CN111141652A - Horizontal drainage performance testing device - Google Patents

Horizontal drainage performance testing device Download PDF

Info

Publication number
CN111141652A
CN111141652A CN201911354015.7A CN201911354015A CN111141652A CN 111141652 A CN111141652 A CN 111141652A CN 201911354015 A CN201911354015 A CN 201911354015A CN 111141652 A CN111141652 A CN 111141652A
Authority
CN
China
Prior art keywords
drainage
water
geosynthetic material
tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911354015.7A
Other languages
Chinese (zh)
Inventor
张素磊
鲍彤
李雪琪
管禹名
李婷囡
董超
贾佳阳
王*
管晓明
杜明庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201911354015.7A priority Critical patent/CN111141652A/en
Publication of CN111141652A publication Critical patent/CN111141652A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change

Abstract

The invention belongs to the technical field of drainage performance testing devices, and particularly relates to a horizontal drainage performance testing device which is used for testing the anti-clogging drainage capacity of a geosynthetic material under the conditions of different inclination angles and different water head heights, wherein a main structure comprises a water supply tank, a stirrer, a water delivery pipe, a drainage tank, a sewage pump, a high drainage hole, a low drainage hole, a drainage pipe, a water collection tank and a geosynthetic material; the device has the advantages of simple structure, environmental protection, energy conservation, easy realization, low manufacturing and using cost, accurate and reliable test result and very good application prospect.

Description

Horizontal drainage performance testing device
The technical field is as follows:
the invention belongs to the technical field of drainage performance testing devices, and particularly relates to a horizontal drainage performance testing device which is used for testing the anti-clogging drainage capacity of a geosynthetic material under the conditions of different inclination angles and different water head heights.
Background art:
geosynthetics are manufactured from synthetic polymers as raw materials into various types of products, including nonwoven fabrics, geogrids, geomembranes, composite drainage nets, geonet mats, and the like. The geosynthetic material has excellent functions of filtration, drainage, isolation and the like, is light in weight, high in tensile strength, good in permeability and corrosion-resistant, and is widely applied to construction of water conservancy, traffic, building engineering and the like.
At present, tunnel water leakage diseases occur frequently, the defects existing in the design of a tunnel water-proof and drainage system are important influencing factors, the existing water-proof and drainage system is more perfect, but the construction quality is limited, and the waterproof board is difficult to be dense and waterproof. Once the waterproof board is cracked, no drainage channel exists between the waterproof board and the two linings, groundwater seeps and silts between the waterproof board and the two linings, and finally seeps out from the weak part of the lining to generate seepage water.
In the using process of the geosynthetic drainage material, surrounding rock particles, silt particles and the like mixed in underground water under seepage motion can be intercepted and continuously accumulated on the inner pores or the surfaces of the geosynthetic drainage material, so that the permeability is reduced, therefore, the geosynthetic drainage material needs to have good anti-clogging capability, and the water guide performance under the clogging condition also becomes an important parameter for design and application. In the prior art, only an instrument for silting up geosynthetics in the vertical direction is provided, and a silting up test for draining water from geosynthetics in the vertical direction is also provided in road engineering geosynthetic material test regulation JTGE50-2006 and geosynthetic material test regulation SL235-2012, and the silting up test has no index value for clearly judging the silting up degree.
The drainage performance test device and the test method of the drainage geogrid disclosed in the Chinese patent 201910081800.3 are characterized in that the test device consists of a test box, a vertical load loading system and a test system; the test box consists of a stainless steel frame, a panel, side plates, a bottom plate and a top cover; the vertical load loading system consists of a rigid loading plate, a rubber air bag, an air guide pipe, a pneumatic pump and an automatic pneumatic regulating valve; the test system consists of a micro pore water pressure sensor, a data acquisition instrument and a lead; the method can only measure the change of the pore water pressure of the soil body around the drainage geogrid under all levels of consolidation pressure to obtain corresponding design parameters, and provides a basis for the application design of the drainage geogrid; the novel module water storage and drainage performance testing device disclosed in Chinese patent 201920095288.3 comprises a testing component and a rainfall simulation component; the testing assembly comprises a testing module, and the testing module comprises a soil layer, a first geotextile, a ceramsite layer, a second geotextile and a water storage and drainage plate which are sequentially arranged from top to bottom; the testing assembly also comprises four module side plates and a module bottom plate which surround to form a testing groove, and the testing module is positioned in the groove of the testing groove; at least one water drainage groove parallel to the module bottom plate is arranged around the outer side wall of the test groove, each water drainage groove is communicated with the test groove, the bottom surface of each water drainage groove is respectively provided with a water drainage pipe communicated with the water drainage groove, and each water drainage pipe is respectively connected with a container with scales; the rainfall simulation assembly comprises a water tank, a water pump, a spray head, a water spraying valve, a flowmeter and the like; the design of a test component and a rainfall simulation component is adopted to simply simulate and test the water storage and drainage performance of the roof; and therefore, the device for testing the drainage capacity of the geosynthetic material in the horizontal direction under the clogging condition is designed and researched, and the drainage capacity, the permeability coefficient and the drainage benefit ratio in unit time are taken as indexes to provide reference for judging the drainage capacity of the geosynthetic material under the clogging-resistant condition.
The invention content is as follows:
the invention aims to overcome the defects in the prior art, and seeks to design a horizontal drainage performance testing device to effectively obtain the horizontal drainage performance of the geosynthetic material under the condition of silting.
In order to achieve the above object, the main structure of the horizontal drainage performance testing device according to the present invention comprises a water supply tank, a mixer, a water pipe, a drainage tank, a sewage pump, a high drainage hole, a low drainage hole, a drainage pipe, a water collection tank and a geosynthetic material; the water supply tank is internally provided with a stirrer and is connected with the drainage tank through a water delivery pipe, the water delivery pipe is provided with a sewage pump, the upper part of the drainage tank is provided with a high drainage hole and a low drainage hole, the bottom of the drainage tank is provided with a drainage pipe, the water outlet of the drainage pipe extends out of the drainage tank, a water collection tank is arranged below the water outlet of the drainage pipe, the part of the drainage pipe, which is positioned inside the drainage tank, is provided with a groove, and geosynthetic materials connected with the inner wall of the drainage tank are; the length, width and height of the drainage box are respectively 500 mm, 250 mm and 750 mm; the vertical distance between the high drainage hole and the low drainage hole is 200 mm, the vertical distance between the high drainage hole and the top of the drainage box is 50 mm, and the vertical distance between the low drainage hole and the top of the geosynthetic material is 200 mm; the drain pipe is a phi 30 PVC pipe with the thickness of 2.5 mm, the length of the drain pipe outside the drain box is 100 mm, the vertical distance between the center of the drain pipe and the bottom of the drain box is 50 mm, and the slotting length of the drain pipe is 205 mm; the geosynthetic material is embedded in the drain pipe to a height greater than 20 mm.
The invention relates to a horizontal drainage performance testing device, which comprises the following steps:
test cutting: cutting the geosynthetic material into blocks with the width of 200 mm or 100 mm and the height of 250 mm, and measuring and recording the measured initial weight;
(II) test placement: embedding the geosynthetic material into the groove of the drain pipe, wherein the embedding height of the geosynthetic material is more than 20 mm, the back surface and two sides of the geosynthetic material are bonded by hot melt adhesive, and the top end is sealed by silica gel to prevent particles from entering from the top;
(III) laying a sand layer: the drainage pipe is wrapped by a coarse sand layer with the thickness of 50 mm laid on the drainage box, so that the soil body is prevented from being damaged due to seepage deformation or loss, and the water guide effect is improved;
(IV) angle adjustment: the laying angle of the inclined geosynthetic material is adjusted to 0-90 degrees, the laying angle is selected according to the actual laying condition of the geosynthetic material between the primary support and the secondary lining of the tunnel lining, the laying angle of the geosynthetic material at the side wall of the tunnel is 90 degrees, the laying angle at the arch waist is gradually reduced, and the laying angle at the arch top is approximately horizontal;
(V) filling a filter material: paving a fine sand layer with the thickness of 250 mm above the coarse sand layer, filling the fine sand layer by 50 mm layer by layer and tamping the fine sand layer;
preparing a muddy water solution: selecting soil particles with the particle size of less than 1 mm to prepare the sand content of 7kg/m3Starting a stirrer to stir the muddy water solution, and starting a sewage pump to pump the muddy water solution to a drainage tank;
(seventh) waterhead regulation: selecting a 200 mm water head or a 400 mm water head according to requirements;
(eighth) drainage test: the muddy water solution enables a filter material layer consisting of the fine sand layer and the geosynthetic material to be gradually saturated with water, after the drainage quantity of the drainage pipe is stable, the drainage is started to be collected, and the water flow and the drainage time are recorded;
(nine) data calculation: calculating according to the recorded water flow and the water discharge time to obtain the water discharge rate, the comprehensive permeability coefficient and the drainage guide benefit ratio:
1. using the formula
Figure BDA0002335407950000041
Calculating the water displacement per unit time, wherein Q is the water displacement per unit time (cm)3/s),QnIs total displacement of n times, t'nFor the nth recording end time, tnRecording the starting time for the nth time;
2. using the formula
Figure BDA0002335407950000042
Calculating a drainage rate, wherein v is the drainage rate (cm/s) and Q is the drainage per unit time (cm)3And/s), A is the seepage area, namely the contact area (cm) of the geosynthetic material with the fine sand layer and the coarse sand layer2);
3. Using the formula
Figure BDA0002335407950000043
Calculating the integrated permeability coefficient, wherein kHealdThe method comprises the following steps of (1) obtaining a comprehensive permeability coefficient (cm/s), v is a drainage rate (cm/s), i is a hydraulic gradient, L is the distance (cm) from the top of a fine sand layer to the center of the geosynthetic material, and delta h is a water head difference, namely the distance (cm) from the water surface (a high drainage hole or a low drainage hole) to the center of the geosynthetic material;
4. using the formula
Figure BDA0002335407950000044
Calculating the benefit ratio of the guide and drainage, wherein d is the benefit ratio of the guide and drainage, and k isHealdIs the combined permeability coefficient (cm/s), kSandThe permeability coefficient (cm/s) of a single sand layer is measured through a soil test (constant head permeability test).
Compared with the prior art, the method has the advantages that based on the condition that underground water in tunnel engineering is often mixed with surrounding rock fine particles and silt, the water amount is different in rainy seasons and dry seasons, and the laying angle of the geosynthetic material is different from 0-90 degrees, the actual working environment of the tunnel engineering is simulated, the horizontal drainage performance test can be carried out under different drainage conditions, and the anti-clogging drainage capability of the geosynthetic material under different conditions is obtained; the device has the advantages of simple structure, environmental protection, energy conservation, easy realization, low manufacturing and using cost, accurate and reliable test result and very good application prospect.
Description of the drawings:
fig. 1 is a schematic diagram of the principle of the main structure of the present invention.
Fig. 2 is a schematic view of a main structure of a drain tank according to the present invention.
Fig. 3 is a sectional view showing a main structure of a drain tank according to the present invention.
Fig. 4 is a side view of a main structure of a drain tank according to the present invention.
The specific implementation mode is as follows:
the invention is further described below by way of an embodiment example in conjunction with the accompanying drawings.
Example 1:
the main structure of the horizontal drainage performance testing device related to the embodiment comprises a water supply tank 1, a stirrer 2, a water delivery pipe 3, a drainage tank 4, a sewage pump 5, a high drainage hole 6, a low drainage hole 7, a drainage pipe 8, a water collection tank 9 and a geosynthetic material 10; be provided with mixer 2 in the feed water tank 1, feed water tank 1 is connected with drainage box 4 through raceway 3, be provided with sewage pump 5 on the raceway 3, high outlet 6 and low outlet 7 have been seted up on drainage box 4's upper portion, drainage box 4's bottom is provided with drain pipe 8, drainage box 4 is stretched out to drain pipe 8's delivery port 80, drainage pipe 8's delivery port 80 below is provided with header tank 9, the part that drain pipe 8 is located drainage box 4 inside is slotted, the geosynthetic material 10 with 4 inner wall connections of drainage box has been set to the embedding in the groove.
The length, width and height of the drain tank 4 according to the present embodiment are 500 mm, 250 mm and 750 mm, respectively; the vertical distance between the high drainage hole 6 and the low drainage hole 7 is 200 mm, the vertical distance between the high drainage hole 6 and the top of the drainage box 4 is 50 mm, and the vertical distance between the low drainage hole 7 and the top of the geosynthetic material 10 is 200 mm; the drain pipe 8 is a phi 30 PVC pipe with the thickness of 2.5 mm, the length of the drain pipe 8 outside the drain tank 4 is 100 mm, the vertical distance between the center of the drain pipe 8 and the bottom of the drain tank 4 is 50 mm, and the groove length of the drain pipe 8 is 205 mm; the geosynthetic material 10 is embedded into the drain pipe 8 to a height greater than 20 mm.
Example 2:
when the horizontal drainage performance testing device related to this embodiment uses the capillary permeable drainage strip as the geosynthetic material 10 for testing, firstly, the capillary permeable drainage strip is cut into a block shape with a width of 200 mm and a height of 250 mm, and then the block shape is inserted into the groove of the drainage pipe 8, and the bottom of the capillary permeable drainage strip is inserted into the grooveThe depth of the part of the embedded drain pipe 8 is 20 mm, the laying angle of the capillary permeable drain belt is 90 degrees, the top of the capillary permeable drain belt is sealed by silica gel, and the drain pipe 8 is prevented from being blocked due to the fact that fine particles enter from the top of the capillary permeable drain belt; then, sequentially paving a coarse sand layer 90 with the thickness of 50 mm and a fine sand layer 100 with the thickness of 250 mm; finally, selecting soil particles with the particle size of less than 1 mm to prepare the soil particles with the sand content of 7kg/m3The method comprises the following steps of starting the stirrer 1 to stir the muddy water solution, starting the sewage pump 5 to pump the muddy water solution to the drainage tank 4, carrying out a drainage test by adopting a 400 mm water head, collecting the muddy water solution to the drainage pipe 8 after the muddy water solution passes through a filter material layer formed by the fine sand layer 100 and the capillary permeable drainage belt, starting drainage, and after the drainage quantity is stable, starting to collect the drainage and recording the water flow and the drainage time.
Example 3:
the horizontal drainage performance testing device related to the embodiment uses the non-woven geotextile as the geosynthetic material 10 to test, and the testing process is the same as that of the embodiment 2, except that the width of the non-woven geotextile is 100 mm, and the height is 250 mm; the non-woven geotextile has no drainage groove, and the top of the non-woven geotextile does not need to be sealed by silica gel; the laying angle of the non-woven geotextile is 0 degree; drainage tests were performed using a 200 mm head.

Claims (3)

1. A horizontal drainage performance testing device is characterized in that a main structure comprises a water supply tank, a stirrer, a water delivery pipe, a drainage tank, a sewage pump, a high drainage hole, a low drainage hole, a drainage pipe, a water collection tank and a geosynthetic material; the water supply tank is internally provided with a stirrer, the water supply tank is connected with the drainage tank through a water delivery pipe, the water delivery pipe is provided with a sewage pump, the upper part of the drainage tank is provided with a high drain hole and a low drain hole, the bottom of the drainage tank is provided with a drain pipe, a water outlet of the drain pipe extends out of the drainage tank, a water collecting tank is arranged below the water outlet of the drain pipe, the drain pipe is positioned in a part of the drainage tank to be grooved, and geosynthetic materials connected with the inner wall of the drainage tank are embedded.
2. The horizontal drainage performance test device of claim 1, wherein the length, width and height of the drainage box are 500 mm, 250 mm and 750 mm, respectively; the vertical distance between the high drainage hole and the low drainage hole is 200 mm, the vertical distance between the high drainage hole and the top of the drainage box is 50 mm, and the vertical distance between the low drainage hole and the top of the geosynthetic material is 200 mm; the drain pipe is a phi 30 PVC pipe with the thickness of 2.5 mm, the length of the drain pipe outside the drain box is 100 mm, the vertical distance between the center of the drain pipe and the bottom of the drain box is 50 mm, and the slotting length of the drain pipe is 205 mm; the geosynthetic material is embedded in the drain pipe to a height greater than 20 mm.
3. A horizontal drainage performance testing device according to claims 1-2, characterized in that when testing, it comprises the following steps:
test cutting: cutting the geosynthetic material into blocks with the width of 200 mm or 100 mm and the height of 250 mm, and measuring and recording the measured initial weight;
(II) test placement: embedding the geosynthetic material into the groove of the drain pipe, wherein the embedding height of the geosynthetic material is more than 20 mm, the back surface and two sides of the geosynthetic material are bonded by hot melt adhesive, and the top end is sealed by silica gel to prevent particles from entering from the top;
(III) laying a sand layer: the drainage pipe is wrapped by a coarse sand layer with the thickness of 50 mm laid on the drainage box, so that the soil body is prevented from being damaged due to seepage deformation or loss, and the water guide effect is improved;
(IV) angle adjustment: the laying angle of the inclined geosynthetic material is adjusted to 0-90 degrees, the laying angle is selected according to the actual laying condition of the geosynthetic material between the primary support and the secondary lining of the tunnel lining, the laying angle of the geosynthetic material at the side wall of the tunnel is 90 degrees, the laying angle at the arch waist is gradually reduced, and the laying angle at the arch top is approximately horizontal;
(V) filling a filter material: paving a fine sand layer with the thickness of 250 mm above the coarse sand layer, filling the fine sand layer by 50 mm layer by layer and tamping the fine sand layer;
preparing a muddy water solution: selecting soil with grain size less than 1 mmThe sand content of the prepared particles is 7kg/m3Starting a stirrer to stir the muddy water solution, and starting a sewage pump to pump the muddy water solution to a drainage tank;
(seventh) waterhead regulation: selecting a 200 mm water head or a 400 mm water head according to requirements;
(eighth) drainage test: the muddy water solution enables a filter material layer consisting of the fine sand layer and the geosynthetic material to be gradually saturated with water, after the drainage quantity of the drainage pipe is stable, the drainage is started to be collected, and the water flow and the drainage time are recorded;
(nine) data calculation: calculating according to the recorded water flow and the water discharge time to obtain the water discharge rate, the comprehensive permeability coefficient and the drainage guide benefit ratio:
1. using the formula
Figure FDA0002335407940000021
Calculating the water displacement per unit time, wherein Q is the water displacement per unit time, QnIs total displacement of n times, t'nFor the nth recording end time, tnRecording the starting time for the nth time;
2. using the formula
Figure FDA0002335407940000022
Calculating the drainage rate, wherein v is the drainage rate, Q is the drainage quantity per unit time, and A is the seepage area, namely the contact area of the geosynthetic material with the fine sand layer and the coarse sand layer;
3. using the formula
Figure FDA0002335407940000023
Calculating the integrated permeability coefficient, wherein kHealdThe comprehensive permeability coefficient is adopted, v is the drainage rate, i is the hydraulic gradient, L is the distance from the top of the fine sand layer to the center of the geosynthetic material, and delta h is the water head difference, namely the distance from the water surface to the center of the geosynthetic material;
4. using the formula
Figure FDA0002335407940000024
Calculating the benefit ratio of the guide and the exhaust, wherein d is the guideExhaust benefit ratio, kHealdTo synthesize permeability coefficient, kSandThe permeability coefficient of a single sand layer is measured through a soil test.
CN201911354015.7A 2019-12-25 2019-12-25 Horizontal drainage performance testing device Pending CN111141652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911354015.7A CN111141652A (en) 2019-12-25 2019-12-25 Horizontal drainage performance testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911354015.7A CN111141652A (en) 2019-12-25 2019-12-25 Horizontal drainage performance testing device

Publications (1)

Publication Number Publication Date
CN111141652A true CN111141652A (en) 2020-05-12

Family

ID=70519842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911354015.7A Pending CN111141652A (en) 2019-12-25 2019-12-25 Horizontal drainage performance testing device

Country Status (1)

Country Link
CN (1) CN111141652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912758A (en) * 2020-06-30 2020-11-10 太原理工大学 Test device and method for measuring drainage capacity of ballast track bed in different dirty states
CN112697673A (en) * 2020-12-14 2021-04-23 中国水利水电科学研究院 Visual test device and method for contact seepage damage of through-embankment pressureless culvert pipe
CN114878437A (en) * 2022-06-06 2022-08-09 四川大学 Device and method for testing permeability of soft permeable pipe in tailing pond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912758A (en) * 2020-06-30 2020-11-10 太原理工大学 Test device and method for measuring drainage capacity of ballast track bed in different dirty states
CN111912758B (en) * 2020-06-30 2022-07-01 太原理工大学 Test device and method for measuring drainage capacity of ballast track bed in different dirty states
CN112697673A (en) * 2020-12-14 2021-04-23 中国水利水电科学研究院 Visual test device and method for contact seepage damage of through-embankment pressureless culvert pipe
CN112697673B (en) * 2020-12-14 2021-09-17 中国水利水电科学研究院 Visual test device and method for contact seepage damage of through-embankment pressureless culvert pipe
CN114878437A (en) * 2022-06-06 2022-08-09 四川大学 Device and method for testing permeability of soft permeable pipe in tailing pond
CN114878437B (en) * 2022-06-06 2023-04-14 四川大学 Device and method for testing permeability of soft permeable pipe in tailing pond

Similar Documents

Publication Publication Date Title
CN208999271U (en) A kind of test device of pervious concrete blocking test infiltration coefficient
CN111141652A (en) Horizontal drainage performance testing device
CN104297132B (en) A kind of experimental rig for testing multilayer geotextiles vertical permeability coefficient
CN101413261A (en) Double-layer low-position vacuum preload consolidation device and soft soil foundation reinforcing method
CN106840087A (en) For the settling column test instrument and test method of pore pressure distribution measuring
CN109269959A (en) A kind of large size water level controllable type soil permeability coefficient measurement device and measuring method
CN212568764U (en) Induced grouting experimental model for saturated fine sand layer
CN201305846Y (en) Double-layer low- order vacuum prepressing reinforcing device
CN110904915A (en) Reservoir engineering rock-soil body water permeation and seepage prevention design method
CN110487699A (en) A kind of experimental rig and test method of pervious concrete infiltration coefficient
CN212459324U (en) Coarse sand horizontal seepage model box
CN105717023A (en) Water permeable structure performance detecting instrument and method
CN211292488U (en) Horizontal drainage performance testing device
CN111175477A (en) Saturated fine sand layer induced grouting experimental model and experimental method
CN111504880A (en) Comprehensive testing device and method for horizontal drainage performance
CN109930632B (en) Basement groundwater self-balancing anti-floating system based on bedrock shallow buried slope area
CN107044131A (en) A kind of anti-seepage method of deep covering layer
CN109612538B (en) A kind of closed drainage amount test method
CN101819105B (en) Drainage test system by low-path embankment and method thereof
CN206540536U (en) The rapidly solidified weak soil experimental rig of low Low Level vacuum method
NL2028968B1 (en) Anti-seepage soft pit for purifying sewage using mud-mixed clay in karst mountain areas and construction method thereof
CN110029626A (en) A kind of bank revetment foundation consolidation process technology in soft formation side slope
CN201707328U (en) Low-path-embankment waterproof and drainage test device
CN205581667U (en) Accurate controlling means of trial zone ground water level
CN112523272B (en) Anti-floating blind ditch for strongly weathered rock stratum and construction method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination