供电侧成本的降低则是在低电价时储电站进行充电,在高电价的时候储电站进行放电。相对于集中调度机制来说,对供电用电同时调度能够明显提升电能管控系统的性能。
边云协同分布式计算提高安全性:在这个方案中主要的计算任务由边缘节点完成,边缘节点分布得比较分散,即便是其中几个边缘节点的安全受到威胁,也会由其他边缘节点继续执行任务,对整个供电调控系统的影响也不大。相对于集中调度来说,如果集中调度中心瘫痪,则对整个生产系统有致命的打击。因此边云协同技术能够提升电能管控系统的安全性。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明所述基于边云协同的工厂电能管控系统结构示意图;
图2为本发明所述基于边云协同的工厂电能管控方法流程图;
图3为本发明所述需求响应算法流程示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
一方面,本发明提供一种基于边云协同的工厂电能管控系统,如图1所示,包括云电能管理层、边缘计算层、设备层、供电侧;
所述云电能管理层包括云电能管理中心、工业云服务器;所述云电能管理中心用于执行部分计算任务,并将计算结果返回到边缘节点,还用于存储生产现场的STN任务模型并下发到边缘节点;所述工业云服务器用于存储边缘节点已生成的供电用电方案,在将来的生成方案过程中作为参考;
所述边缘计算层包括若干边缘节点,所述边缘节点用于:①计算生产任务电量需求值Ed;②根据云电能管理中心下发的STN任务模型信息和工厂设备层发送的实时任务信息,计算出完成既定生产任务电量的需求值;③接收来自供电侧的供电信息数据,包括实时电价模型,储电模型及发电模型;④判断算法复杂度等级O、判断数据实时性等级TIME_priority、计算出综合等级R;⑤用于根据综合等级R将部分计算任务发送到云电能管理中心,并接受该部分计算结果,在边缘节点执行剩余部分任务的计算;⑥根据计算结果综合得出用电方案Schemei及供电方案Schemep;⑦将用电方案Schemep发送给工厂设备层执行生产任务,将供电方案发送给供电侧执行供电任务;
所述设备层包括现场节点、路由节点、生产设备;所述现场节点组成工业现场网络采集生产设备的生产信息,并通过路由节点发送给边缘节点;通过路由节点接收来自边缘节点的用电方案,依据该方案控制设备层执行生产任务;所述生产设备即工业现场执行计划的设备,执行用电方案中的生产任务;
所述供电侧包括供电代理、工厂外电站、工厂发电站、工厂储电站;所述供电代理用于存储工厂外电站电价模型、工厂发电站的发电模型及工厂储电站的储电模型,当有模型更新时,发送给边缘节点;所述工厂外电站用于连接工厂电网,对工厂进行供电;所述工厂发电站是工厂自建的发电站,对工厂进行供电;所述工厂储电站在电价较低时进行储电,在电价较高时进行给工厂供电。
另一方面,如图2所示,本发明提供一种基于边云协同的工厂电能管控方法,下面结合实例对一种基于边云协同的工厂电能管控方法的设计做一个全面的描述。本发明针对的是在工业现场需要通过在边缘节点快速产生供电方案及用电方案的情况,给出本专利的具体实施方式。
首先进行准备工作:
(1)工厂电能系统管理人员需要事先把生产现场的STN任务模型Mt存储在云电能管理中心处,Mt={Task_number=i,Electricityi=Ei,},i为任务编号,每小时耗电量可以用千瓦时来计算,则可以直接用功率表示各任务耗电大小。该生产流程需要完成四个任务Task_number={1,2,3,4},其中任务4需要一直运行。设E1=5KW,E2=10KW,E3=30KW,E4=50KW。
(2)需要事先把供电侧的发电模型={Pg=1.0元/KWH,xg,Eg,Tg};储电模型Ms={Es=6.25KW,Esp,Ss,Ts,Ps},充电功率为6.25KW,且储电站最大容量为50KWH,即8小时可以将储电站充满电;放电概率Esp为当前用电设备功率,电价模型Mp(如表4)存储在供电代理处。
表4电价模型
Figure BDA0002312899190000091
(3)算法复杂度计算:工厂电能系统管理人员在边缘节点将所有需要执行的算法上机测试,并且将算法复杂度O的值标记在算法的头部。
步骤1:现场节点从生产设备处采集到的数据帧信息表为{Task_number,Ti,protocol,ID,data_source,Task_type,TIME_priority},分别表示任务编号、任务执行所需时间,工业协议、网络ID、数据源地址、任务类型、实时性等级。现场节点解析采集到的数据帧之后得到如下任务信息。
表5任务模型
Figure BDA0002312899190000092
步骤2:现场节点解析生产任务信息数据Ip并发送给边缘节点。Ip可从帧信息表中解析出来,Ip={(Task_number=1,Ti=1);(Task_number=2,Ti=2);(Task_number=3,Ti=3);(Task_number=4,Ti=4)},i表示任务编号,Ti表示任务执行所需时间。该生产流程需要完成四个任务Task_number={1,2,3,4},其中任务4需要一直运行。
步骤3:云电能管理中心将生产现场的STN模型Mt={(1,5KW);(2,10KW);(3,30KW);(1,50KW);}下发到边缘节点。
步骤4:供电侧的供电代理会将发电模型Mg,储电模型Ms,电价模型Mp发给边缘节点。
步骤5:边缘节点根据生产任务信息数据Ip,STN任务模型Mt计算完成这些生产任务所需电量
Ed=1*5KW+2*10KW+3*30KW+4*50KW=315KWH
步骤6:边缘节点查找算法的头部得到O的值。
步骤7:边缘节点通过数据帧中TIME_priority的值依据表1判断数据实时性等级得TIME_priority(1)=1;TIME_priority(2)=2;TIME_priority(3)=3;TIME_priority(4)=4;。
步骤8:边缘节点通过算法复杂度等级O的值及数据实时性等级TIME_priority的值依据表3计算出综合等级R的值。
步骤9:边缘节点将综合等级R值为5,6,7,8的计算存储到本地。
步骤10:边缘节点将综合等级R值为2,3,4的计算发送到云电能管理中心。
步骤11:边缘节点执行综合等级R值为5,6,7,8的计算,并且将计算结果保存到本地。云电能管理中心执行边缘节点发送的综合等级值为2,3,4的计算。
步骤12:云电能管理中心将计算结果返回给边缘节点。
步骤13:在边缘节点执行需求响应算法。
如图3所示,该需求响应(Demand Response,简称DR)算法输入为电量需求值Ed,发电模型Mg,储电模型Ms,电价模型Mp。输出为用电方案Schemei,供电方案Schemep
(1)电量需求值Ed
结合生产任务信息数据Ip,STN任务模型Mt可以算出电量需求值Ed。Ip可从帧信息表中解析出来,Ip={Task_number=i,i∈N*,Ti,Ti∈R+},i表示任务编号,Ti表示任务执行所需时间;Mt={Task_number=i,Electricityi=Ei,},Ei为任务i在单位时间内运行所需耗电量。
电量需求值
Figure BDA0002312899190000101
(2)发电模型Mg
在这里假设发电系统由柴油和天然气发电,发电模型可从发电机单位时间内消耗发电原料的价格入手计算,假设一台发电机单位时间内发电成本为Pg。假设工厂需要运行的发电机数为xg。本部分忽略发动机启动和关闭产生的成本,Eg表示工厂内发电站单位时间供电量,Tg表示每台发电价发电时间。因此发电模型为
Mg={Pg,xg,Eg,Tg}
(3)储电模型Ms
假设一台储电机充电功率为Es,放电功率Esp为当前设备功率,且只在工厂外供电站供电的情况下充电。Ss表示储电机的状态,Ss=0时表示处于放电状态,Ss=1时表示处于充电状态。Ts表示储电机处于充/放电状态的时间,Ps表示储电机充电时的电价。因此储电模型为
Ms={Es,Esp,Ss,Ts,Ps}
(4)电价模型Mp
该电价模型依据外部供电单位的情况而定,一般有Day-ahead电价模型,实时电价模型,分段式电价模型。P表示给工厂供电的价格。表示工厂外电站单位时间供电量。因此电价模型为
Mp={P,Ep}
(5)用电方案Schemei
在计算出所有结果之后,边缘节点会生成Schemei。Schemei={Task_number=i,i∈N*;T_exe;Period;T_exe,Period∈R+},Task_number为任务编号,T_exe为任务执行时刻,Period为任务执行持续时间。
(6)供电方案Schemep
在计算出所有结果之后,边缘节点会生成Schemep。Schemep={xg,Tg,Ss,Ts,P,Sp,Tp_01,Tp_10}。
xg表示需要工厂内发电站运行的发电机的数量;
Tg表示每台发电机发电时间;
Ss表示储电机的状态,Ss=0时表示处于放电状态,Ss=1时表示处于充电状态;
Ts表示储电机处于充/放电状态的时间;
P表示当前电价;
Sp表示工厂外电站的供电状态,当Sp=00时表示休眠,Sp=01时表示只给生产设备供电,当Sp=10时表示只给储电站供电,Sp=11表示同时给设备层和储电站供电。Tp_Sp表示在Sp状态下的供电时间,Tp_01表示只给生产设备供电时间,Tp_10表示只给储电站供电时间。
(7)计算如下公式
Ed=Esp*Ts+Tp_01*Ep+Eg*Tg
C=Tp_10*Ps+Tp_01*P+xg*Pg*Tg
在满足用电侧电量Ed需求的情况下,算出在满足上述两式的情况下,选取C较小的参数组合作为最终方案。
(8)生成方案
经过以上的计算,可以生成用电方案Schemei,供电方案Schemep
在本实施例中:
1)电量需求值Ed=315KWH
2)发电模型Mg={Pg=1.0元/KWH,xg,Eg,Tg}
3)储电模型Ms={Es=6.25KW,Esp,Ss,Ts,Ps}
4)电价模型Mp={P,Ep}
根据公式
Ed=Esp*Ts+Tp_01*Ep+Eg*Tg
C=Tp_10*Ps+Tp_01*P+xg*Pg Tg
在满足用电侧电量需求的情况下,算出在满足上述两式的情况下,选取C较小的参数组合作为最终方案。
5)生成方案
经过以上的计算,可以生成用电方案Schemei,供电方案Schemep。具体方案有很多种,表6列出来其中之一。该方案即为在一天24H小时内,完成6次生产流程的任务执行方案及供电方案。6次生产流程即任务1共执行6小时,任务2执行12小时,任务3共执行18小时,任务4不间断执行24小时。
表6用电方案与供电方案
Figure BDA0002312899190000121
注1:当且仅当储电站充满电时可给任务4供电1小时
步骤14:边缘节点将用电方案Schemei发送给现场节点,边缘节点将供电方案Schemep发送给供电代理。
步骤15:现场节点再进一步将Schemei发送给生产设备执行生产任务。供电代理控制工厂发电站、储电站、工厂外供电站执行相应方案。
步骤16:边缘节点同时将方案存储在云电能管理中心,以供未来的操作方案参考。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种基于边云协同的工厂电能管控系统,其特征在于:包括云电能管理层、边缘计算层、设备层、供电侧;
所述云电能管理层包括云电能管理中心、工业云服务器;所述云电能管理中心用于执行部分计算任务,并将计算结果返回到边缘节点,还用于存储生产现场的STN任务模型并下发到边缘节点;所述工业云服务器用于存储边缘节点已生成的供电用电方案,在将来的生成方案过程中作为参考;
所述边缘计算层包括若干边缘节点,所述边缘节点用于:
①计算生产任务电量需求值Ed
②根据云电能管理中心下发的STN任务模型信息和工厂设备层发送的生产任务信息数据Ip,计算出完成生产任务电量需求值Ed
③接收来自供电侧的供电信息数据,包括电价模型Mp,储电模型及发电模型;
④判断算法复杂度等级O、判断数据实时性等级TIME_priority、计算出综合等级R;具体包括:
将生产现场的STN任务模型Mt存储在云电能管理中心处,Mt={Task_number,Electricityi},Task_number表示任务i的编号,Electricityi表示任务i在单位时间内运行所需耗电量;
将供电侧的发电模型Mg、储电模型Ms、电价模型Mp存储在供电代理处;
算法复杂度计算:在边缘节点将所有需要执行的算法上机测试,在综合考虑空间复杂度和时间复杂度的情况下,分析出算法复杂度属性为{复杂度极高,复杂度高,复杂度中,复杂度低},并且将算法按照算法复杂度属性分级,用O表示,算法复杂度等级对应如下,O∈[1-4],并且将O的值标记在算法的头部;算法复杂度分为4个等级,算法复杂度依次递减,1级表示算法复杂度极高,4级表示算法复杂度低;
设备层中的现场节点,路由节点以及执行生产任务的设备组成工业现场网络;现场节点从生产设备处采集到的数据帧信息表为{Task_number,Ti,protocol,ID,data_source,Task_type},分别表示任务编号、任务执行所需时间、工业协议、网络ID、数据源地址、任务类型;
现场节点在MAC层根据数据帧信息表中的任务类型Task_type对数据帧进行不同实时性等级的标记,标记后的帧信息表变为{Task_number,Ti,protocol,ID,data_source,Task_type,TIME_priority},其中TIME_priority∈[1-4];
TIME_priority表示数据实时性等级,其值对应为4个实时性等级,依次为1~4,优先等级依次递增,1为对实时性要求不高,4表示对实时性要求极高;
现场节点解析生产任务信息数据Ip并发送给边缘节点,Ip从帧信息表中解析而出,Ip={Task_number=i,i∈N*,Ti,Ti∈R+},i表示任务编号,Ti表示任务执行所需时间;
边缘节点依据算法复杂度等级O的值判断算法复杂度等级;
边缘节点通过数据帧的属性值判断数据实时性等级;
边缘节点通过算法复杂度等级O的值及数据实时性等级TIME_priority的值计算综合等级R的值:
序号 计算类别 实时性等级 算法复杂度 综合等级 边云协同 1 实时性低,复杂度极高 1 1 2 云计算 2 实时性中,复杂度极高 2 1 3 云计算 3 实时性低,复杂度高 1 2 3 云计算 4 实时性中,复杂度高 2 2 4 云计算 5 实时性低,复杂度中 1 3 4 云计算 6 实时性低,复杂度极高 3 1 4 云计算 7 实时性低,复杂度低 1 4 5 边缘计算 8 实时性低,复杂度极高 4 1 5 边缘计算 9 实时性中,复杂度中 2 3 5 边缘计算 10 实时性低,复杂度高 3 2 5 边缘计算 11 实时性中,复杂度低 2 4 6 边缘计算 12 实时性极高,复杂度高 4 2 6 边缘计算 13 实时性低,复杂度中 3 3 6 边缘计算 14 实时性高,复杂度低 3 4 7 边缘计算 15 实时性极高,复杂度中 4 3 7 边缘计算 16 实时性极高,复杂度低 4 4 8 边缘计算
⑤用于根据综合等级R将部分计算任务发送到云电能管理中心,并接受部分计算结果,在边缘节点执行剩余部分任务的计算;其中边缘节点将综合等级R值为5,6,7,8的计算存储到本地;边缘节点将综合等级R值为2,3,4的计算发送到云电能管理中心;边缘节点执行综合等级R值为5,6,7,8的计算,并且将计算结果保存到本地;云电能管理中心执行边缘节点发送的综合等级值为2,3,4的计算;云电能管理中心将计算结果返回给边缘节点;
⑥根据计算结果综合得出用电方案Schemei及供电方案Schemep
⑦将用电方案Schemep发送给工厂设备层执行生产任务,将供电方案发送给供电侧执行供电任务;
所述设备层包括现场节点、路由节点、生产设备;所述现场节点组成工业现场网络采集生产设备的生产信息,并通过路由节点发送给边缘节点;通过路由节点接收来自边缘节点的用电方案Schemei,依据该方案控制设备层执行生产任务;所述生产设备即工业现场执行计划的设备,执行用电方案Schemei中的生产任务;
所述供电侧包括供电代理、工厂外电站、工厂发电站、工厂储电站;所述供电代理用于存储电价模型Mp、工厂发电站的发电模型及工厂储电站的储电模型,当有模型更新时,发送给边缘节点;所述工厂外电站用于连接工厂电网,对工厂进行供电;所述工厂发电站是工厂自建的发电站,对工厂进行供电;所述工厂储电站在电价较低时进行储电,在电价较高时进行给工厂供电。
2.一种基于边云协同的工厂电能管控方法,其特征在于:包括以下步骤:
S1:将生产现场的STN任务模型Mt存储在云电能管理中心处,将供电侧的发电模型Mg、储电模型Ms、电价模型Mp存储在供电代理处,并规定算法复杂度等级;将生产现场的STN任务模型Mt存储在云电能管理中心处,Mt={Task_number,Electricityi},Task_number表示任务i的编号,Electricityi表示任务i在单位时间内运行所需耗电量;
将供电侧的发电模型Mg、储电模型Ms、电价模型Mp存储在供电代理处;
算法复杂度计算:在边缘节点将所有需要执行的算法上机测试,在综合考虑空间复杂度和时间复杂度的情况下,分析出算法复杂度属性为{复杂度极高,复杂度高,复杂度中,复杂度低},并且将算法按照算法复杂度属性分级,用O表示,算法复杂度等级对应如下:O∈[1-4],并且将O的值标记在算法的头部;算法复杂度分为4个等级,算法复杂度依次递减,1级表示算法复杂度极高,4级表示算法复杂度低;
S2:设备层中的现场节点,路由节点以及执行生产任务的设备组成工业现场网络;现场节点从生产设备处采集到的数据帧信息表为{Task_number,Ti,protocol,ID,data_source,Task_type},分别表示任务编号、任务执行所需时间、工业协议、网络ID、数据源地址、任务类型;
现场节点在MAC层根据数据帧信息表中的任务类型Task_type对数据帧进行不同实时性等级的标记,标记后的帧信息表变为{Task_number,Ti,protocol,ID,data_source,Task_type,TIME_priority},其中TIME_priority∈[1-4];
TIME_priority表示数据实时性等级,其值对应为4个实时性等级,依次为1~4,优先等级依次递增,1为对实时性要求不高,4表示对实时性要求极高;
S3:现场节点解析生产任务信息数据Ip并发送给边缘节点;
S4:云电能管理中心将生产现场的STN模型下发到边缘节点;
S5:供电侧的供电代理将发电模型Mg、储电模型Ms及电价模型Mp发给边缘节点;
S6:边缘节点根据生产任务信息数据Ip,STN任务模型Mt计算完成这些生产任务所需电量Ed
S7:边缘节点依据算法复杂度等级O的值判断算法复杂度等级;
S8:边缘节点通过数据帧的属性值判断数据实时性等级;
S9:边缘节点通过算法复杂度等级O的值及数据实时性等级TIME_priority的值计算综合等级R的值:
序号 计算类别 实时性等级 算法复杂度 综合等级 边云协同 1 实时性低,复杂度极高 1 1 2 云计算 2 实时性中,复杂度极高 2 1 3 云计算 3 实时性低,复杂度高 1 2 3 云计算 4 实时性中,复杂度高 2 2 4 云计算 5 实时性低,复杂度中 1 3 4 云计算 6 实时性低,复杂度极高 3 1 4 云计算 7 实时性低,复杂度低 1 4 5 边缘计算 8 实时性低,复杂度极高 4 1 5 边缘计算 9 实时性中,复杂度中 2 3 5 边缘计算 10 实时性低,复杂度高 3 2 5 边缘计算 11 实时性中,复杂度低 2 4 6 边缘计算 12 实时性极高,复杂度高 4 2 6 边缘计算 13 实时性低,复杂度中 3 3 6 边缘计算 14 实时性高,复杂度低 3 4 7 边缘计算 15 实时性极高,复杂度中 4 3 7 边缘计算 16 实时性极高,复杂度低 4 4 8 边缘计算
S10:边缘节点将综合等级R值为5,6,7,8的计算存储到本地;
S11:边缘节点将综合等级R值为2,3,4的计算发送到云电能管理中心;
S12:边缘节点执行综合等级R值为5,6,7,8的计算,并且将计算结果保存到本地;云电能管理中心执行边缘节点发送的综合等级值为2,3,4的计算;
S13:云电能管理中心将计算结果返回给边缘节点;
S14:在边缘节点执行需求响应算法;
S15:边缘节点将用电方案Schemei发送给现场节点,将供电方案Schemep发送给供电代理;
S16:现场节点将用电方案Schemei发送给生产设备执行生产任务;供电代理控制工厂发电站、储电站、工厂外供电站执行供电方案;
S17:边缘节点同时将供电方案Schemep和用电方案Scheme存储在云电能管理中心,在将来的生成方案过程中作为参考。
3.根据权利要求2所述的基于边云协同的工厂电能管控方法,其特征在于:步骤S3中,Ip从帧信息表中解析而出,Ip={Task_number=i,i∈N*,Ti,Ti∈R+},i表示任务编号,Ti表示任务执行所需时间。
4.根据权利要求3所述的基于边云协同的工厂电能管控方法,其特征在于:步骤S14中所述需求响应算法的输入为电量需求值Ed,发电模型Mg,储电模型Ms,电价模型Mp;输出为用电方案Schemei,供电方案Schemep
1)结合生产任务信息数据Ip,STN任务模型Mt计算电量需求值Ed
Figure QLYQS_1
2)发电模型为Mg={Pg,xg,Eg,Tg},其中Pg为一台发电机单位时间内发电成本,xg为工厂需要运行的发电机数,Eg表示工厂内发电站单位时间供电量,Tg表示每台发电价发电时间;
3)储电模型为Ms={Es,Esp,Ss,Ts,Ps},其中,假设一台储电机充电功率为Es,放电功率Esp为当前设备功率,且只在工厂外供电站供电的情况下充电,Ss表示储电机的状态,Ss=0时表示处于放电状态,Ss=1时表示处于充电状态,Ts表示储电机处于充/放电状态的时间,Ps表示储电机充电时的电价;
4)电价模型为Mp={P,Ep},P表示给工厂供电的价格,Ep表示工厂外电站单位时间供电量;
5)在计算出所有结果之后,边缘节点生成用电方案Schemei,Schemei={Task_number=i,i∈N*;T_exe;Period;T_exe,Period∈R+},其中Task_number为任务编号,T_exe为任务执行时刻,Period为任务执行持续时间;
6)在计算出所有结果之后,边缘节点生成供电方案Schemep,Schemep={xg,Tg,Ss,Ts,P,Sp,Tp_01,Tp_10},其中
xg表示需要工厂内发电站运行的发电机的数量;
Tg表示每台发电机发电时间;
Ss表示储电机的状态,Ss=0时表示处于放电状态,Ss=1时表示处于充电状态;
Ts表示储电机处于充/放电状态的时间;
P表示当前电价;
Sp表示工厂外电站的供电状态,当Sp=00时表示休眠,Sp=01时表示只给生产设备供电,当Sp=10时表示只给储电站供电,Sp=11表示同时给设备层和储电站供电;
Tp_Sp表示在Sp状态下的供电时间,Tp_01表示只给生产设备供电时间,Tp_10表示只给储电站供电时间;
7)计算如下公式
Ed=Esp*Ts+Tp_01*Ep+Eg*Tg
C=Tp_10*Ps+Tp_01*P+xg*Pg*Tg
在满足用电侧电量Ed需求的情况下,算出在满足上述两式的情况下,选取C较小的参数组合作为最终方案;
8)生成方案:经过以上计算,生成用电方案Schemei,供电方案Schemep
CN201911270941.6A 2019-12-11 2019-12-11 一种基于边云协同的工厂电能管控系统及方法 Active CN111144715B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201911270941.6A CN111144715B (zh) 2019-12-11 2019-12-11 一种基于边云协同的工厂电能管控系统及方法
US17/261,875 US11822417B2 (en) 2019-12-11 2020-07-15 Factory power management and control system and method based on edge-cloud coordination
PCT/CN2020/102200 WO2021114661A1 (zh) 2019-12-11 2020-07-15 一种基于边云协同的工厂电能管控系统及方法
KR1020217040190A KR20220007644A (ko) 2019-12-11 2020-07-15 에지 클라우드 협동에 기반하는 공장 전력 관리 시스템 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911270941.6A CN111144715B (zh) 2019-12-11 2019-12-11 一种基于边云协同的工厂电能管控系统及方法

Publications (2)

Publication Number Publication Date
CN111144715A CN111144715A (zh) 2020-05-12
CN111144715B true CN111144715B (zh) 2023-06-23

Family

ID=70518086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911270941.6A Active CN111144715B (zh) 2019-12-11 2019-12-11 一种基于边云协同的工厂电能管控系统及方法

Country Status (4)

Country Link
US (1) US11822417B2 (zh)
KR (1) KR20220007644A (zh)
CN (1) CN111144715B (zh)
WO (1) WO2021114661A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111144715B (zh) * 2019-12-11 2023-06-23 重庆邮电大学 一种基于边云协同的工厂电能管控系统及方法
CN111928334A (zh) * 2020-07-30 2020-11-13 瑞纳智能设备股份有限公司 基于边云协同框架的供热控制方法、系统及计算机设备
CN113315172B (zh) * 2021-05-21 2022-09-20 华中科技大学 一种电热综合能源的分布式源荷数据调度系统
CN113590368B (zh) * 2021-06-25 2024-05-28 中国电力科学研究院有限公司 一种基于边边协同的异常设备诊断方法及系统
CN113537011A (zh) * 2021-07-06 2021-10-22 广西电网有限责任公司 一种基于云边融合的电力杆塔输电线路状态监测的方法
CN113534832B (zh) * 2021-08-03 2024-03-15 国网江苏省电力有限公司泰州供电分公司 一种基于边缘计算的无人机巡检跟踪配网线飞行方法
CN113934536B (zh) * 2021-10-11 2022-08-16 中用科技有限公司 面向边缘计算的数据采集方法
CN114154777B (zh) * 2021-10-18 2022-08-19 中标慧安信息技术股份有限公司 基于边缘计算的工业大数据监测方法和系统
CN114390055B (zh) * 2021-12-08 2023-12-05 广东电网有限责任公司 一种适用于电力行业的云边协同数据采集方法及系统
CN114357743B (zh) * 2021-12-22 2022-08-26 天津大学 一种区域能源互联网的边云协同优化方法及装置
CN114285855B (zh) * 2022-03-07 2022-05-24 济南英华自动化技术有限公司 一种基于智能边缘物联的云边协同方法
CN115079648A (zh) * 2022-05-30 2022-09-20 武汉市水务集团有限公司 一种智能工业控制系统
CN117176728B (zh) * 2023-07-04 2024-07-05 钟漍标 基于云边协同技术的工业物联网调度方法及调度系统
CN117040139B (zh) * 2023-10-09 2023-12-22 江苏鼎豪电力工程有限公司 一种基于大数据分析的电能管控系统及方法
CN117445735B (zh) * 2023-12-25 2024-03-19 国网天津市电力公司武清供电分公司 云边协同的充电预警方法、设备及介质
CN117590823B (zh) * 2024-01-19 2024-03-26 江苏聚由新材料科技有限公司 一种基于安全生产的控制系统及控制方法
CN118118526B (zh) * 2024-04-23 2024-07-23 浙江大学 一种新能源电站云边协同数据采集与控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218683A (zh) * 2014-10-11 2014-12-17 重庆邮电大学 一种闭环自学习需求响应系统及方法
WO2017002735A1 (ja) * 2015-06-29 2017-01-05 株式会社Nttドコモ 通信制御方法、通信制御装置、及び通信システム
CN109995546A (zh) * 2017-12-29 2019-07-09 中国科学院沈阳自动化研究所 边缘计算与云计算协同的智能工厂自动化系统体系架构
CN110111214A (zh) * 2019-04-24 2019-08-09 北京邮电大学 一种基于优先级的用户用能管理方法及系统
CN110162018A (zh) * 2019-05-31 2019-08-23 天津开发区精诺瀚海数据科技有限公司 基于知识蒸馏与隐含层共享的增量式设备故障诊断方法
CN110336703A (zh) * 2019-07-12 2019-10-15 河海大学常州校区 基于边缘计算的工业大数据监测系统
CN110430266A (zh) * 2019-08-06 2019-11-08 腾讯科技(深圳)有限公司 一种边云协同数据传输方法、装置、设备及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015507A1 (en) * 2010-07-29 2012-02-02 Spirae, Inc. Dynamic distributed power grid control system
US9423848B2 (en) * 2013-03-15 2016-08-23 Rockwell Automation Technologies, Inc. Extensible energy management architecture
JP7052218B2 (ja) * 2017-05-19 2022-04-12 コニカミノルタ株式会社 エッジコンピューティングシステム、通信制御方法及び通信制御プログラム
EP3416126A1 (en) * 2017-06-15 2018-12-19 Flex, Ltd. System and method for hybrid cloud-edge computing method for automated decision making and probabilistic occurrence
US20190079898A1 (en) * 2017-09-12 2019-03-14 Actiontec Electronics, Inc. Distributed machine learning platform using fog computing
CN116070977A (zh) * 2018-03-14 2023-05-05 联邦快递服务公司 执行调度的物流操作的方法
US10990068B2 (en) * 2018-05-29 2021-04-27 Abb Schweiz Ag Technologies for providing cloud-based management of an electrical grid
US10936039B2 (en) * 2018-06-19 2021-03-02 Intel Corporation Multi-tenant edge cloud system power management
CN109557862A (zh) * 2018-12-28 2019-04-02 苏州易助能源管理有限公司 一种基于边缘计算的光伏电站功率监控装置及方法
WO2020212151A1 (en) * 2019-04-17 2020-10-22 Sony Corporation Power management of movable edge computing servers
CN110071579A (zh) * 2019-06-05 2019-07-30 国网北京市电力公司 基于泛在电力物联网的电网供电保障和智能管控系统
US10972768B2 (en) * 2019-06-27 2021-04-06 Intel Corporation Dynamic rebalancing of edge resources for multi-camera video streaming
CN111144715B (zh) * 2019-12-11 2023-06-23 重庆邮电大学 一种基于边云协同的工厂电能管控系统及方法
JP2023531355A (ja) * 2020-07-02 2023-07-24 インテル・コーポレーション 強化されたアクセストラフィックステアリング、スイッチングおよび分割のためのran認識トラフィック分配ルールおよびran測定
KR20230070566A (ko) * 2021-11-15 2023-05-23 한국전자기술연구원 엣지 서버 내 샷시 매니저의 로그 분석 기반 적응형 온도 제어 방법
US20220114010A1 (en) * 2021-12-22 2022-04-14 Francesc Guim Bernat Cooperative management of dynamic edge execution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218683A (zh) * 2014-10-11 2014-12-17 重庆邮电大学 一种闭环自学习需求响应系统及方法
WO2017002735A1 (ja) * 2015-06-29 2017-01-05 株式会社Nttドコモ 通信制御方法、通信制御装置、及び通信システム
CN109995546A (zh) * 2017-12-29 2019-07-09 中国科学院沈阳自动化研究所 边缘计算与云计算协同的智能工厂自动化系统体系架构
CN110111214A (zh) * 2019-04-24 2019-08-09 北京邮电大学 一种基于优先级的用户用能管理方法及系统
CN110162018A (zh) * 2019-05-31 2019-08-23 天津开发区精诺瀚海数据科技有限公司 基于知识蒸馏与隐含层共享的增量式设备故障诊断方法
CN110336703A (zh) * 2019-07-12 2019-10-15 河海大学常州校区 基于边缘计算的工业大数据监测系统
CN110430266A (zh) * 2019-08-06 2019-11-08 腾讯科技(深圳)有限公司 一种边云协同数据传输方法、装置、设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Min Wei 等."Secure Framework and Security Mechanism for Edge Nodes in Industrial Internet".《International Conference on Ubiquitous Information Management and Communication》.2020,全文. *
杨旭."基于边云协同的工厂电能管控机制研究".《硕士论文-工程科技Ⅱ辑》.2020,全文. *

Also Published As

Publication number Publication date
US11822417B2 (en) 2023-11-21
CN111144715A (zh) 2020-05-12
KR20220007644A (ko) 2022-01-18
WO2021114661A1 (zh) 2021-06-17
US20220187894A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN111144715B (zh) 一种基于边云协同的工厂电能管控系统及方法
Ye et al. Learning to operate an electric vehicle charging station considering vehicle-grid integration
Zeng et al. A potential game approach to distributed operational optimization for microgrid energy management with renewable energy and demand response
Ferro et al. An optimization model for electrical vehicles scheduling in a smart grid
Escudero-Garzás et al. Fair design of plug-in electric vehicles aggregator for V2G regulation
CN112068436B (zh) 工业园区的综合能源系统分层分布式控制方法及系统
He et al. Frequency regulation of multi-microgrid with shared energy storage based on deep reinforcement learning
Afshar et al. A distributed electric vehicle charging scheduling platform considering aggregators coordination
Zhang et al. Joint energy and workload scheduling for fog-assisted multimicrogrid systems: A deep reinforcement learning approach
CN114386702A (zh) 一种间歇性生产工艺参与电力需求响应的优化方法及系统
CN117131984A (zh) 源网荷储智慧控制型城市综合能源系统及方法
CN105226649B (zh) 一种基于母线负荷预测改进的省级电网发电调度优化方法
Merrick et al. Assessing the system value of optimal load shifting
CN107611968B (zh) 分布式能源互动消纳的主动配电网经济运行方法
Abdelfattah et al. Smart vehicle-to-grid integration strategy for enhancing distribution system performance and electric vehicle profitability
CN117613906A (zh) 分布式源荷参与下的配电系统多主体实时协同降碳方法
Wang et al. Day-ahead emission-aware resource planning for data center considering energy storage and batch workloads
Li et al. Integrating Incentive Factors in the Optimization for Bidirectional Charging of Electric Vehicles
Lei et al. A transactive energy framework for multi-energy management of smart communities
JP2012186921A (ja) コミュニティーエネルギー管理システム及びその方法
EP2582094A1 (en) Network system
Wang et al. A new model of economic dispatch considering energy conservation and environmental protection in electricity market
CN118228940B (zh) 一种机场全域碳足迹智慧管控方法及系统
Wang et al. Social networking and consumer preference based power peak reduction for safe smart grid
Hou et al. Distributionally robust optimal scheduling of multi-microgrid considering asymmetric bargaining

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant