CN111127660A - 一种空间站太阳帆板驱动控制系统及方法 - Google Patents

一种空间站太阳帆板驱动控制系统及方法 Download PDF

Info

Publication number
CN111127660A
CN111127660A CN201911106872.5A CN201911106872A CN111127660A CN 111127660 A CN111127660 A CN 111127660A CN 201911106872 A CN201911106872 A CN 201911106872A CN 111127660 A CN111127660 A CN 111127660A
Authority
CN
China
Prior art keywords
solar
solar panel
driving
signal
space station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911106872.5A
Other languages
English (en)
Other versions
CN111127660B (zh
Inventor
吴鹏飞
赵万良
王有波
丁承华
付培华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Control Technology Institute
Original Assignee
Shanghai Aerospace Control Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Control Technology Institute filed Critical Shanghai Aerospace Control Technology Institute
Priority to CN201911106872.5A priority Critical patent/CN111127660B/zh
Publication of CN111127660A publication Critical patent/CN111127660A/zh
Application granted granted Critical
Publication of CN111127660B publication Critical patent/CN111127660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/10Control of position or direction without using feedback
    • G05D3/105Solar tracker
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种空间站太阳帆板驱动控制系统,包含:驱动控制器,信号连接星载计算机,根据星载计算机发送的第一转角指令信号生成对应的第一PWM信号;太阳帆板驱动电机,连接设置在所述驱动控制器与太阳帆板的传动机构之间,根据所述第一PWM信号驱动所述传动机构,实现太阳帆板对日定向;AR实景辅助系统,信号连接所述驱动控制器,包含预置的太阳帆板驱动平台AR模型;所述太阳帆板驱动平台AR模型根据采集的太阳帆板真实场景图像、太阳矢量信息和空间站当前姿态信息生成太阳帆板虚拟场景图像,宇航员根据所述太阳帆板虚拟场景图像驱动太阳帆板对日定向。本发明还提供一种空间站太阳帆板驱动控制方法。

Description

一种空间站太阳帆板驱动控制系统及方法
技术领域
本发明涉及航天控制技术领域,尤其涉及一种空间站太阳帆板驱动控制系统及方法。
背景技术
空间站实验舱的太阳帆板是空间站能源的最主要来源,太阳帆板需要实时追踪太阳,保证对日定向。太阳帆板的发电效率取决于太阳帆板的驱动控制系统能否正常工作。太阳帆板设置有传动机构,通过驱动控制器驱动所述传动机构实现太阳帆板对日定向。
目前我国空间站实验舱太阳帆板的驱动控制器采用了CPU+FPGA的设计架构。驱动控制器的CPU负责运动规划算法,其根据星载计算机提供的转角指令信号通过预设的运动算法,计算得到太阳帆板转角角度码,并传给FPGA。FPGA完成电机驱动任务,其根据所述太阳帆板转角角度码进行位置环-速度环-电流环的闭环算法计算,生成对应的PWM信号来驱动永磁同步电机。永磁同步电机驱动太阳帆板的传动机构,带动太阳帆板对日定向。由于空间站的设计寿命长达数十年,当CPU和FPGA之间出现通信异常或CPU出现故障时,FPGA将无法正常接收CPU发送的太阳帆板转角角度码。此时驱动控制器无法正常工作,太阳帆板不能进行对日定向,空间站内的能源提供得不到保证。
发明内容
本发明的目的是提供一种空间站太阳帆板驱动控制系统及方法,通过采用AR实景辅助系统,在太阳帆板驱动控制器的CPU出现故障时,仍能够实现驱动太阳帆板对日定向。
为了达到上述目的,本发明提供一种空间站太阳帆板驱动控制系统,包含:
驱动控制器,信号连接星载计算机,根据星载计算机发送的第一转角指令信号生成对应的第一PWM信号;
太阳帆板驱动电机,连接设置在所述驱动控制器与太阳帆板的传动机构之间,根据所述第一PWM信号驱动所述传动机构,实现太阳帆板对日定向;
AR实景辅助系统,信号连接所述驱动控制器,包含预置的太阳帆板驱动平台AR模型;所述太阳帆板驱动平台AR模型根据采集的太阳帆板真实场景图像、太阳矢量信息和空间站当前姿态信息生成太阳帆板虚拟场景图像;宇航员根据所述太阳帆板虚拟场景图像驱动太阳帆板对日定向。
所述AR实景辅助系统包含:信号采集模块、太阳帆板驱动平台AR模型、显示模块;
所述信号采集模块包含:
设置在太空舱外的摄像头,用于获取太阳帆板真实场景图像;
设置在太阳帆板上的太阳敏感器,用于获取太阳矢量信息;
设置在空间站的星敏感器、陀螺,用于获取空间站当前姿态信息;
所述太阳帆板驱动平台AR模型信号连接所述摄像头、太阳敏感器、星敏感器、陀螺,根据所述太阳帆板真实场景图像、太阳矢量信息、空间站当前姿态信息构建太阳帆板虚拟场景图像;
所述显示模块设置在太空舱内,信号连接太阳帆板驱动平台AR模型,用于可视化的显示所述太阳帆板真实场景图像和太阳帆板虚拟场景图像。
所述AR实景辅助系统还包含:固定设置在太空舱内的单车、传感器、微处理器;
所述单车信号连接所述太阳帆板驱动平台AR模型;太阳帆板驱动平台AR模型根据宇航员骑行单车的圈数,改变太阳帆板虚拟场景图像中太阳帆板的姿态;宇航员观察太阳帆板虚拟场景图像中的太阳帆板到位后,停止骑行单车;
所述传感器检测宇航员骑行单车的总圈数;
所述微处理器信号连接所述传感器,根据所述总圈数生成第二转角指令信号。
所述驱动控制器包含CPU;所述CPU包含依序连接的指令解析模块、控制模块、第一并行总线通信模块;
所述指令解析模块信号连接星载计算机,接收星载计算机发送的第一转角指令信号,并发送给所述控制模块;
控制模块通过预设的运动算法,根据所述第一转角指令信号生成对应的太阳帆板转角角度码,并发送给所述第一并行总线通信模块。
所述驱动控制器还包含FPGA;所述FPGA包含总线通信模块、第二并行总线通信模块、电机闭环控制模块、驱动信号生成模块;
所述第二并行总线通信模块信号连接所述第一并行总线通信模块,接收所述太阳帆板转角角度码;
所述总线通信模块信号连接所述微处理器,接收所述第二转角指令信号;
所述电机闭环控制模块信号连接所述第二并行总线通信模块、总线通信模块,根据所述太阳帆板转角角度码、第二转角指令信号生成对应的第一驱动指令信号、第二驱动指令信号;
所述驱动信号生成模块信号连接电机闭环控制模块,生成与第一驱动指令信号、第二驱动指令信号对应的第一PWM信号、第二PWM信号。
所述太阳帆板驱动电机包含电性连接的驱动电路和永磁同步电机;所述驱动电路信号连接所述驱动信号生成模块,根据接收的所述第一PWM信号、第二PWM信号驱动永磁同步电机;所述永磁同步电机连接太阳帆板的传动机构,用于驱动所述传动机构,实现太阳帆板对日定向。
所述显示模块为液晶显示屏。
一种空间站太阳帆板驱动控制方法,采用本发明所述的空间站太阳帆板驱动控制系统实现的,包含步骤:
S1、CPU接收星载计算机发送的第一转角指令信号生成太阳帆板转角角度码并发送给FPGA;
S2、FPGA根据所述太阳帆板转角角度码生成对应的第一PWM信号驱动太阳帆板驱动电机,实现太阳帆板对日定向;若超过设定的时长,FPGA没有接收到CPU发送的太阳帆板转角角度码,进入S3;
S3、AR实景辅助系统的太阳帆板驱动平台AR模型根据其信号采集模块采集的太阳帆板真实场景图像、太阳矢量信息、空间站当前姿态信息生成太阳帆板虚拟场景图像;显示屏可视化的显示所述太阳帆板虚拟场景图像;
S4、宇航员骑行单车,太阳帆板驱动平台AR模型根据宇航员骑行单车的圈数,改变所述太阳帆板虚拟场景图像中太阳帆板的姿态;宇航员通过显示模块观察太阳帆板虚拟场景图像的太阳帆板到位后,停止骑行单车;
S5、传感器检测宇航员骑行单车的总圈数r并发送给微处理器;微处理器根据所述总圈数r计算得到太阳帆板实际需要转动的角度θ=r/n,n为预设的转换系数;微处理器生成与θ对应的第二转角指令信号并发送给FPGA;
S6、FPGA生成与第二转角指令信号对应的第二PWM信号,驱动太阳帆板驱动电机,实现太阳帆板对日定向。
与现有技术相比,本发明的优点在于:
1)本发明的空间站太阳帆板驱动控制系统在驱动控制器的CPU与FPGA之间通讯异常或CPU出现故障时,仍可以通过AR实景辅助系统生成太阳帆板实际需要转动的角度,FPGA根据该角度生成驱动信号来驱动太阳帆板驱动电机,由太阳帆板驱动电机驱动太阳帆板的传动机构,实现太阳帆板对日定向。保证了太阳帆板对日定向的可靠性,有效保障了空间站内的能源供应;
2)本发明通过骑行单车的方式结合AR实景辅助系统实现对日定向,操作方便,系统结构简单,太阳帆板对日定向准确,采用的单车是空间站内配备的供宇航员锻炼的设备,无需增加额外的大型机械装置。
附图说明
为了更清楚地说明本发明技术方案,下面将对描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一个实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图:
图1为本发明的空间站太阳帆板驱动控制系统结构示意图;
图2为本发明的AR实景辅助系统结构示意图;
图3为本发明的空间站太阳帆板驱动控制方法流程图;
图中:1、AR实景辅助系统;11、摄像头;12、太阳敏感器;13、星敏感器;14、太阳帆板驱动平台AR模型;15、显示模块;16、单车;17、传感器;18、微处理器;19、陀螺
2、驱动控制器;21、CPU;211、指令解析模块;212、控制模块;213、第一并行总线通信模块;22、FPGA;221、第二并行总线通信模块;222、电机闭环控制模块;223、驱动信号生成模块;224、总线通信模块;
3、太阳帆板驱动电机;31、驱动电路;32、永磁同步电机;
4、传动机构;5、太阳帆板;6、星载计算机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供一种空间站太阳帆板驱动控制系统,包含:驱动控制器2、太阳帆板驱动电机3、AR实景辅助系统1。
如图2所示,所述AR实景辅助系统1包含:信号采集模块、太阳帆板驱动平台AR模型14、显示模块15,固定设置在太空舱内的单车16,传感器17,微处理器18。
所述信号采集模块包含:
设置在太空舱外的摄像头11,用于获取太阳帆板真实场景图像;
设置在太阳帆板5上的太阳敏感器12,用于获取太阳矢量信息;
设置在空间站的星敏感器13和陀螺19,用于获取空间站当前姿态信息;
所述太阳帆板驱动平台AR模型14信号连接所述摄像头11、太阳敏感器12、星敏感器13和陀螺19,根据所述太阳帆板真实场景图像、太阳矢量信息、空间站当前姿态信息构建太阳帆板虚拟场景图像;
所述显示模块15设置在太空舱内,信号连接太阳帆板驱动平台AR模型14,用于可视化的显示所述太阳帆板真实场景图像和太阳帆板虚拟场景图像。在本发明的实施例中,所述显示模块15为液晶显示屏。
所述单车16信号连接所述太阳帆板驱动平台AR模型14;太阳帆板驱动平台AR模型14根据宇航员骑行单车16的圈数,改变太阳帆板虚拟场景图像中太阳帆板的姿态;宇航员观察太阳帆板虚拟场景图像中的太阳帆板到位后,停止骑行单车16;
所述传感器17检测宇航员骑行单车16的总圈数;
所述微处理器18信号连接所述传感器17,根据所述总圈数生成第二转角指令信号。
如图1所示,所述驱动控制器2信号连接星载计算机和AR实景辅助系统。驱动控制器2包含CPU21和FPGA22。
所述CPU21包含依序连接的指令解析模块211、控制模块212、第一并行总线通信模块213。
所述指令解析模块211信号连接星载计算机,接收星载计算机发送的第一转角指令信号,并发送给所述控制模块212。控制模块212通过预设的运动算法,根据所述第一转角指令信号生成对应的太阳帆板转角角度码,并发送给所述第一并行总线通信模块213。
所述FPGA22包含总线通信模块224、第二并行总线通信模块221、电机闭环控制模块222、驱动信号生成模块223。所述第二并行总线通信模块221信号连接所述第一并行总线通信模块213,接收所述太阳帆板转角角度码。所述总线通信模块224信号连接所述微处理器18,接收所述第二转角指令信号。在本发明的实施例中,总线通信模块224通过1553B总线通信接口与微处理器18通信。
所述电机闭环控制模块222信号连接所述第二并行总线通信模块221、总线通信模块224,根据所述太阳帆板转角角度码、第二转角指令信号生成对应的第一驱动指令信号、第二驱动指令信号。
所述驱动信号生成模块223信号连接电机闭环控制模块222,生成与第一驱动指令信号、第二驱动指令信号对应的第一PWM信号、第二PWM信号。
所述太阳帆板驱动电机3包含电性连接的驱动电路31和永磁同步电机32。所述驱动电路31信号连接所述驱动信号生成模块223,根据接收的所述第一PWM信号、第二PWM信号驱动永磁同步电机32。所述永磁同步电机32连接太阳帆板的传动机构4,用于驱动所述传动机构4,实现太阳帆板5对日定向。
一种空间站太阳帆板驱动控制方法,采用本发明所述的空间站太阳帆板驱动控制系统实现的,如图3所示,包含步骤:
S1、CPU21接收星载计算机发送的第一转角指令信号生成太阳帆板转角角度码并发送给FPGA22;
S2、FPGA22根据所述太阳帆板转角角度码生成对应的第一PWM信号驱动太阳帆板驱动电机3,实现太阳帆板5对日定向;优选的,AR实景辅助系统1的摄像头11采集太阳帆板真实场景图像,并通过显示屏显示采集的太阳帆板真实场景图像;
若超过设定的时长,FPGA22没有接收到CPU21发送的太阳帆板转角角度码,便认为CPU出现故障,进入S3;
S3、AR实景辅助系统1的太阳帆板驱动平台AR模型14根据其信号采集模块采集的太阳帆板真实场景图像、太阳矢量信息、空间站当前姿态信息生成太阳帆板虚拟场景图像;显示屏可视化的显示所述太阳帆板虚拟场景图像;
S4、宇航员骑行单车16,太阳帆板驱动平台AR模型14根据宇航员骑行单车16的圈数,改变所述太阳帆板虚拟场景图像中太阳帆板的姿态;宇航员通过显示模块15观察太阳帆板虚拟场景图像的太阳帆板到位后,停止骑行单车16;
S5、传感器17检测宇航员骑行单车16的总圈数r并发送给微处理器18;微处理器18根据所述总圈数r计算得到太阳帆板实际需要转动的角度θ=r/n,n为预设的转换系数;微处理器18生成与θ对应的第二转角指令信号并发送给FPGA22;
S6、FPGA22生成与第二转角指令信号对应的第二PWM信号,驱动太阳帆板驱动电机3,实现太阳帆板5对日定向。
与现有技术相比,本发明的优点在于:
1)本发明的空间站太阳帆板驱动控制系统在驱动控制器2的CPU21与FPGA22之间通讯异常或CPU21出现故障时,仍可以通过AR实景辅助系统1生成太阳帆板5实际需要转动的角度,FPGA22根据该角度生成驱动信号来驱动太阳帆板驱动电机3,由太阳帆板驱动电机3驱动太阳帆板的传动机构4,实现太阳帆板5对日定向。保证了太阳帆板5对日定向的可靠性,有效保障了空间站内的能源供应;
2)本发明通过骑行单车16的方式结合AR实景辅助系统1实现对日定向,操作方便,系统结构简单,太阳帆板5对日定向准确,且无需增加额外的大型机械装置。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (8)

1.一种空间站太阳帆板驱动控制系统,其特征在于,包含:
驱动控制器,信号连接星载计算机,根据星载计算机发送的第一转角指令信号生成对应的第一PWM信号;
太阳帆板驱动电机,连接设置在所述驱动控制器与太阳帆板的传动机构之间,根据所述第一PWM信号驱动所述传动机构,实现太阳帆板对日定向;
AR实景辅助系统,信号连接所述驱动控制器,包含预置的太阳帆板驱动平台AR模型;所述太阳帆板驱动平台AR模型根据采集的太阳帆板真实场景图像、太阳矢量信息和空间站当前姿态信息生成太阳帆板虚拟场景图像;宇航员根据所述太阳帆板虚拟场景图像驱动太阳帆板对日定向。
2.如权利要求1所述的空间站太阳帆板驱动控制系统,其特征在于,所述AR实景辅助系统包含:信号采集模块、太阳帆板驱动平台AR模型、显示模块;
所述信号采集模块包含:
设置在太空舱外的摄像头,用于获取太阳帆板真实场景图像;
设置在太阳帆板上的太阳敏感器,用于获取太阳矢量信息;
设置在空间站的星敏感器和陀螺,用于获取空间站当前姿态信息;
所述太阳帆板驱动平台AR模型信号连接所述摄像头、太阳敏感器、星敏感器、陀螺,根据所述太阳帆板真实场景图像、太阳矢量信息、空间站当前姿态信息构建太阳帆板虚拟场景图像;
所述显示模块设置在太空舱内,信号连接太阳帆板驱动平台AR模型,用于可视化的显示所述太阳帆板真实场景图像、太阳帆板虚拟场景图像。
3.如权利要求2所述的空间站太阳帆板驱动控制系统,其特征在于,所述AR实景辅助系统还包含:固定设置在太空舱内的单车、传感器、微处理器;
所述单车信号连接所述太阳帆板驱动平台AR模型;太阳帆板驱动平台AR模型根据宇航员骑行单车的圈数,改变太阳帆板虚拟场景图像中太阳帆板的姿态;宇航员观察太阳帆板虚拟场景图像中的太阳帆板到位后,停止骑行单车;
所述传感器检测宇航员骑行单车的总圈数;
所述微处理器信号连接所述传感器,根据所述总圈数生成第二转角指令信号。
4.如权利要求3所述的空间站太阳帆板驱动控制系统,其特征在于,所述驱动控制器包含CPU;所述CPU包含依序连接的指令解析模块、控制模块、第一并行总线通信模块;
所述指令解析模块信号连接星载计算机,接收星载计算机发送的第一转角指令信号,并发送给所述控制模块;
控制模块通过预设的运动算法,根据所述第一转角指令信号生成对应的太阳帆板转角角度码,并发送给所述第一并行总线通信模块。
5.如权利要求4所述的空间站太阳帆板驱动控制系统,其特征在于,所述驱动控制器还包含FPGA;所述FPGA包含总线通信模块、第二并行总线通信模块、电机闭环控制模块、驱动信号生成模块;
所述第二并行总线通信模块信号连接所述第一并行总线通信模块,接收所述太阳帆板转角角度码;
所述总线通信模块信号连接所述微处理器,接收所述第二转角指令信号;
所述电机闭环控制模块信号连接所述第二并行总线通信模块、总线通信模块,根据所述太阳帆板转角角度码、第二转角指令信号生成对应的第一驱动指令信号、第二驱动指令信号;
所述驱动信号生成模块信号连接电机闭环控制模块,生成与第一驱动指令信号、第二驱动指令信号对应的第一PWM信号、第二PWM信号。
6.如权利要求5所述的空间站太阳帆板驱动控制系统,其特征在于,所述太阳帆板驱动电机包含电性连接的驱动电路和永磁同步电机;所述驱动电路信号连接所述驱动信号生成模块,根据接收的所述第一PWM信号、第二PWM信号驱动永磁同步电机;所述永磁同步电机连接太阳帆板的传动机构,用于驱动所述传动机构,实现太阳帆板对日定向。
7.如权利要求2所述的空间站太阳帆板驱动控制系统,其特征在于,所述显示模块为液晶显示屏。
8.一种空间站太阳帆板驱动控制方法,采用如权利要求1至7任一所述的空间站太阳帆板驱动控制系统实现的,其特征在于,包含步骤:
S1、CPU接收星载计算机发送的第一转角指令信号生成太阳帆板转角角度码并发送给FPGA;
S2、FPGA根据所述太阳帆板转角角度码生成对应的第一PWM信号驱动太阳帆板驱动电机,实现太阳帆板对日定向;若超过设定的时长,FPGA没有接收到CPU发送的太阳帆板转角角度码,便认为CPU出现故障,进入S3;
S3、AR实景辅助系统的太阳帆板驱动平台AR模型根据其信号采集模块采集的太阳帆板真实场景图像、太阳矢量信息、空间站当前姿态信息生成太阳帆板虚拟场景图像;显示屏可视化的显示所述太阳帆板虚拟场景图像;
S4、宇航员骑行单车,太阳帆板驱动平台AR模型根据宇航员骑行单车的圈数,改变所述太阳帆板虚拟场景图像中太阳帆板的姿态;宇航员通过显示模块观察太阳帆板虚拟场景图像的太阳帆板到位后,停止骑行单车;
S5、传感器检测宇航员骑行单车的总圈数r并发送给微处理器;微处理器根据所述总圈数r计算得到太阳帆板实际需要转动的角度θ=r/n,n为预设的转换系数;微处理器生成与θ对应的第二转角指令信号并发送给FPGA;
S6、FPGA生成与第二转角指令信号对应的第二PWM信号,驱动太阳帆板驱动电机,实现太阳帆板对日定向。
CN201911106872.5A 2019-11-13 2019-11-13 一种空间站太阳帆板驱动控制系统及方法 Active CN111127660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106872.5A CN111127660B (zh) 2019-11-13 2019-11-13 一种空间站太阳帆板驱动控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106872.5A CN111127660B (zh) 2019-11-13 2019-11-13 一种空间站太阳帆板驱动控制系统及方法

Publications (2)

Publication Number Publication Date
CN111127660A true CN111127660A (zh) 2020-05-08
CN111127660B CN111127660B (zh) 2023-07-14

Family

ID=70495601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106872.5A Active CN111127660B (zh) 2019-11-13 2019-11-13 一种空间站太阳帆板驱动控制系统及方法

Country Status (1)

Country Link
CN (1) CN111127660B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111717415A (zh) * 2020-06-22 2020-09-29 中国科学院微小卫星创新研究院 一种星座卫星太阳电池阵对日跟踪方法
CN113126594A (zh) * 2021-03-29 2021-07-16 航天科工空间工程发展有限公司 一种双自由度太阳翼驱动机构的星上自主故障诊断方法
CN113885541A (zh) * 2021-09-10 2022-01-04 北京控制工程研究所 一种提升磁洁净度的帆板驱动机构分区控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221912A (ja) * 1985-03-28 1986-10-02 Agency Of Ind Science & Technol 太陽追尾型コレクタの制御方法
RU2340518C2 (ru) * 2006-05-26 2008-12-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления положением солнечных батарей космического аппарата и система для его осуществления
CN202615647U (zh) * 2012-03-01 2012-12-19 山东交通学院 简易船舶自动操舵模拟实验平台
CN103901886A (zh) * 2012-12-28 2014-07-02 中国科学院沈阳自动化研究所 分布式农机导航控制系统通用can节点
CN104460578A (zh) * 2014-09-19 2015-03-25 燕山大学 一种基于平行控制的智能体定位控制系统及其控制方法
US20150097864A1 (en) * 2013-10-03 2015-04-09 Honda Motor Co., Ltd. System and method for dynamic in-vehicle virtual reality
CN105737842A (zh) * 2016-03-23 2016-07-06 南京航空航天大学 基于旋转调制和虚拟里程仪的车载自主导航方法
CN106970573A (zh) * 2017-05-22 2017-07-21 上海航天控制技术研究所 一种航天器太阳翼永磁同步电机驱动控制系统
CN110032059A (zh) * 2019-04-18 2019-07-19 浙江辰日新能源技术有限公司 一种模块化的通讯双冗余智能逐日控制器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221912A (ja) * 1985-03-28 1986-10-02 Agency Of Ind Science & Technol 太陽追尾型コレクタの制御方法
RU2340518C2 (ru) * 2006-05-26 2008-12-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления положением солнечных батарей космического аппарата и система для его осуществления
CN202615647U (zh) * 2012-03-01 2012-12-19 山东交通学院 简易船舶自动操舵模拟实验平台
CN103901886A (zh) * 2012-12-28 2014-07-02 中国科学院沈阳自动化研究所 分布式农机导航控制系统通用can节点
US20150097864A1 (en) * 2013-10-03 2015-04-09 Honda Motor Co., Ltd. System and method for dynamic in-vehicle virtual reality
CN104460578A (zh) * 2014-09-19 2015-03-25 燕山大学 一种基于平行控制的智能体定位控制系统及其控制方法
CN105737842A (zh) * 2016-03-23 2016-07-06 南京航空航天大学 基于旋转调制和虚拟里程仪的车载自主导航方法
CN106970573A (zh) * 2017-05-22 2017-07-21 上海航天控制技术研究所 一种航天器太阳翼永磁同步电机驱动控制系统
CN110032059A (zh) * 2019-04-18 2019-07-19 浙江辰日新能源技术有限公司 一种模块化的通讯双冗余智能逐日控制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋再男: "融合阻抗控制的虚拟现实遥操作技术研究" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111717415A (zh) * 2020-06-22 2020-09-29 中国科学院微小卫星创新研究院 一种星座卫星太阳电池阵对日跟踪方法
CN111717415B (zh) * 2020-06-22 2022-05-17 中国科学院微小卫星创新研究院 一种星座卫星太阳电池阵对日跟踪方法
CN113126594A (zh) * 2021-03-29 2021-07-16 航天科工空间工程发展有限公司 一种双自由度太阳翼驱动机构的星上自主故障诊断方法
CN113126594B (zh) * 2021-03-29 2022-09-23 航天科工空间工程发展有限公司 一种双自由度太阳翼驱动机构的星上自主故障诊断方法
CN113885541A (zh) * 2021-09-10 2022-01-04 北京控制工程研究所 一种提升磁洁净度的帆板驱动机构分区控制方法
CN113885541B (zh) * 2021-09-10 2023-07-14 北京控制工程研究所 一种提升磁洁净度的帆板驱动机构分区控制方法

Also Published As

Publication number Publication date
CN111127660B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN111127660A (zh) 一种空间站太阳帆板驱动控制系统及方法
US10906662B2 (en) Method and system for recycling motor power of a movable object
CN104058099B (zh) 一种无人机光电吊舱
CN104875890B (zh) 四旋翼飞行器
CN204119375U (zh) 旋翼无人机输电线路状态监测信息实时回传装置
CN105388913B (zh) 基于四轴飞行器的智能停车场及导航方法
KR20110022211A (ko) 지능형 무인 소형 비행체 로봇 조정 시스템
CN204832413U (zh) 一种输电线路故障排查装置及系统
CN106347693A (zh) 一种可更换式无人机微型吊舱
CN207037478U (zh) 转接板、云台及可移动设备
CN106125591A (zh) 一种无人艇水下设备自主收放系统
CN107112933B (zh) 电机控制系统和无人飞行器
CN205378129U (zh) 智能车载视频监控装置
CN101609922A (zh) 一种车载闭环直流电机自动回收控制装置及其控制方法
CN208207610U (zh) 一种基于双陀螺仪的姿态稳定装置
CN207106938U (zh) 一种有绳无人机后勤车
Kimura et al. High-Performance Visual Monitoring System For IKAROS
JP2000132773A (ja) 構内監視装置
CN104702915A (zh) 一种中置式开关柜手车接触行程视频验证辅助装置
CN108230444B (zh) 一种通用的增强型合成视景计算平台
CN201088863Y (zh) 无人驾驶模型实时模拟驾驶和远距离观察装置
CN214577522U (zh) 一种风力发电储能无人船
CN204688417U (zh) 四旋翼飞行器
CN108583888A (zh) 一种内部含有四个小无人机的大型无人机装置
CN212694289U (zh) 一种通航移动立体指挥链接控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant