CN111069778B - 光纤中微结构的产生方法及系统 - Google Patents

光纤中微结构的产生方法及系统 Download PDF

Info

Publication number
CN111069778B
CN111069778B CN201811217852.0A CN201811217852A CN111069778B CN 111069778 B CN111069778 B CN 111069778B CN 201811217852 A CN201811217852 A CN 201811217852A CN 111069778 B CN111069778 B CN 111069778B
Authority
CN
China
Prior art keywords
target
optical fiber
microstructure
laser
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811217852.0A
Other languages
English (en)
Other versions
CN111069778A (zh
Inventor
肖起榕
闫平
巩马理
田佳丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201811217852.0A priority Critical patent/CN111069778B/zh
Publication of CN111069778A publication Critical patent/CN111069778A/zh
Application granted granted Critical
Publication of CN111069778B publication Critical patent/CN111069778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Abstract

本发明实施例提供了一种光纤中微结构的产生方法及系统,通过目标光纤传输目标激光与外部加热相结合,使得目标光纤上预设位置处的光纤物质在被加热处对目标激光产生所需程度的吸收,从而实现目标激光对目标光纤的加工,在被加热处附近产生原本不存在于目标光纤中的微结构。本发明实施例中提供的光纤上微结构的产生方法极大地简化了传统的光纤上产生微结构的方法,提升了目标光纤中目标微结构的生产效率和生产质量。

Description

光纤中微结构的产生方法及系统
技术领域
本发明实施例涉及微结构光纤技术领域,更具体地,涉及光纤中微结构的产生方法及系统。
背景技术
光纤是一种具有光波导结构的丝线,利用光纤可以将光约束在像水管那样的通道中传播。
微结构光纤是一种新型光纤,在光纤上存在微结构,使得此种光纤具有许多独特特性。光纤上存在的微结构,是指物理上依附于光纤而存在的、但并不属于通常意义上的“纤芯/包层”结构的微结构。即微结构可以是在光纤上仅占据长度方向有限长度的空腔(空腔内可以存在气体或没有气体)、金属颗粒、金属半导体混合物颗粒、聚合物颗粒、液体团、以上及其他物质组合的颗粒或团;微结构也可以是沿着光纤长度方向分布相当长距离的上述结构,如光子晶体光纤上的空腔通道。微结构可以是本身参与构成光纤的光波导结构,也就是说,微结构在理论上被认为有助于将光约束在一定空间范围之内传播。微结构在垂直于光纤方向的横截面上的最大物理尺寸不超过1厘米。
微结构可以存在于光纤内部(即完全被组成光纤的物质所覆盖,不与外部环境接触),也可以处于光纤表面,与外部环境接触(对于实心微结构如金属小球等)或者连通(对于空心微结构如空腔等)。微结构可以在光纤上重复分布,例如,一根光纤上排列着多个金属小球,此时,每个小球被认为是一个微结构。又例如,光子晶体光纤上沿着光纤方向有多根空腔通道,每根空腔通道都可以被认为是一个微结构。
与电子芯片类似,也可以在光纤中,通过设计特定的微结构来实现对光的性质的调控和变换。例如,空腔微结构光纤可以被用作基于法布里珀罗(Fabry-Perot)干涉原理的传感器,实现对温度、应力、湿度、折射率等参数的传感;还可以利用微结构光纤透射谱的特殊形状作为波长滤波器(edgefilter),甚至可以将微结构光纤用作特殊场景下的细胞采样(cellcollection)、药物传递(drugdelivery)等。金属、半导体微结构光纤则被认为可能在太阳能、全光信息处理(即“光芯片”)等场景发挥应用。
为了在光纤上产生微结构,制造出微结构光纤,现有技术手段大体可以分为三类。第一类被称为“自上而下”(top-down)的方法,其特点是利用已经完整制成的、还没有所需微结构的光纤,以一定手段去除光纤的部分材料和结构,在光纤上形成所需的微结构。这种手段的发展目前已经形成一套原理上较为固定的流程。
例如,对于在光纤的内部产生(含有气体或者不含气体的)空洞型微结构,其过程以及采用的装置如图1所示。首先在完整的光纤11的一端纤芯位置13产生一定的凹陷形状14。光纤11的一端纤芯位置是否产生凹陷形状的判断依据是:能够在后续步骤完成时,使得所需的空洞型微结构出现在光纤内部。这一凹陷形状可以由激光微加工提供,如图1中的激光微加工系统12照射光纤11的一端纤芯位置13,直至生成凹陷形状14。凹陷形状也可以由化学腐蚀、离子刻蚀、熔接另一段已经有凹陷结构的光纤,如空心光纤、毛细管、光子晶体光纤等来提供。然后通过熔接设备16将带有凹陷形状14的光纤11与另一根光纤15进行熔接,使得凹陷形状14被埋入光纤11和光纤15之间,形成空洞型微结构17。空洞型微结构17中是否含有气体,取决于以上过程是否发生在真空中,也取决于光纤本身的材料是否在熔接过程中释放了气体,具体情况较为复杂。如果只需在光纤的表面产生与外部环境(如空气、真空、浸泡的液体等)连通的空洞型微结构,则可无需将光纤11与光纤15进行熔接,而直接将凹陷形状14作为空洞型微结构即可。
第二类被称为“自下而上”(button-up)的方法,其特点是利用生产光纤的原材料,在未最终形成光纤时(通常还是液体)将微结构放置到原材料中,然后再将原材料凝固为光纤。例如,在聚合物材料的光纤内部产生空洞型微结构,可以在特殊性能的液态聚合物中,用连接高精度微泵的针管吹入气体,并令含有气体的聚合物在盐液或者模具中以光纤的形态凝固。在这一过程中,气体被凝固的聚合物包裹在内部,从而形成光纤内部的空洞型微结构。
第三类方法,是将前两类方法的部分特点进行结合,通常用于制造材料较为复杂的(如硅锗共存的材料的)微结构。其一般步骤为为在光纤或者光纤预制棒的制作过程中就预先埋入(或掺杂、溶入)熔点较光纤基底材料更低的用于形成微结构的物质,在得到成型的光纤或者光纤预制棒后,重新加热之,使其内部用于形成微结构的物质在空间上重新排列,从而形成需要的微结构。例如,要得到以二氧化硅为主要基质的带有硅锗异质球微结构的光纤,需要在制作光纤(预制棒)的时候就将硅、锗埋入纤芯(预制棒的内部),成为沿光纤方向均匀或无章分布的内层物质。然后,重新加热光纤(预制棒)并拉制光纤,使得在外层二氧化硅不完全熔化解体的情况下,内层熔点较低的硅锗混合物发生融化并重新分布。这一重新分布会在精确控制的热条件下,由流体不稳定性而分裂为一个一个的小球(类似于水龙头下的水柱渐渐分裂为水滴)。经过这一光纤拉制过程,就获得了含有硅锗异质球微结构的光纤。
可以看出,现有技术中提供的光纤上微结构的产生方法,一方面,都涉及对光纤的复杂操作,且需要激光微加工系统、化学腐蚀系统、离子刻蚀系统、微泵和特殊聚合物材料、光纤拉制系统等价格昂贵、占地庞大的仪器设备的参与,成本较高。另一方面,由于方法本身需要对光纤进行极端环境操作(包括熔接、切割等),会对微结构附近的光纤材料产生强烈的影响,这就使得无法在已有的微结构周围产生新的微结构。而且,在第一类方法中,熔接和切割会破坏正在产生的微结构周围的、已经生成的其它微结构。在第二类方法或者第三类方法中,更是难以在同一根光纤中产生不同性质的微结构。
特别地,在第一类方法中利用激光微加工方法在光纤上产生微结构,其使用的激光是峰值功率数兆瓦特甚至更高的超快激光。只有这样峰值功率极高的激光,才能够对透明的光纤材料进行烧蚀加工。连续激光器不可以用于对光纤材料的加工。这样,由超快激光器将造成可观的成本和系统复杂性。
发明内容
为克服上述问题或者至少部分地解决上述问题,本发明实施例提供了一种光纤中微结构的产生方法及系统。
第一方面,本发明实施例提供了一种光纤中微结构的产生方法,包括:
对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,使所述预设位置处产生微结构;
在所述微结构满足预设条件时,停止加热或者停止传输所述目标激光,在所述预设位置处形成目标微结构;
其中,所述目标光纤上的预设位置的受热时间与所述目标激光在所述目标光纤中的作用时间存在重叠部分。
第二方面,本发明实施例提供了一种光纤中微结构的产生系统,包括:
微结构产生模块,用于对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,使所述预设位置处产生微结构;
目标微结构形成模块,用于在所述微结构满足预设条件时,停止加热或者停止传输所述目标激光,在所述预设位置处形成目标微结构;
其中,所述目标光纤上的预设位置的受热时间与所述目标激光在所述目标光纤中的作用时间存在重叠部分。
本发明实施例提供的一种光纤中微结构的产生方法及系统,通过目标光纤传输目标激光与外部加热相结合,使得目标光纤上预设位置处的光纤物质在被加热处对目标激光产生所需程度的吸收,从而实现目标激光对目标光纤的加工,在被加热处附近产生原本不存在于目标光纤中的微结构。本发明实施例中提供的光纤上微结构的产生方法极大地简化了传统的光纤上产生微结构的方法,提升了目标光纤中目标微结构的生产效率和生产质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中提供的一种光纤中微结构的产生方法的流程示意图;
图2为本发明实施例提供的一种光纤中微结构的产生方法的流程示意图;
图3为本发明实施例提供的一种光纤中微结构的产生方法中加热管作为加热装置时形成目标微结构的装置结构示意图;
图4为本发明实施例提供的一种光纤中微结构的产生方法中加热管作为加热装置时形成的一个目标微结构的结构示意图;
图5为本发明实施例提供的一种光纤中微结构的产生方法中加热管作为加热装置时形成的多个目标微结构的结构示意图;
图6为本发明实施例提供的一种光纤中微结构的产生方法中预设电压的电极作为加热装置时形成目标微结构的装置结构示意图;
图7为本发明实施例提供的一种光纤中微结构的产生方法中预设电压的电极作为加热装置时形成的一个目标微结构的结构示意图;
图8为本发明实施例提供的一种光纤中微结构的产生方法中预设电压的电极作为加热装置时形成的多个目标微结构的结构示意图;
图9为本发明实施例提供的一种光纤中微结构的产生方法中预设电压的电极作为加热装置时形成的一个目标微结构的结构示意图;
图10为本发明实施例提供的一种光纤中微结构的产生系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明实施例中的具体含义。
由于目前对携带有微结构的光纤的应用十分广泛,而现有技术中光纤上微结构的产生方法均存在缺陷,因此本发明实施例中提供了一种光纤上微结构的产生方法及系统,旨在提供一种在光纤上产生微结构的方法,以避免现有技术中存在的在光纤上产生微结构的方法存在的缺陷。
如图2所示,本发明一实施例提供了一种光纤上微结构的产生方法,包括:
S1,对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,使所述预设位置处产生微结构;
S2,在所述微结构满足预设条件时,停止加热或者停止传输所述目标激光,在所述预设位置处形成目标微结构;
其中,所述目标光纤上的预设位置的受热时间与所述目标激光在所述目标光纤中的作用时间存在重叠部分。
具体地,本发明实施例中提供的一种光纤上微结构的产生方法,首先需要确定目标光纤上需要形成目标微结构的位置,即预设位置,目标光纤上的预设位置可以有一个或多个。这里的目标微结构是指需要在目标光纤上形成的、特定类型、特定形状和尺寸的微结构。微结构的类型可以包括金属颗粒、金属半导体混合物颗粒、聚合物颗粒、液体团、以上及其他物质组合的颗粒或团,例如金属小球微结构、空腔微结构等。微结构的形状可以包括球形、纺锤流线形等。微结构的尺寸可根据需要进行设定。
确定预设位置后,对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,使所述预设位置处产生微结构。加热动作和激光传输动作的先后执行顺序可根据需要进行设定,只要保证预设位置的受热时间与目标激光在目标光纤中的作用时间存在重叠部分即可。在重叠部分,预设位置处的光纤物质在受热的情况下,吸收目标激光,进而使得在吸收发生处(即预设位置处)的光纤物质的微观化学结构发生特定变化,实现目标激光对预设位置处的光纤物质的加工,在预设位置处产生微结构。这里所说的光纤物质的微观化学结构发生的特定变化,是指导致了光纤物质的形态或者空间分布发生变化,这种变化的产生即表明开始形成微结构。
在持续加热和激光传输的过程中,产生的微结构会随着时间的推移进一步生长或发生变化,此时为得到目标微结构,需要根据需要在产生的微结构满足预设条件时,停止加热或者停止传输目标激光,预设位置处的光纤物质的温度开始下降,在光纤物质的温度下降的过程中,光纤物质的形态或者空间分布的变化逐渐停止。当光纤物质的形态或者空间分布的变化完全停止时,微结构不再生长且完全不发生变化(即处于稳定状态)时,即得到目标微结构。
这里需要说明的是,停止加热或者停止传输目标激光后得到的处于稳定状态的微结构与停止加热或者停止传输目标激光时得到的微结构并不完全一致,这是由于在停止加热或者停止传输目标激光后,产生的微结构由于余热、目标激光的作用或其他因素的影响会继续生长或发生变化。这将导致最终得到的微结构与目标微结构产生偏差,因此停止加热或者停止传输目标激光的时机至关重要。为得到准确的目标微结构,需要设置一个预设条件,根据产生的微结构是否满足预设条件,确定停止加热或者停止传输目标激光的时机。即在产生的微结构满足预设条件时,停止加热或者停止传输目标激光,当微结构处于稳定状态时,在预设位置处可形成目标微结构。
本发明实施例中采用的目标光纤可以是以二氧化硅为主要材料的光纤,也可以是以其它无机氧化物为主要材料的光纤,也可以是以有机聚合物为主要材料的光纤,本发明实施例中对此不作具体限定。同时,目标光纤上可以具有其它的微结构。
本发明实施例中采用的目标激光是指利用受激辐射放大或者自发辐射放大原理产生的光。目标激光可以是时域连续的激光,也可以是脉冲激光。目标激光具有固定的平均功率或者峰值功率,以产生所需的目标微结构。
本发明实施例中提供的光纤上微结构的产生方法,通过目标光纤传输目标激光与外部加热相结合,使得目标光纤上预设位置处的光纤物质在被加热处对目标激光产生所需程度的吸收,从而实现目标激光对目标光纤的加工,在被加热处附近产生原本不存在于目标光纤中的微结构。本发明实施例中提供的光纤上微结构的产生方法极大地简化了传统的光纤上产生微结构的方法,提升了目标光纤中目标微结构的生产效率和生产质量。
同时,本发明实施例中提供的光纤上微结构的产生方法,可直接使目标微结构产生于目标光纤内部,而无需对目标光纤进行切割、熔接或者拉制、熔化等操作,极大简化了操作的难度、设备的复杂性,并极大降低了成本;在此过程中无需破坏目标光纤的原有结构,不会对目标光纤未产生目标微结构的其他部分的机械性能造成非必要损害。可以保留目标光纤中已经存在的其他微结构,并可以在附近的预设位置处产生新的目标微结构。这对于需要在同一根光纤中布置一系列微结构的特殊应用场景,有着无可比拟的效率优势和质量优势。
特别地,相比于背景技术中提及的第一类方法中利用激光微加工方法在光纤上产生微结构,本发明实施例中提供的光纤上微结构的产生方法,由于使用了外部加热来控制目标激光对于目标光纤的烧蚀,使得仅需要普通激光,例如平均激光仅有数瓦特甚至更低的连续激光,即可实现对透明的光纤材料的烧蚀。相比之下,现有技术中激光微加工技术需要使用峰值功率数兆瓦特甚至更高的超快激光来对透明的光纤材料进行烧蚀。也就是说,本发明实施例中提供的光纤上微结构的产生方法,极大放宽了能够用于加工透明光纤材料的激光器的范围,进而极大降低了成本。
在上述实施例的基础上,本发明实施例中提供的光纤上微结构的产生方法,所述对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,具体包括:先对所述预设位置进行加热,然后利用所述目标光纤传输目标激光;或者,
先利用所述目标光纤传输目标激光,然后对所述预设位置进行加热;或者,
对所述预设位置进行加热,同时利用所述目标光纤传输目标激光。
具体地,本发明实施例中,加热动作和激光传输动作的先后执行顺序可根据需要进行设定,只要保证预设位置的受热时间与目标激光在目标光纤中的作用时间存在重叠部分即可。
在实际操作上,既可以先利用目标光纤传输目标激光,再对目标光纤上的预设位置施加外部加热;也可以先对目标光纤上的预设位置施加外部加热,再利用目标光纤传输目标激光;还可以是同时施加外部加热以及利用目标光纤传输目标激光。受热时间即为施加外部加热的时间,作用时间即为目标激光的持续时间。
本发明实施例中为便于对目标激光的控制,可以引入能够发射目标激光的激光器,通过控制激光器的开启和关闭控制目标激光的持续时间。
本发明实施例中提供的光纤上微结构的产生方法,为方案的实现提供三种可实现的方案,增加了方案实现的灵活性。
在上述实施例的基础上,本发明实施例中提供的光纤上微结构的产生方法,所述预设条件由所述预设位置处产生的微结构的类型确定。
具体地,本发明实施例中提供的光纤上微结构的产生方法中,在所述微结构满足预设条件时,停止加热或者停止传输所述目标激光,在所述预设位置处形成目标微结构。这里所述的预设条件根据预设位置处产生的微结构的类型确定,也即根据需要得到的最终的目标微结构的类型确定,每一种类型的微结构对应于同一个预设条件。
一般情况下,预设条件是通过大量实验确定。例如,对于属于纺锤流线类型的目标微结构而言,在形成时需要满足的预设条件则通过产生大量的纺锤流线类型的目标微结构时所确定的停止加热或者停止传输目标激光的时机进行确定,即停止加热或者停止传输目标激光时得到的微结构即为需要满足的预设条件。
在上述实施例的基础上,本发明实施例中提供的光纤上微结构的产生方法,所述目标微结构在所述目标光纤的轴线方向上的长度根据以下一种或多种参数确定:
所述预设位置处的受热长度;
所述目标激光的平均功率或峰值功率;
所述重叠部分的时间内,所述预设位置的最高温度。
具体地,本发明实施例中提供的光纤上微结构的产生方法,可以通过改变微结构产生时的外部条件,实现对得到的目标微结构的参数的调整,目标微结构的参数具体可包括长度参数,即目标微结构在所述目标光纤的轴线方向上的长度。长度参数的调整可通过对激光或者外部加热的控制实现,具体可通过以下三种方式中的任意一种或任意多种的组合实现,第一种方式是通过改变预设位置处的受热长度实现,第二种方式是通过改变目标激光的平均功率或峰值功率实现,第三种方式是通过改变重叠部分的时间内,所述预设位置的最高温度实现。对于第一种方式,可以增加预设位置处的受热长度,使得对目标激光产生吸收作用的、受到外部加热的光纤物质的长度变长,进而增加目标微结构的长度参数。对于第二种方式,可以提高目标激光的平均功率或峰值功率,使得在目标激光与外部加热共同作用时,目标激光能够烧蚀的、受到外部加热的光纤物质变多,进而增加目标微结构的长度参数。对于第三种方式,可以提高外部加热的最高温度,使得受到外部加热的光纤物质对目标激光的吸收作用增强,进而增加目标微结构的长度参数。
本发明实施例中提供的光纤上微结构的产生方法,为长度参数的调整的实现提供三种可实现的方案,增加了方案实现的灵活性。
在上述实施例的基础上,本发明实施例中提供的光纤上微结构的产生方法,所述目标微结构在所述目标光纤的横截面上的尺寸根据以下一种或多种参数确定:
所述目标激光的光束的光斑尺寸;
所述目标激光的平均功率或峰值功率;
所述重叠部分的时间内,所述预设位置的最高温度。
具体地,本发明实施例中提供的光纤上微结构的产生方法,还可以通过改变微结构产生时的外部条件,实现对得到的目标微结构的尺寸参数的调整,即目标微结构在所述目标光纤的横截面上的尺寸。尺寸参数的调整也可以通过对激光或者外部加热的控制实现,具体可通过以下三种方式中的任意一种或任意多种的组合实现,第一种方式是通过改变目标激光的光束的光斑尺寸实现,第二种方式是通过改变目标激光的平均功率或峰值功率实现,第三种方式是通过改变重叠部分的时间内,所述预设位置的最高温度实现。对于第一种方式,可以增加目标激光的光束的光斑尺寸,即扩大目标激光通过目标光纤横截面时的通过面积,使得横截面上的更多区域受到目标激光与外部加热的共同作用,进而增加目标微结构的尺寸参数。对于第二种方式,可以提高目标激光的平均功率或峰值功率,使得在目标激光与外部加热共同作用时,目标激光能够烧蚀的、受到外部加热的光纤物质变多,进而增加目标微结构的尺寸参数。对于第三种方式,可以提高外部加热的最高温度,使得受到外部加热的光纤物质对目标激光的吸收作用增强,进而增加目标微结构的尺寸参数。
本发明实施例中提供的光纤上微结构的产生方法,为长度参数的调整的实现提供三种可实现的方案,增加了方案实现的灵活性。
在上述实施例的基础上,本发明实施例中提供的光纤上微结构的产生方法,所述对目标光纤上的预设位置进行加热通过加热装置实现。
具体地,本发明实施例中采用加热装置实现对目标光纤上的预设位置的外部加热。不同加热装置的加热原理不同,但只要能够实现对预设位置进行外部加热即可。
作为优选方案,本发明实施例中提供的光纤上微结构的产生方法中,采用加热管或预设电压的电极作为加热装置。
其中,所述加热管为中空加热管,当采用所述加热管作为加热装置时,将所述目标光纤穿过所述加热管,使所述目标光纤上的预设位置处于所述所述加热管内。
具体地,如图3所示,目标光纤31穿过加热管30,使得加热管30正对目标光纤31上的预设位置;目标光纤31的一端又与激光器32连接。启动加热管30,使得处于加热管30中的预设位置受到外部加热。启动激光器32,使得激光器32产生的目标激光沿着目标光纤31的波导结构传输。目标光纤31上预设位置处的光纤物质33在目标激光和外部加热的共同作用下开始发生形态或者空间分布的变化。这种变化表现为原本占据光纤内部或表面的部分物质受到烧蚀,使得其原本占据的空间现在被以下一种或多种物质占据:由光纤物质33自身化学变化所产生的物质;由目标光纤31其他部位熔化迁移过来的物质;外界环境中的物质。
在产生的微结构已经成形达到预设条件时,关闭激光器32,停止向目标光纤内注入目标激光,以停止与外部加热继续共同作用使得微结构继续生长。当产生的微结构达到稳定状态时,即获得了目标微结构34。目标光纤31可以立即从加热管30中抽出,也可以在经过一定的退火程序后从加热管30中抽出。
本发明实施例中,要增加目标微结构在目标光纤的轴线方向上的长度,可以采取以下一种或多种方法结合:增加加热管30施加外部加热的长度,即增加加热管30的长度,使得对目标激光产生吸收作用的、受到外部加热的光纤物质33的长度变长;提高目标激光的平均功率或者峰值功率,使得在目标激光与外部加热共同作用时,目标激光能够烧蚀的受到外部加热的光纤物质33变多;在利用目标光纤传输目标激光之前,提高加热管30施加外部加热的最高温度,使得受到外部加热的光纤物质33对目标激光的吸收增强。
本发明实施例中,要增加目标微结构在目标光纤的横截面上的尺寸,可以采取以下一种或多种方法结合:提高目标激光的平均功率或者峰值功率,使得在目标激光与外部加热共同作用时,目标激光能够烧蚀的受到外部加热的光纤物质33变多;在施加目标激光之前,提高加热管30施加外部加热的最高温度,使得受到外部加热的光纤物质33对目标激光的吸收增强;扩大目标激光通过目标光纤31的横截面时的通过面积,使得横截面上的更多区域受到目标激光与外部加热的共同作用。
将由加热管作为加热器得到的目标微结构放置在与目标光纤折射率相同的折射率匹配液中进行观察,如图4所示。在图4中,纺锤流线形物即为目标光纤中的目标微结构40。加入折射率匹配液观察的目的是为了消除光纤结构导致的图像畸变和对比度失真。在获得图4中所示的目标微结构40的过程中,使用的激光器为连续激光器,激光的平均功率为18瓦特,目标光纤的外部受热长度为1厘米,使用的目标光纤是掺镱离子的10/130光纤。
如图5所示,为在目标光纤中产生了多个不同的目标微结构50,获得此种目标微结构50使用的激光器为连续激光器,激光的平均功率为18瓦特,目标光纤的外部受热长度为10厘米,使用的目标光纤是掺镱离子的10/130光纤。由于更长的外部受热长度,加上目标光纤内目标物质在目标激光和外部加热共同作用下具有的流体不稳定性的影响,可以获得若干的目标微结构。
在上述实施例的基础上,本发明实施例中提供的光纤上微结构的产生方法中,当采用所述预设电压的电极作为加热装置时,所述预设电压的电极靠近所述目标光纤上的预设位置设置,由所述预设电压的电极产生的电弧为所述目标光纤上的预设位置提供热量。
具体地,如图6所示,本发明实施例中目标光纤61的一端与激光器62连接;预设电压的电极60靠近目标光纤61上的预设位置设置。启动激光器62,使得激光器62产生的目标激光沿着目标光纤61的波导结构传输。启动预设电压的电极60,产生电弧,使得目标光纤61受到电弧的外部加热。目标光纤61上预设位置处的光纤物质63在目标激光和外部加热的共同作用下开始发生形态或者空间分布的变化。这种变化表现为原本占据目标光纤61内部或表面的部分物质受到烧蚀,使得其原本占据的空间现在被以下一种或多种物质占据:由光纤物质63自身化学变化所产生的物质;由目标光纤61其他部位熔化迁移过来的物质;外界环境中的物质。
在产生的微结构已经成形达到预设条件(即生长到一定程度)时,终止电弧的产生,以停止外部加热,从而停止微结构继续生长。当产生的微结构达到稳定状态时,即获得了目标微结构64。激光器62可以立即关闭以不再产生目标激光,激光器62也可以一段时间后再关闭。
本发明实施例中,要增加目标微结构在目标光纤的轴线方向上的长度,可以采取以下一种或多种方法结合:提高目标激光的平均功率或者峰值功率,使得在目标激光与外部加热共同作用时,目标激光能够烧蚀的受到外部加热的光纤物质63变多;提高预设电压的电极60产生的电弧的电流量或者放电时间,使得外部加热的最高温度更高,进而使得受到外部加热的光纤物质63对目标激光的吸收作用增强;使预设电压的电极60在产生电弧的过程中沿着光轴方向移动,使得光轴方向上受到外部加热的光纤物质63变多。
本发明实施例中,要增加目标微结构在目标光纤的横截面上的尺寸,可以采取以下一种或多种方法结合:提高目标激光的平均功率或者峰值功率,使得在目标激光与外部加热共同作用时,目标激光能够烧蚀的受到外部加热的光纤物质63变多;提高预设电压的电极60产生的电弧的电流量或者放电时间,使得外部加热的最高温度更高,进而使得受到外部加热的光纤物质63对目标激光的吸收作用增强;扩大目标激光通过目标光纤横截面时的通过面积,使得横截面上的更多区域受到目标激光与外部加热的共同作用;使预设电压的电极60发生的电弧偏离目标光纤61的横截面中心,使得目标光纤61横截面的周围区域受到更多的外部加热,进而增强其与目标激光的共同作用。
将由预设电压的电极作为加热器得到的目标微结构放置在与目标光纤折射率相同的折射率匹配液中进行观察,如图7所示。在图7中,纺锤流线形物即为目标光纤中的目标微结构70。加入折射率匹配液观察的目的是为了消除光纤结构导致的图像畸变和对比度失真。在获得图7中所示的目标微结构70的过程中,使用的激光器为连续激光器,激光的平均功率为2瓦特,预设电压的电极产生的电弧的电流为50毫安,放电时间为400毫秒,使用的目标光纤是标准的G652.D光纤,整个产生过程仅需1秒钟。
如图8所示,为在目标光纤中产生了多个不同的目标微结构80,获得此种目标微结构80使用的激光器为连续激光器,激光的平均功率为2瓦特,预设电压的电极产生的电弧的电流为70毫安,放电时间为400毫秒,使用的目标光纤是标准的G652.D光纤。每获得一个目标微结构后,将预设电压的电极沿着目标光纤移动到产生下一个目标微结构的预设位置,然后重复操作以产生下一个目标微结构。产生相邻两个目标微结构之间调整预设电压的电极位置所用时间不超过10秒钟。
如图9所示,为在目标光纤中产生了与目标光纤侧面的外界环境连通的目标微结构90。获得此种目标微结构90使用的激光器为连续激光器,激光的平均功率为2瓦特,预设电压的电极产生的电弧的电流为70毫安,放电时间为400毫秒,且目标光纤的横截面偏移电弧的中心约1毫米。如此设置,目标光纤的横截面的一部分将会受到比其它部分更强的外部加热,因而能够产生侧面过度烧蚀而与外界环境连通的目标微结构。使用的目标光纤同样是标准的G652.D光纤。
可以看出,由于使用了本发明提供的光纤上微结构的产生方法,可以在多种激光器、多种目标光纤中高效地完成各式各样的目标微结构的产生任务。
如图10所示,在上述实施例的基础上,本发明实施例中提供了一种光纤上微结构的产生系统,包括:微结构产生模块101和目标微结构形成模块102。其中,
微结构产生模块101用于对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,使所述预设位置处产生微结构;
目标微结构形成模块102用于在所述微结构满足预设条件时,停止加热或者停止传输所述目标激光,在所述预设位置处形成目标微结构;
其中,所述目标光纤上的预设位置的受热时间与所述目标激光在所述目标光纤中的作用时间存在重叠部分。
具体地,本发明实施例中微结构产生模块101实现的加热动作和激光传输动作的先后执行顺序可根据需要进行设定,只要保证预设位置的受热时间与目标激光在目标光纤中的作用时间存在重叠部分即可。在重叠部分,预设位置处的光纤物质在受热的情况下,吸收目标激光,进而使得在吸收发生处(即预设位置处)的光纤物质的微观化学结构发生特定变化,实现目标激光对预设位置处的光纤物质的加工,在预设位置处产生微结构。这里所说的光纤物质的微观化学结构发生的特定变化,是指导致了光纤物质的形态或者空间分布发生变化,这种变化的产生即表明开始形成微结构。
在持续加热和激光传输的过程中,产生的微结构会随着时间的推移进一步生长或发生变化,此时为得到目标微结构,需要目标微结构形成模块102根据需要在产生的微结构满足预设条件时,停止加热或者停止传输目标激光,预设位置处的光纤物质的温度开始下降,在光纤物质的温度下降的过程中,光纤物质的形态或者空间分布的变化逐渐停止。当光纤物质的形态或者空间分布的变化完全停止时,微结构不再生长且完全不发生变化(即处于稳定状态)时,即得到目标微结构。
本发明实施例中提供的光纤上微结构的产生系统中各模块的作用与上述方法类实施例中的操作流程是一一对应的,名词含义与上述方法类实施例中的名词含义也是一致的,本发明实施例中对此不再赘述。
本发明实施例中提供的光纤上微结构的产生系统,通过微结构产生模块实现目标光纤传输目标激光与外部加热相结合,使得目标光纤上预设位置处的光纤物质在被加热处对目标激光产生所需程度的吸收,从而实现目标激光对目标光纤的加工,在被加热处附近产生原本不存在于目标光纤中的微结构。本发明实施例中提供的光纤上微结构的产生系统极大地简化了传统的光纤上产生微结构的方法,提升了目标光纤中目标微结构的生产效率和生产质量。
在上述实施例的基础上,本发明实施例中微结构产生模块101具体用于:先对所述预设位置进行加热,然后利用所述目标光纤传输目标激光;或者,先利用所述目标光纤传输目标激光,然后对所述预设位置进行加热;或者,对所述预设位置进行加热,同时利用所述目标光纤传输目标激光。
在上述实施例的基础上,本发明实施例中微结构产生模块101具体包括:加热装置,所述加热装置用于对目标光纤上的预设位置进行加热。
在上述实施例的基础上,本发明实施例中所述加热装置为加热管或预设电压的电极。
在上述实施例的基础上,本发明实施例中所述加热管为中空加热管,当采用所述加热管作为加热装置时,所述目标光纤穿过所述加热管设置,所述目标光纤上的预设位置处于所述所述加热管内。
在上述实施例的基础上,本发明实施例中当采用所述预设电压的电极作为加热装置时,所述预设电压的电极靠近所述目标光纤上的预设位置设置,所述预设电压的电极产生的电弧为所述目标光纤上的预设位置提供热量。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种光纤中微结构的产生方法,其特征在于,包括:
对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,使所述预设位置处产生微结构;
在所述微结构满足预设条件时,停止加热或者停止传输所述目标激光,在所述预设位置处形成目标微结构;
其中,所述目标光纤上的预设位置的受热时间与所述目标激光在所述目标光纤中的作用时间存在重叠部分。
2.根据权利要求1所述的光纤中微结构的产生方法,其特征在于,所述对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,具体包括:先对所述预设位置进行加热,然后利用所述目标光纤传输目标激光;或者,
先利用所述目标光纤传输目标激光,然后对所述预设位置进行加热;或者,
对所述预设位置进行加热,同时利用所述目标光纤传输目标激光。
3.根据权利要求1所述的光纤中微结构的产生方法,其特征在于,所述预设条件由所述预设位置处产生的微结构的类型确定。
4.根据权利要求1所述的光纤中微结构的产生方法,其特征在于,所述目标微结构在所述目标光纤的轴线方向上的长度根据以下一种或多种参数确定:
所述预设位置处的受热长度;
所述目标激光的平均功率或峰值功率;
所述重叠部分的时间内,所述预设位置的最高温度。
5.根据权利要求1所述的光纤中微结构的产生方法,其特征在于,所述目标微结构在所述目标光纤的横截面上的尺寸根据以下一种或多种参数确定:
所述目标激光的光束的光斑尺寸;
所述目标激光的平均功率或峰值功率;
所述重叠部分的时间内,所述预设位置的最高温度。
6.根据权利要求1-5中任一项所述的光纤中微结构的产生方法,其特征在于,所述对目标光纤上的预设位置进行加热通过加热装置实现。
7.根据权利要求6所述的光纤中微结构的产生方法,其特征在于,所述加热装置为加热管或预设电压的电极。
8.根据权利要求7所述的光纤中微结构的产生方法,其特征在于,所述加热管为中空加热管,当采用所述加热管作为加热装置时,将所述目标光纤穿过所述加热管,使所述目标光纤上的预设位置处于所述加热管内。
9.根据权利要求7所述的光纤中微结构的产生方法,其特征在于,当采用所述预设电压的电极作为加热装置时,所述预设电压的电极靠近所述目标光纤上的预设位置设置,由所述预设电压的电极产生的电弧为所述目标光纤上的预设位置提供热量。
10.一种光纤中微结构的产生系统,其特征在于,包括:
微结构产生模块,用于对目标光纤上的预设位置进行加热,利用所述目标光纤传输目标激光,使所述预设位置处产生微结构;
目标微结构形成模块,用于在所述微结构满足预设条件时,停止加热或者停止传输所述目标激光,在所述预设位置处形成目标微结构;
其中,所述目标光纤上的预设位置的受热时间与所述目标激光在所述目标光纤中的作用时间存在重叠部分。
CN201811217852.0A 2018-10-18 2018-10-18 光纤中微结构的产生方法及系统 Active CN111069778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811217852.0A CN111069778B (zh) 2018-10-18 2018-10-18 光纤中微结构的产生方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811217852.0A CN111069778B (zh) 2018-10-18 2018-10-18 光纤中微结构的产生方法及系统

Publications (2)

Publication Number Publication Date
CN111069778A CN111069778A (zh) 2020-04-28
CN111069778B true CN111069778B (zh) 2020-12-15

Family

ID=70308783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811217852.0A Active CN111069778B (zh) 2018-10-18 2018-10-18 光纤中微结构的产生方法及系统

Country Status (1)

Country Link
CN (1) CN111069778B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843647A (ja) * 1994-05-23 1996-02-16 Nec Corp 光ファイバ端の先球化方法及び装置
JP4158391B2 (ja) * 2002-03-25 2008-10-01 住友電気工業株式会社 光ファイバおよびその製造方法
US7425099B1 (en) * 2007-04-10 2008-09-16 Furukawa Electric North America, Inc. Systems and methods for modifying selected portion of optical fiber microstructure
CN101710193A (zh) * 2009-11-27 2010-05-19 电子科技大学 一种微结构光纤的制作方法
TWI555290B (zh) * 2014-12-15 2016-10-21 國立臺灣科技大學 超寬頻近紅外線發光模組及產生超寬頻近紅外線的方法
CN108490535B (zh) * 2018-06-22 2023-07-14 深圳大学 光纤内集成聚合物微纳结构的光纤器件及其制备方法

Also Published As

Publication number Publication date
CN111069778A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
US4932989A (en) Method and apparatus for fabricating microlenses on optical fibers
JP6186016B2 (ja) 基板に貫通穴を開ける方法及び装置
US20100178007A1 (en) Waveguide device
JP2021514841A (ja) レーザ処理装置及び方法
EP2628564A1 (en) Laser cutting device and laser cutting method
CN103777270A (zh) 自动静态连续制备光纤光栅阵列的装置与方法
CN108136543A (zh) 将要被激光切割的经过涂覆的基材的激光预处理方法
CN104834055A (zh) 一种基于电弧放电的长周期光纤光栅的制备装置
KR20200103044A (ko) 레이저 투과 공작물의 표면 구조화를 위한 방법 및 레이저 가공 기계
CN111069778B (zh) 光纤中微结构的产生方法及系统
CA2801671C (en) Optical fibre system for transfecting material into a cell
CN204613441U (zh) 基于电弧放电的长周期光纤光栅的制备装置
US10329196B2 (en) Method for the fabrication of optical waveguide devices in photonic crystal fibers and in waveguides with hollow structures
CN107285647A (zh) 一种光纤表面加工装置
CN108963732B (zh) 波导被动调q激光器及其制作方法
Vaidya et al. Sculpted optical silica fiber tips for use in Nd: YAG contact tip laser surgery: part 1--fabrication techniques
US20240106186A1 (en) Composite fiber laser assembly
RU2150135C1 (ru) Способ изготовления одномодового светопроводящего канала в прозрачном диэлектрике путем модификации структуры диэлектрика
US20210305763A1 (en) Composite fiber laser assembly
RU2781223C2 (ru) Аппарат для разрезания ткани человека или животного, содержащий оптический соединитель
KR102509189B1 (ko) 기판을 구조화하는 방법, 상기 기판을 구조화하기 위한 기판 및 장치를 포함하는 조립체 및 그러한 구조를 가진 기판
US11964899B2 (en) Method for fabricating an optical fibre preform
JP5901786B2 (ja) グラスファイバを光学的な構成要素にレーザベースでスプライシングする方法
CN115832853A (zh) 玻璃材料中基于趋肤光波导的可饱和吸收器件及其方法
CN113176631A (zh) 一种基于流体通道的光波导及光子器件结构的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant