CN111100161B - 用于atrp反应的磁性纳米复合材料及其制备方法 - Google Patents

用于atrp反应的磁性纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN111100161B
CN111100161B CN201911348788.4A CN201911348788A CN111100161B CN 111100161 B CN111100161 B CN 111100161B CN 201911348788 A CN201911348788 A CN 201911348788A CN 111100161 B CN111100161 B CN 111100161B
Authority
CN
China
Prior art keywords
reaction
polyamine
ethanol
particles
magnetic nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911348788.4A
Other languages
English (en)
Other versions
CN111100161A (zh
Inventor
井静云
史聪灵
吕敬民
李建
车洪磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Safety Science and Technology CASST
Original Assignee
China Academy of Safety Science and Technology CASST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Safety Science and Technology CASST filed Critical China Academy of Safety Science and Technology CASST
Priority to CN201911348788.4A priority Critical patent/CN111100161B/zh
Publication of CN111100161A publication Critical patent/CN111100161A/zh
Application granted granted Critical
Publication of CN111100161B publication Critical patent/CN111100161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种用于ATRP反应的磁性纳米复合材料及其制备方法,所述磁性纳米复合材料由磁性纳米颗粒和包覆修饰在所述磁性纳米颗粒表面的电子给体配体构成。本发明的磁性纳米复合材料既可作为ATRP反应的固体配体,又可以作为ATRP反应体系中过渡金属催化剂的固定载体,其与过渡金属离子形成络合物,反应结束后通过磁场作用可轻松将金属盐催化剂从反应体系中分离。而且利用与过渡金属离子具有更强配位作用的配体如EDTA可将金属盐催化剂置换出来,实现可重复利用的目的。

Description

用于ATRP反应的磁性纳米复合材料及其制备方法
技术领域
本发明涉及高分子化学技术领域,更具体地,涉及一种用于ATRP反应的磁性纳米复合材料及其制备方法。
背景技术
原子转移自由基聚合ATRP是近几年迅速发展的聚合方法。ATRP引发体系由卤化物引发剂、过渡金属催化剂(常见的催化剂有CuCl/CuCl2、CuBr/CuBr2和FeCl2/FeCl3等)和电子给体配体三部分组成,主要利用过渡金属的氧化还原反应进行催化抑制终止反应,在活性种与休眠种间建立可逆动态平衡,实现了对聚合反应过程控制,可合成各种分子结构可控、分子量分布窄的功能性聚合物,因此已成为高分子结构设计的一种重要手段。
但是ATRP反应过程中过渡金属催化剂的需求量较大,导致产物提纯困难,而金属盐催化剂的存在对高分子产物的纯度、色泽、结构再设计性和应用性能等都会产生很大的影响,这是该技术工业化应用的主要限制点。
目前已报道用锌粉化学还原、甲醇氯化铵沉淀、离子交换树脂吸附、氧化铝或硅胶过柱、两相催化体系等方法去除聚合物中金属盐催化剂。但这几种方法都一定程度上存在着产物收率低、环境不友好、成本高的问题,难以广泛应用。
发明内容
针对现有技术存在的问题,本发明提供一种用于ATRP反应的磁性纳米复合材料及其制备方法。
本发明提供一种用于ATRP反应的磁性纳米复合材料,由磁性纳米颗粒和包覆修饰在所述磁性纳米颗粒表面的电子给体配体构成。
所述电子给体配体是指能把电子给予所作用的中心原子或与其共享,即对正原子核有结构上亲和力而起化学反应的试剂,常见的为含氧或含氮化合物,如二芳酸-2,4-戊二醇酯、三(2-氨乙基)胺等。
本发明的磁性纳米复合材料既可作为ATRP反应的固体配体,又可以作为过渡金属催化剂的固定载体,使过渡金属催化剂可以固定在其上,从而容易地将过渡金属催化剂去除,有利于ATRP反应的推广应用。
进一步地,所述磁性纳米颗粒为四氧化三铁颗粒,粒径为10~200nm。
进一步地,所述电子给体配体的包覆量为0.1~5%,进一步优选为0.1~1%。
本发明还提供上述磁性纳米复合材料的制备方法,包括先向所述磁性纳米颗粒的分散液中加入环氧硅烷进行表面改性,然后加入多胺进行固化反应,再加入单醛类物质进行席夫碱反应。
其中,所述磁性纳米颗粒的分散液由将磁性纳米颗粒分散到溶剂中获得,所用溶剂可以为乙醇、乙腈等常规溶剂。
进一步地,所述表面改性的方法可以为表面接枝法、聚合法或硅烷配体交换方法,优选为硅烷配体交换方法。
进一步地,所述环氧硅烷选自(3-环氧丙氧基丙基)三乙氧基硅烷、(3-环氧丙氧基丙基)甲基二甲基硅烷、(3-环氧丙氧基丙基)甲基二乙氧基硅烷、(3-环氧丙氧基丙基)三甲氧基硅烷、(3-环氧丙氧基丙基)二甲基乙氧基硅烷、(3-环氧乙基甲氧基丙基)三甲氧基硅烷中的一种或多种;所述环氧硅烷与所述磁性纳米颗粒的质量比为(5~20):1。
本发明环氧硅烷的加入量太多,则会导致纳米颗粒间的团聚,大大降低颗粒的比表面积,若加入量太少,则在磁性纳米颗粒表面引入的环氧官能团过少,会降低颗粒对过渡金属离子的螯合能力,所以控制在上述范围是较好的。
进一步地,所述多胺选自三(2-氨乙基)胺、N,N-二乙基乙二胺、N,N'-二甲基-1,3-丙二胺、N,N,N'-三甲基-1,3-丙二胺、1,1,4,7,7-五甲基二亚乙基三胺、二亚乙基三胺、N,N',N”-三甲基二乙烯三胺、双(六甲撑)三胺、三亚乙基四胺、1,1,4,7,10,10-六甲基三亚乙基四胺、三乙烯四胺、四(乙二基)五胺、四乙烯五胺、五乙烯六胺、支化聚乙烯亚胺中的一种或多种;所述多胺与所述环氧硅烷的摩尔比为(2~5):1。
本发明将多胺的加入量控制在上述范围内,可保证磁性纳米颗粒单分散且颗粒表面环氧官能团近100%固化。
进一步地,所述单醛类物质选自甲醛、乙醛、三甲基乙醛、丙醛、3,3,3-三氟丙醛、丁醛、2-乙基丁醛、3,3-二甲基丁醛、异丁醛、2-甲基丁醛、异戊醛、2-甲基正戊醛、正戊醛、新戊醛、4-甲基戊醛、2-丙基戊醛、特戊醛中的一种或多种;所述单醛类物质与所述多胺中氨基的摩尔比为(2~5):1。
在本发明一个优选实施方式中,所述制备方法具体包括以下步骤:
(1)将四氧化三铁颗粒分散于乙醇中,加入环氧硅烷和催化剂,进行表面环氧改性;所述环氧硅烷为(3-环氧丙氧基丙基)三乙氧基硅烷、(3-环氧丙氧基丙基)三甲氧基硅烷或(3-环氧乙基甲氧基丙基)三甲氧基硅烷,所述环氧硅烷与所述四氧化三铁颗粒的质量比为(5~10):1;
(2)将步骤(1)所得改性后的颗粒分散于乙醇中,加入多胺进行固化反应;所述多胺为三(2-氨乙基)胺、1,1,4,7,7-五甲基二亚乙基三胺、二亚乙基三胺或三亚乙基四胺,所述多胺与所述环氧硅烷的摩尔比为2:1;
(3)将步骤(2)所得颗粒分散于乙醇中,加入单醛类物质和酸性催化剂进行席夫碱反应,反应后加入硼氢化钠进行还原;所述单醛类物质为甲醛、乙醛或丙醛,所述单醛类物质与所述多胺中氨基的摩尔比为(2~3):1。
其中,四氧化三铁颗粒可市购获得,或者通过溶剂热法、共沉淀法或高温分解法进行制备,粒径为10~200nm。
步骤(1)中催化剂为酸性催化剂,包括醋酸、稀盐酸、稀硫酸、稀硝酸等,加入量以反应溶剂的体积计为0.01~0.05%,优选为0.01%;表面环氧改性的反应条件为50~70℃下反应8~12h。
步骤(2)中固化反应的条件为50~70℃下反应8~12h。
步骤(3)中酸性催化剂为醋酸、稀盐酸、稀硫酸、稀硝酸中的一种或多种,加入量以反应溶剂的体积计为1~5%,优选为1%;硼氢化钠的加入量以加入的多胺中氨基官能团的摩尔数计为(1.2~2):1,优选1.5:1;席夫碱反应的条件为20~50℃下反应1~2h,然后冷却至-10~0℃,再加入硼氢化钠,反应24~48h。
本发明制备方法各反应步骤中的分散方式可为机械搅拌、超声分散或摇床震荡分散,优选为摇床震荡方式。
本发明还提供上述磁性纳米复合材料在ATRP反应中作为固体配体和过渡金属催化剂固体载体的应用。
本发明的磁性纳米复合材料既可作为ATRP反应的固体配体,又可以作为过渡金属催化剂的固定载体,其与过渡金属离子形成络合物,反应结束后通过磁场作用可轻松将金属盐催化剂从反应体系中分离。而且利用与过渡金属离子具有更强配位作用的配体如EDTA可将金属盐催化剂置换出来,实现可重复利用的目的。
附图说明
图1为本发明实施例1中磁性纳米复合材料的扫描电子显微镜SEM图;
图2为本发明实施例1中磁性纳米复合材料的制备示意图;
图3为本发明实施例2中磁性纳米复合材料的透射电子显微镜TEM图和磁化饱和强度VSM图;
图4为本发明实施例3中磁性纳米复合材料用于ATRP后处理过程中的铜盐吸附效果;
图5为本发明实施例3中磁性纳米复合材料用于ATRP配体引发对甲基苯乙烯单体聚合时单体转化率随时间变化图以及该颗粒重复利用情况。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。
实施例1
本实施例提供一种磁性纳米复合材料,由Fe3O4纳米颗粒和包覆修饰在Fe3O4纳米颗粒表面的电子给体配体构成,颗粒表面配体结构式如下:
Figure GDA0002682504910000051
其中Fe3O4纳米颗粒的粒径约为150nm,电子给体配体的包覆量为0.2%。其扫描电镜图如图1所示。
本实施例还提供上述磁性纳米复合材料的制备方法,如图2所示,具体包括以下步骤:
(1)Fe3O4纳米颗粒的合成
在70mL乙二醇中依次加入2.36g三氯化铁(FeCl3·6H2O)、1.75g聚乙二醇和3.14g乙酸钠,超声溶解后,将黄色粘稠液体转移到水热釜中,200℃烘箱中反应8小时。产物用磁铁分离并分别用水和乙醇洗涤3次后,分散到稀盐酸溶液中,超声10分钟,最终分散至乙醇溶液中备用。尺寸为150nm左右。
(2)环氧修饰Fe3O4纳米颗粒的合成
将0.1gFe3O4纳米颗粒分散于100mL乙醇中,加入0.5mL(3-环氧丙氧基丙基)三甲氧基硅烷和5μL醋酸,60℃机械搅拌反应12h。乙醇洗涤、磁铁分离得到表面环氧改性的颗粒,标记为Fe3O4@epoxy。
(3)乙基胺修饰Fe3O4纳米颗粒的合成
取50mg Fe3O4@epoxy纳米颗粒分散于50mL乙醇中,加入两倍量的三(2-氨乙基)胺,60℃下反应12h。乙醇洗涤、磁铁分离得到表面乙基胺修饰的颗粒,标记为Fe3O4@TREN。
(4)目标产物的合成
取50mgFe3O4@TREN纳米颗粒和催化量的醋酸分散于150mL乙腈中,加入0.9mL38%甲醛水溶液,室温反应2h。随后冷却至0℃,慢加0.5g硼氢化钠,反应0.5h后置于35℃摇床震荡24h。乙醇洗涤、磁铁分离后烘干即得。
实施例2
本实施例提供一种磁性纳米复合材料,由Fe3O4纳米颗粒和包覆修饰在Fe3O4纳米颗粒表面的电子给体配体构成,颗粒表面配体结构式如下:
Figure GDA0002682504910000061
其中Fe3O4纳米颗粒的粒径约为10nm,电子给体配体的包覆量为1%。
本实施例还提供上述磁性纳米复合材料的制备方法,具体包括以下步骤:
(1)Fe3O4纳米颗粒的合成
100mL油酸钠水溶液(0.2M)与100mL无水三氯化铁水溶液(0.2M)混合,充分搅拌产生红褐色沉淀。过滤、去离子水冲洗后置于真空烘箱内干燥。干燥后的蜡状物称重,溶于其质量20倍体积的乙醇中,加入与其质量相同体积的油酸混合均匀,转移至聚四氟乙烯高压反应釜,180℃反应5h。降至室温后,无水乙醇洗涤、磁铁分离纯化后,分散在甲苯中备用。尺寸为10nm左右。
(2)环氧修饰Fe3O4纳米颗粒的合成
60mgFe3O4纳米颗粒分散于60mL乙醇,向其中加入1mL(3-环氧丙氧基丙基)三甲氧基硅烷和3μL醋酸,60℃机械搅拌反应12h。乙醇洗涤、磁铁分离得到表面环氧改性的颗粒,标记为Fe3O4@epoxy。
(3)乙基胺修饰Fe3O4纳米颗粒的合成
50mgFe3O4@epoxy纳米颗粒分散于50mL乙醇中,加入两倍量的三(2-氨乙基)胺,60℃下反应12h。乙醇洗涤、磁铁分离得到表面乙基胺修饰的颗粒,标记为Fe3O4@TREN。
(4)目标产物的合成
取50mg Fe3O4@TREN纳米颗粒和催化量的醋酸分散于100mL乙腈中,加入3mL38%甲醛水溶液,室温反应2h。随后冷却至0℃,慢加1.4g硼氢化钠,反应0.5h后置于35℃摇床震荡24h。乙醇洗涤、磁铁分离后烘干即得。
本实施例所得磁性纳米复合材料的透射电子显微镜TEM图和磁化饱和强度VSM图如图3所示,从图中可以看出,最终制备的纳米颗粒分散良好,未出现团聚现象,且具有优异的磁响应性,常温下磁化饱和强度为45.2emu/g。
实施例3
本实施例提供一种磁性纳米复合材料,由Fe3O4纳米颗粒和包覆修饰在Fe3O4纳米颗粒表面的电子给体配体构成,颗粒表面配体结构式如下:
Figure GDA0002682504910000081
其中Fe3O4纳米颗粒的粒径约为150nm,电子给体配体的包覆量为0.5%。
本实施例还提供上述磁性纳米复合材料的制备方法,具体包括以下步骤:
(1)Fe3O4纳米颗粒的合成
在70mL乙二醇中依次加入2.36g三氯化铁(FeCl3·6H2O)、1.75g聚乙二醇和3.14g乙酸钠,超声溶解后,将黄色粘稠液体转移到水热釜中,200℃烘箱中反应8小时。产物用磁铁分离并分别用水和乙醇洗涤3次后,分散到稀盐酸溶液中,超声10分钟,最终分散至乙醇溶液中备用。尺寸为150nm左右。
(2)环氧修饰Fe3O4纳米颗粒的合成
0.1g Fe3O4纳米颗粒乙醇分散液中加入1.5mL(3-环氧丙氧基丙基)三甲氧基硅烷和5μL醋酸,60℃机械搅拌反应12h。乙醇洗涤、磁铁分离得到表面环氧改性的颗粒,标记为Fe3O4@epoxy。
(3)乙基胺修饰Fe3O4纳米颗粒的合成
取50mg Fe3O4@epoxy纳米颗粒分散于乙醇中,加入两倍量的二亚乙基三胺,60℃下反应12h。乙醇洗涤、磁铁分离得到表面乙基胺修饰的颗粒,标记为Fe3O4@DETA。
(4)目标产物的合成
取50mg Fe3O4@TREN纳米颗粒和催化量的醋酸分散于100mL乙腈中,加入2mL 38%甲醛水溶液,室温反应2h。随后冷却至0℃,慢加1g硼氢化钠,反应0.5h后置于35℃摇床震荡24h。乙醇洗涤、磁铁分离后烘干即得。
应用例
将实施例3所得磁性纳米复合材料用于ATRP反应的配体及后处理过程中反应体系的铜盐吸附,结果如图4所示,从图中可以看出,仅在磁场作用下就可利用磁性颗粒将ATRP反应体系中基本全部的铜盐从体系中分离出来,反应溶液由浅蓝色变为无色,体系中残留的铜离子含量可通过电感耦合等离子体质谱仪测定,具体数值为8.13ng/g,经计算为0.032mg,残余率为1.6%,最终制备聚合物纯度极高,且该方法不存在传统过氧化铝柱方法聚合物在层析柱中滞留引起的产率低、溶剂浪费;离子交换树脂方法造成成本高等的问题,具有环保、高效、成本低的优点。
利用该磁性纳米颗粒作为ATRP反应的固体配体引发单体聚合,结果如图5所示,以制备的磁性复合纳米颗粒为配体,2-溴异丁酰溴BIBB为引发剂,溴化亚铜CuBr为过渡金属,甲苯为溶剂可实现对甲基苯乙烯单体的ATRP聚合,单体转化率和时间关系如图5左侧图所示。反应结束后利用磁场作用可将螯合铜离子的磁性纳米颗粒收集,收集率接近100%(如图4最右侧聚合管所示,磁铁收集颗粒后溶液无色,无明显颗粒存在)。通过EDTA等配体将铜盐从制备的纳米颗粒上脱附后,该颗粒还可重复利用,具体表现为作为ATRP配体用于单体的活性聚合,且重复引发三次后,聚合活性基本保持不变,如图5右侧图所示,单体转化率基本不变,说明该颗粒重复利用率高。
本发明实施例所得磁性纳米复合材料还可用于吸附水中的重金属离子,包括Cr3+离子等,具体例如实施例1所得磁性纳米复合材料对Cr3+离子的吸附量可达320mg/g。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (5)

1.一种用于ATRP反应的磁性纳米复合材料的制备方法,其特征在于,所述磁性纳米复合材料由磁性纳米颗粒和包覆修饰在所述磁性纳米颗粒表面的电子给体配体构成;
所述磁性纳米颗粒为四氧化三铁颗粒,粒径为10~200nm;
所述电子给体配体的包覆量为0.1~5%,其结构式如下:
Figure FDA0002682504900000011
所述制备方法包括:
(1)将四氧化三铁颗粒分散于乙醇中,加入环氧硅烷和催化剂,进行表面环氧改性;所述催化剂为醋酸;
(2)将步骤(1)所得改性后的颗粒分散于乙醇中,加入多胺进行固化反应;
(3)将步骤(2)所得颗粒分散于乙醇中,加入单醛类物质和酸性催化剂进行席夫碱反应,反应后加入硼氢化钠进行还原。
2.根据权利要求1所述的制备方法,其特征在于,所述环氧硅烷为(3-环氧丙氧基丙基)三甲氧基硅烷;所述环氧硅烷与所述磁性纳米颗粒的质量比为(5~20):1。
3.根据权利要求1所述的制备方法,其特征在于,所述多胺为三(2-氨乙基)胺或二亚乙基三胺;所述多胺与所述环氧硅烷的摩尔比为(2~5):1。
4.根据权利要求1所述的制备方法,其特征在于,所述单醛类物质为甲醛;所述单醛类物质与所述多胺中氨基的摩尔比为(2~5):1。
5.根据权利要求1所述的制备方法,其特征在于,具体包括以下步骤:
(1)将四氧化三铁颗粒分散于乙醇中,加入环氧硅烷和催化剂,进行表面环氧改性;所述环氧硅烷为(3-环氧丙氧基丙基)三甲氧基硅烷,所述环氧硅烷与所述四氧化三铁颗粒的质量比为(5~10):1;
(2)将步骤(1)所得改性后的颗粒分散于乙醇中,加入多胺进行固化反应;所述多胺为三(2-氨乙基)胺或二亚乙基三胺,所述多胺与所述环氧硅烷的摩尔比为2:1;
(3)将步骤(2)所得颗粒分散于乙醇中,加入单醛类物质和酸性催化剂进行席夫碱反应,反应后加入硼氢化钠进行还原;所述单醛类物质为甲醛,所述单醛类物质与所述多胺中氨基的摩尔比为(2~3):1。
CN201911348788.4A 2019-12-24 2019-12-24 用于atrp反应的磁性纳米复合材料及其制备方法 Active CN111100161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911348788.4A CN111100161B (zh) 2019-12-24 2019-12-24 用于atrp反应的磁性纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911348788.4A CN111100161B (zh) 2019-12-24 2019-12-24 用于atrp反应的磁性纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111100161A CN111100161A (zh) 2020-05-05
CN111100161B true CN111100161B (zh) 2020-11-17

Family

ID=70423756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911348788.4A Active CN111100161B (zh) 2019-12-24 2019-12-24 用于atrp反应的磁性纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111100161B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719407A (zh) * 2010-01-25 2010-06-02 上海交通大学 水基生物磁流体的制备方法
CN102327622B (zh) * 2011-09-08 2014-08-06 上海交通大学 一种利用介孔二氧化硅纳米颗粒装载siRNA的方法

Also Published As

Publication number Publication date
CN111100161A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
Kang et al. β-Cyclodextrin-modified hybrid magnetic nanoparticles for catalysis and adsorption
Ma et al. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption
Zhang et al. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein
WO2009081700A1 (ja) ポリマー被覆無機物微粒子とその製造方法
Fischer et al. Metal oxide/polymer hybrid nanoparticles with versatile functionality prepared by controlled surface crystallization
Cao et al. Facile synthesis of a Ni (ii)-immobilized core–shell magnetic nanocomposite as an efficient affinity adsorbent for the depletion of abundant proteins from bovine blood
CN101599335B (zh) 一种耐氧化二甲基硅油基磁性液体及其制备方法
CN110215900B (zh) 一种金属螯合磁性微珠及其制备方法
Pourjavadi et al. Copper-loaded polymeric magnetic nanocatalysts as retrievable and robust heterogeneous catalysts for click reactions
JPH0510808B2 (zh)
CN108435248B (zh) 一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用
US11458448B2 (en) Magnetic strong base anion exchange resin with high mechanical strength, and preparation method thereof
CN110732307A (zh) 一种edta改性磁性纳米复合材料的制备方法及应用
CN1325382C (zh) 稀土金属钒酸盐或磷钒酸盐颗粒的胶态分散体、其制备方法及其用途和制品
CN111100161B (zh) 用于atrp反应的磁性纳米复合材料及其制备方法
Dehghan et al. Novel approach to synthesizing polymer-functionalized Fe 3 O 4/SiO 2–NH 2 via an ultrasound-assisted method for catalytic selective oxidation of alcohols to aldehydes and ketones in a DMSO/water mixture
Khodaei et al. Synthesis and characterization of Co 3 O 4 immobilized on dipeptide-functionalized silica-coated magnetite nanoparticles as a catalyst for the selective aerobic oxidation of alcohols
Pashaei et al. Engineered mesoporous ionic‐modified γ‐Fe2O3@ hydroxyapatite decorated with palladium nanoparticles and its catalytic properties in water
Zou et al. Magnetic and hydrophilic imprinted particles via ATRP at room temperature for selective separation of sulfamethazine
Aghaei-Hashjin et al. Mo@ GAA-Fe 3 O 4 MNPs: a highly efficient and environmentally friendly heterogeneous magnetic nanocatalyst for the synthesis of polyhydroquinoline derivatives
Han et al. Functional core/shell PMMA/P (MMA‐co‐PDSECAE)‐SH particles with thiol groups in the shell and their adsorption of heavy metal ions
CN116059977A (zh) 一种选择性吸附铅离子纳米材料及其制备方法和应用
Sobhani et al. A novel hydrophobic copper complex supported on γ‐Fe2O3 as a magnetically heterogeneous catalyst for one‐pot three‐component synthesis of α‐aminophosphonates
JP5170963B2 (ja) 重合体被覆無機粒子
CN113000035A (zh) 一种铈离子印迹磁性纳米材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant