CN111060555A - Method and device for measuring thermal conductivity and thermal diffusivity of thin film material under strain - Google Patents
Method and device for measuring thermal conductivity and thermal diffusivity of thin film material under strain Download PDFInfo
- Publication number
- CN111060555A CN111060555A CN201911399938.4A CN201911399938A CN111060555A CN 111060555 A CN111060555 A CN 111060555A CN 201911399938 A CN201911399938 A CN 201911399938A CN 111060555 A CN111060555 A CN 111060555A
- Authority
- CN
- China
- Prior art keywords
- sample
- heat
- thermal conductivity
- temperature
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 34
- 239000010409 thin film Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000007246 mechanism Effects 0.000 claims abstract description 43
- 238000012546 transfer Methods 0.000 claims abstract description 15
- 238000010586 diagram Methods 0.000 claims abstract description 9
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 230000001052 transient effect Effects 0.000 claims abstract description 6
- 239000000523 sample Substances 0.000 claims description 80
- 239000010408 film Substances 0.000 claims description 30
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000005855 radiation Effects 0.000 claims description 7
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 244000309464 bull Species 0.000 claims 2
- 238000009792 diffusion process Methods 0.000 claims 2
- 238000007789 sealing Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004093 laser heating Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003331 infrared imaging Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本发明属于传热技术领域,具体涉及一种测量应变下薄膜材料导热系数和热扩散系数的方法和装置。The invention belongs to the technical field of heat transfer, and in particular relates to a method and a device for measuring the thermal conductivity and thermal diffusivity of thin film materials under strain.
背景技术Background technique
薄膜不仅是实现器件和系统微型化最有效的材料,而且在传感器领域,薄膜还作为元件之一来测量不同的物理量。薄膜的工作温度一般都是变化的,在使用过程中,由于转移、振动和发热等也会受到不同程度的应力产生微小应变。薄膜的热物性发生改变后器件或系统的可靠性有待验证,因此正确测定在应变下的薄膜的导热系数和热扩散系数与温度的关系,确定系统的可靠程度,对完善电子器件的设计有重要意义。Thin films are not only the most effective materials for miniaturizing devices and systems, but in the field of sensors, thin films are also used as one of the components to measure different physical quantities. The working temperature of the film is generally changed, and in the process of use, due to the transfer, vibration and heat generation, it will also be subjected to different degrees of stress to produce small strains. The reliability of the device or system needs to be verified after the thermal properties of the film are changed. Therefore, it is important to correctly determine the relationship between the thermal conductivity and thermal diffusivity of the film under strain and temperature to determine the reliability of the system to improve the design of electronic devices. significance.
但是目前测量薄膜材料导热系数和热扩散系数的技术方案均存在一些缺陷:However, the current technical solutions for measuring the thermal conductivity and thermal diffusivity of thin-film materials have some defects:
红外成像技术是通过接收物体表面辐射能,从而获得物体温度的一种方法,通过对物体表面发射率的标定可以准确获得每个像素点的温度,温度分辨率高;在专利(授权公告号CN 109001250 A)“基于红外成像法的薄膜导热系数分析方法”中,基于红外热成像技术得到温度分布后,输入模型的边界条件,将薄膜导热系数设为理论值的70%~100%进行仿真,当仿真的温度分布曲线与测试结果拟合一致时,得到薄膜导热系数的值。其存在的问题一是需要提前知道材料的导热系数理论值,有局限性;二是在此基础上要多次修改导热系数的值,使之与测试温度分布图匹配,工作量大,误差也很大。Infrared imaging technology is a method to obtain the temperature of the object by receiving the radiant energy of the surface of the object. By calibrating the emissivity of the object surface, the temperature of each pixel can be accurately obtained, and the temperature resolution is high; in the patent (authorized announcement number CN 109001250 A) In "Analysis Method of Thermal Conductivity of Thin Films Based on Infrared Imaging", after obtaining the temperature distribution based on infrared thermal imaging technology, input the boundary conditions of the model, and set the thermal conductivity of thin films as 70% to 100% of the theoretical value for simulation, When the simulated temperature distribution curve is consistent with the test results, the value of the thermal conductivity of the film is obtained. The existing problems are that the theoretical value of thermal conductivity of the material needs to be known in advance, which has limitations; the second is that the value of thermal conductivity needs to be modified many times on this basis to match the test temperature distribution diagram, which requires a lot of work and errors. very large.
在专利(授权公告号CN 106813718 A)“一种测量薄膜应变与导热系数的装置及方法”中,虽然可以测得导电薄膜材料在不同应变下的导热系数,但是对于材料的前处理步骤繁琐,需要将薄膜镀在基底上,再按照3ω方法溅射四个焊盘,同时制作一根微米级金属条在薄膜表面,四个焊盘连接金属条。此外,该方法对薄膜材料的导电性能也有要求,并且要已知杨氏模量才能计算应变,局限较多。In the patent (authorized bulletin number CN 106813718 A) "a device and method for measuring the strain and thermal conductivity of thin films", although the thermal conductivity of the conductive thin film material under different strains can be measured, the preprocessing steps for the material are cumbersome, It is necessary to coat the film on the substrate, and then sputter four pads according to the 3ω method. At the same time, a micron-scale metal strip is made on the surface of the film, and the four pads are connected to the metal strip. In addition, this method also requires the electrical conductivity of the thin film material, and the Young's modulus can only be calculated to calculate the strain, which has many limitations.
在专利(授权公告号CN 110487842 A)“同时测量薄膜面内导热系数和红外发射率的装置与方法”中,利用光加热在薄膜表面形成温度分布,通过红外辐射辐射空间分布的测试及拟合曲线得到导热系数。但是在该方法中所建立的热方程是一维传热,而实际上,薄膜作为一种常见的二维材料,即使是在加热光场有大于2的长宽比前提下,仍然不可忽略在宽度方向的热量传递,因此该方法通过一维导热方程求得的导热系数误差较大。In the patent (authorized announcement number CN 110487842 A) "device and method for simultaneously measuring in-plane thermal conductivity and infrared emissivity of thin films", the temperature distribution is formed on the surface of the thin film by light heating, and the spatial distribution of infrared radiation radiation is tested and fitted The curve gives the thermal conductivity. However, the heat equation established in this method is one-dimensional heat transfer. In fact, as a common two-dimensional material, the film cannot be ignored even if the heating light field has an aspect ratio greater than 2. The heat transfer in the width direction, so the thermal conductivity obtained by this method through the one-dimensional thermal conductivity equation has a large error.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种测量应变下薄膜材料导热系数和热扩散系数的方法和装置,本发明操作方便,测量准确性高,可以得到不同应变下样品的导热系数和热扩散系数随温度变化的情况。The purpose of the present invention is to provide a method and device for measuring the thermal conductivity and thermal diffusivity of thin-film materials under strain. The present invention is easy to operate, has high measurement accuracy, and can obtain the variation of thermal conductivity and thermal diffusivity of samples with different strains with temperature. Case.
本发明所采用的技术方案是:The technical scheme adopted in the present invention is:
一种测量应变下薄膜材料导热系数和热扩散系数的方法,包括步骤:A method for measuring thermal conductivity and thermal diffusivity of thin film materials under strain, comprising the steps of:
S1、将样品铺开且通过两端的张紧机构张紧,将样品、张紧机构和驱动机构放入真空腔中并密封抽真空,使得仅考虑热传导和热辐射;S1. Spread the sample and tension it through the tensioning mechanisms at both ends, put the sample, the tensioning mechanism and the driving mechanism into the vacuum chamber and seal and vacuumize it, so that only heat conduction and heat radiation are considered;
S2、用连续激光加热真空腔内的样品,通过红外摄像头获得样品在固定应变下从开始加热至达到稳态的全过程温度分布图;S2. Use a continuous laser to heat the sample in the vacuum chamber, and obtain the temperature distribution diagram of the whole process of the sample from heating to a steady state under a fixed strain through an infrared camera;
S3、由于薄膜的厚度远小于边长,将薄膜视为二维传热,对实验图片进行处理,得到薄膜表面各像素点温度,将薄膜按照像素点的尺寸划分为若干个微元,从而得到固定应变下不同微元的温度值;S3. Since the thickness of the film is much smaller than the side length, the film is regarded as two-dimensional heat transfer, and the experimental picture is processed to obtain the temperature of each pixel on the surface of the film, and the film is divided into several micro-elements according to the size of the pixel, thus obtaining Temperature values of different microelements under fixed strain;
S4、建立稳态和瞬态的热平衡方程,求解出不同温度下薄膜的导热系数和热扩散系数;S4. Establish steady-state and transient heat balance equations, and solve the thermal conductivity and thermal diffusivity of the film at different temperatures;
S5、驱动机构驱动张紧机构,控制样品产生微小位移量Δx,样品产生不同的应变,根据步骤S2至S4求出在不同应变下样品的导热系数和热扩散系数随温度变化的情况。S5. The driving mechanism drives the tensioning mechanism to control the sample to generate a small displacement Δx, and the sample generates different strains. According to steps S2 to S4, the thermal conductivity and thermal diffusivity of the sample change with temperature under different strains.
进一步地,在步骤S4中,建立的稳态过程Further, in step S4, the established steady state process
建立的瞬态过程established transient process
其中,in,
代表微元在x的负方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the negative direction of x due to thermal conduction;
代表微元在x的正方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the positive direction of x due to heat conduction;
代表微元在y的负方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the negative direction of y due to heat conduction;
代表微元在y的正方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the positive direction of y due to heat conduction;
其中Δx和Δy分别代表微元在x方向和y方向的长度,λ(m,n)代表微元的导热系数,d代表样本的厚度,T(m-1,n)和T(m+1,n)分别代表微元在x方向前后两个单元的温度,T(m,n-1)和T(m,n+1)分别代表微元在y方向前后两个单元的温度;where Δx and Δy represent the lengths of the micro-element in the x and y directions, respectively, λ (m, n) represents the thermal conductivity of the micro-element, d represents the thickness of the sample, T (m-1, n) and T (m+1 , n) respectively represent the temperature of the two units before and after the micro-element in the x direction, T (m, n-1) and T (m, n+1) respectively represent the temperature of the two units before and after the micro-element in the y direction;
PΔxΔy代表激光加热流入该微元的热量,其中P为激光入射强度;PΔxΔy represents the heat of laser heating flowing into the micro-element, where P is the laser incident intensity;
代表微元上下与周围环境的辐射换热,其中ε是样品的发射率,σ是玻尔兹曼常数,T(m,n)代表微元的温度,T0代表环境温度,考虑到样品的上下表面与周围环境都有辐射换热,因此乘2; Represents the radiative heat exchange between the upper and lower micro-elements and the surrounding environment, where ε is the emissivity of the sample, σ is the Boltzmann constant, T (m, n) represents the temperature of the micro-element, T 0 represents the ambient temperature, considering the sample's emissivity There is radiation heat exchange between the upper and lower surfaces and the surrounding environment, so multiply by 2;
代表在时间Δτ内微元由于温度上升引发的内能变化,其中和分别代表微元在该时刻和后一时刻的温度,a代表薄膜材料的热扩散系数。 Represents the change in internal energy of the element due to temperature rise during time Δτ, where and respectively represent the temperature of the micro-element at this moment and the next moment, and a represents the thermal diffusivity of the film material.
进一步地,在测量前,先对样品的发射率进行确定,利用热电偶测量样品表面的温度同时调整红外摄像头的发射率,直到红外摄像头所测的表面温度与热电偶测得的温度相同,此时的发射率即为样品的真实发射率。Further, before the measurement, first determine the emissivity of the sample, measure the temperature of the sample surface with a thermocouple and adjust the emissivity of the infrared camera until the surface temperature measured by the infrared camera is the same as the temperature measured by the thermocouple. The emissivity at is the true emissivity of the sample.
一种测量应变下薄膜材料导热系数和热扩散系数的装置,包括带有透光窗的真空腔、密封伸入真空腔的激光探头、与激光探头连接的激光器、用于对于真空腔抽真空的抽气泵、面向透光窗拍摄真空腔内样品的红外摄像头、与红外摄像头连接的数据处理模块以及位于真空腔内的张紧机构和驱动机构,张紧机构用于将样品两端张紧,驱动机构用于驱动张紧机构控制样品产生微小位移。A device for measuring thermal conductivity and thermal diffusivity of thin-film materials under strain, comprising a vacuum cavity with a light-transmitting window, a laser probe sealed and extended into the vacuum cavity, a laser connected to the laser probe, and a vacuum chamber for evacuating the vacuum cavity. An air pump, an infrared camera facing the light-transmitting window to photograph the sample in the vacuum chamber, a data processing module connected to the infrared camera, and a tensioning mechanism and a driving mechanism located in the vacuum chamber, the tensioning mechanism is used to tension both ends of the sample and drive The mechanism is used to drive the tensioning mechanism to control the tiny displacement of the sample.
进一步地,透光窗采用锗窗。Further, the light-transmitting window adopts germanium window.
进一步地,张紧机构包括两对齐平且分别位于样品两端的热沉,每对热沉都从上下侧将样品端部夹紧并通过螺栓紧固。Further, the tensioning mechanism includes two parallel heat sinks located at both ends of the sample, each pair of heat sinks clamps the ends of the sample from the upper and lower sides and fastens them with bolts.
进一步地,驱动机构包括导轨、齿条、电机和齿轮传动系,一对热沉位置固定,另一对热沉的下侧热沉滑动配合在导轨上、上侧热沉与齿条固定,电机通过齿轮传动系与齿条啮合,电机的电源线密封伸出真空腔与电源连接。Further, the driving mechanism includes a guide rail, a rack, a motor and a gear drive train, a pair of heat sinks are fixed in position, the lower heat sink of the other pair of heat sinks is slidably fitted on the guide rail, the upper heat sink is fixed to the gear rack, and the motor The gear train is meshed with the rack, and the power cord of the motor is sealed out of the vacuum chamber and connected to the power supply.
进一步地,齿轮传动系包括电机输出轴、设在电机输出轴上的小齿轮A、固定轴以及设在固定轴上的大齿轮B和小齿轮C,小齿轮A与大齿轮B啮合,小齿轮C与齿条啮合。Further, the gear train includes a motor output shaft, a pinion A on the motor output shaft, a fixed shaft, and a large gear B and a small gear C set on the fixed shaft. The pinion A meshes with the large gear B, and the pinion C engages with the rack.
进一步地,电机为步进电机时,单次脉冲产生的样品拉伸量其中rA、rB和rC分别代表齿轮A、齿轮B和齿轮C的半径,θ0代表电机的步距角。Further, when the motor is a stepper motor, the amount of sample stretching generated by a single pulse where r A , r B and r C represent the radii of gear A, gear B and gear C, respectively, and θ 0 represents the step angle of the motor.
进一步地,激光探头倾斜入射样品。Further, the laser probe is incident on the sample obliquely.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明对薄膜材料没有导电的要求,也不需要前处理过程,只需将待测样品的两端固定就可以测量,操作方便;本发明的加热方式是非接触式的,减小了接触热阻带来的影响,而且引入了真空环境,避免对流换热的影响,提高了计算的准确性和便捷性;本发明采用微元处理的实验图片结合数值计算方法,原理简单,可以直接算出各个温度下的导热系数和热扩散系数;本发明通过驱动机构使样品产生不同的应变,可以测量不同应变下的热物性参数;本发明通过激光加热,激光的输出功率是可调的,可以研究不同导热能力和不同尺寸材料在不同温度水平下的导热系数和热扩散系数。The present invention has no requirement for electrical conductivity of the film material, and does not require a pretreatment process. It is only necessary to fix both ends of the sample to be tested for measurement, and the operation is convenient; the heating method of the present invention is non-contact, which reduces the contact thermal resistance. In addition, the vacuum environment is introduced to avoid the influence of convective heat transfer, and the accuracy and convenience of calculation are improved. the thermal conductivity and thermal diffusivity under different strains; the present invention generates different strains of the sample through the driving mechanism, and can measure the thermal physical parameters under different strains; the present invention uses laser heating, the output power of the laser is adjustable, and different thermal conductivity can be studied. Capability and thermal conductivity and thermal diffusivity of materials of different sizes at different temperature levels.
附图说明Description of drawings
图1是本发明实施例的装置结构示意图。FIG. 1 is a schematic structural diagram of an apparatus according to an embodiment of the present invention.
图2是本发明实施例中张紧机构和驱动机构的工作示意图(省去了导轨)。FIG. 2 is a working schematic diagram of the tensioning mechanism and the driving mechanism in the embodiment of the present invention (the guide rails are omitted).
图3是本发明实施例中激光光斑内稳态传热的热平衡分析图。FIG. 3 is a thermal balance analysis diagram of steady-state heat transfer in a laser spot in an embodiment of the present invention.
图4是本发明实施例中光斑中心的导热系数-相对位置的关系图。FIG. 4 is a graph showing the relationship between the thermal conductivity of the center of the light spot and the relative position in the embodiment of the present invention.
图5是本发明实施例中光斑中心的热扩散系数-相对位置关系图。FIG. 5 is a diagram showing the relationship between the thermal diffusivity and the relative position of the center of the light spot in the embodiment of the present invention.
图6是本发明实施例中温度对热导率的敏感程度图。FIG. 6 is a graph showing the sensitivity of temperature to thermal conductivity in an embodiment of the present invention.
图7是本发明实施例中不同温度下导热系数的反演结果与初始值的对比图。FIG. 7 is a comparison diagram of inversion results of thermal conductivity at different temperatures and initial values in an embodiment of the present invention.
图中:1-真空腔;2-热沉;3-导轨;4-样品;5-齿轮传动系;6-电机;7-电源;8-抽气泵;9-锗窗;10-计算机;11-红外摄像头;12-激光探头;13-激光器。In the figure: 1-vacuum chamber; 2-heat sink; 3-guide rail; 4-sample; 5-gear transmission; 6-motor; 7-power supply; 8-air pump; 9-germanium window; 10-computer; 11 - Infrared camera; 12 - laser probe; 13 - laser.
具体实施方式Detailed ways
下面结合附图和实施例对发明作进一步详细的说明。The invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
如图1所示,一种测量应变下薄膜材料导热系数和热扩散系数的装置,包括带有透光窗的真空腔1、密封伸入真空腔1的激光探头12、与激光探头12连接的激光器13、用于对于真空腔1抽真空的抽气泵8、面向透光窗拍摄真空腔1内样品的红外摄像头11(红外摄像头11通过支撑架安装固定)、与红外摄像头11连接的数据处理模块(计算机10)以及位于真空腔1内的张紧机构和驱动机构,张紧机构用于将样品4两端张紧,驱动机构用于驱动张紧机构控制样品4产生微小位移。As shown in FIG. 1 , a device for measuring the thermal conductivity and thermal diffusivity of thin film materials under strain includes a
优选的,透光窗采用锗窗9。Preferably, the light transmission window adopts germanium window 9 .
如图1所示,优选的,激光探头12倾斜入射样品4,防止干扰红外摄像头11的成像。对于不同尺寸大小的样品可以改变激光的入射功率和入射角度,使样品4达到所要求的温升大小。As shown in FIG. 1 , preferably, the
如图1和图2所示,优选的,张紧机构包括两对齐平且分别位于样品两端的热沉2(热沉2可以采用钨铜合金),每对热沉都2从上下侧将样品4端部夹紧并通过螺栓紧固。As shown in Figures 1 and 2, preferably, the tensioning mechanism includes two
如图1和图2所示,优选的,驱动机构包括导轨3、齿条D、电机6和齿轮传动系5,一对热沉2位置固定,另一对热沉2的下侧热沉2滑动配合在导轨3上、上侧热沉2与齿条D固定,电机6通过齿轮传动系5与齿条D啮合,电机6的电源线密封伸出真空腔1与电源7连接。As shown in FIGS. 1 and 2 , preferably, the driving mechanism includes a
如图2所示,优选的,齿轮传动系5包括电机输出轴、设在电机输出轴上的小齿轮A、固定轴以及设在固定轴上的大齿轮B和小齿轮C,小齿轮A与大齿轮B啮合,小齿轮C与齿条D啮合。As shown in FIG. 2 , preferably, the gear train 5 includes a motor output shaft, a pinion A set on the motor output shaft, a fixed shaft, and a large gear B and a pinion C set on the fixed shaft. The pinion A and The large gear B meshes, and the pinion C meshes with the rack D.
在测量前,先对样品4的发射率进行确定,利用热电偶测量样品表面的温度同时调整红外摄像头的发射率,直到红外摄像头所测的表面温度与热电偶测得的温度相同,此时的发射率即为样品4的真实发射率。Before measurement, first determine the emissivity of
测量应变下薄膜材料导热系数和热扩散系数时,包括步骤:When measuring the thermal conductivity and thermal diffusivity of thin film materials under strain, the steps include:
S1、将样品4、张紧机构和驱动机构放入真空腔1中,一对热沉2在导轨3上固定,另一对热沉2与导轨3配合,两对热沉2在同一高度,将样品4铺开,两对热沉2分别夹住样品4的两端,使样品4保持水平,再用螺栓紧固,防止拉伸过程中与热沉2发生相对位移。S1. Put the
S2、安装齿轮传动系5,使电机6通过齿轮传动系5与齿条D啮合,电机为步进电机时,单次脉冲产生的样品拉伸量其中rA、rB和rC分别代表齿轮A、齿轮B和齿轮C的半径,θ0代表电机6的步距角。S2. Install the gear train 5, so that the
总的拉伸量就等于脉冲的个数乘上单次脉冲产生的拉伸量,例如选用两相步进电机6,薄膜边长Lx=80mm,其步距角θ0=1.8°,齿轮半径分别为rA=rC=5mm,rB=50mm时,对应的单次脉冲产生的薄膜拉伸量Δx=15.7um,应变通过调整齿轮半径,该应变值还可以更小,可以随薄膜尺寸做相应调整。The total stretching amount is equal to the number of pulses multiplied by the stretching amount generated by a single pulse. For example, a two-
S3、盖上带有锗窗9的顶盖,将激光探头12斜向伸入真空腔1内部。S3 , cover the top cover with the germanium window 9 , and extend the
S4、将红外摄像头11上下调整完成对焦后,固定不动,与数据处理模块(计算机10)保持稳定的数据连接。S4. After adjusting the infrared camera 11 up and down to complete the focus, fix it and maintain a stable data connection with the data processing module (computer 10).
S5、检测真空腔1的接口,保证接口处密封不漏气,启动抽气泵8,使真空腔1内的气压保持在1×10-4Pa。S5. Detect the interface of the
S6、打开激光,激光的功率和入射角度均可以调整,为样品4提供稳定的均匀的热源。S6. Turn on the laser, and the power and incident angle of the laser can be adjusted to provide a stable and uniform heat source for the
同时通过红外摄像头11对真空腔1内部的温度进行实时的拍照,获取从开始加热到温度分布达温度的全过程温度分布图。At the same time, the temperature inside the
S7、由于薄膜的厚度远小于边长,将样品4视为二维传热,(利用数据处理软件,如MATLAB)对实验图片进行处理,得到样品4表面各像素点温度,将样品4按照像素点的尺寸划分为若干个微元,从而得到固定应变下不同微元的温度值.S7. Since the thickness of the film is much smaller than the side length, the
S8、建立稳态和瞬态的热平衡方程,求解出不同温度下样品4的导热系数和热扩散系数。S8. Establish steady-state and transient heat balance equations, and solve the thermal conductivity and thermal diffusivity of
对于稳态的二维传热过程激光光斑内的微元热平衡分析如图3,其热平衡式为For the steady-state two-dimensional heat transfer process, the micro-element heat balance analysis in the laser spot is shown in Figure 3, and the heat balance formula is:
其中,in,
代表微元在x的负方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the negative direction of x due to thermal conduction;
代表微元在x的正方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the positive direction of x due to heat conduction;
代表微元在y的负方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the negative direction of y due to heat conduction;
代表微元在y的正方向由于热传导流入的热量; Represents the heat flowing into the micro-element in the positive direction of y due to heat conduction;
其中Δx和Δy分别代表微元在x方向和y方向的长度,λ(m,n)代表微元的导热系数,d代表样本的厚度,T(m-1,n)和T(m+1,n)分别代表微元在x方向前后两个单元的温度,T(m,n-1)和T(m,n+1)分别代表微元在y方向前后两个单元的温度;where Δx and Δy represent the lengths of the micro-element in the x and y directions, respectively, λ (m, n) represents the thermal conductivity of the micro-element, d represents the thickness of the sample, T (m-1, n) and T (m+1 , n) respectively represent the temperature of the two units before and after the micro-element in the x direction, T (m, n-1) and T (m, n+1) respectively represent the temperature of the two units before and after the micro-element in the y direction;
PΔxΔy代表激光入射流入该微元的热量;PΔxΔy represents the heat that the laser incident flows into the micro-element;
代表微元与周围环境的辐射换热,其中ε是实验之前确定的薄膜材料的发射率,σ是玻尔兹曼常数,T0代表环境温度,考虑到薄膜的上下表面与周围环境都有辐射换热,因此乘2。 represents the radiative heat exchange between the micro-element and the surrounding environment, where ε is the emissivity of the film material determined before the experiment, σ is the Boltzmann constant, and T 0 represents the ambient temperature, considering that the upper and lower surfaces of the film and the surrounding environment have radiation heat exchange, so multiply by 2.
同理,写出二维稳态传热光斑外的热平衡方程为Similarly, the heat balance equation outside the two-dimensional steady-state heat transfer spot can be written as
结合上述方程和各点的温度值,可以求出不同位置的λ(m,n),再对应其所处的位置的温度T(m,n),就可以求得薄膜材料在不同温度下的导热系数λT。Combining the above equation and the temperature value of each point, λ (m, n) at different positions can be obtained, and then corresponding to the temperature T (m, n) at the position, the temperature of the film material at different temperatures can be obtained. Thermal conductivity λ T .
同理,写出二维瞬态传热光斑内外的热平衡方程式,分别为In the same way, write out the heat balance equations inside and outside the two-dimensional transient heat transfer spot, respectively:
光斑内Within the spot
光斑外Outside the spot
其中,代表在时间Δτ内微元由于温度上升引发的内能变化,a代表薄膜材料的热扩散系数,和分别代表下一时刻和该时刻该微元的温度值。结合上述方程,再加上前一阶段求出的导热系数λ,根据数值计算的方法就可以求得再不同温度下的热扩散系数aT。in, represents the change in internal energy of the micro-element due to temperature rise within the time Δτ, a represents the thermal diffusivity of the film material, and respectively represent the temperature value of the micro-element at the next moment and at this moment. Combined with the above equation and the thermal conductivity λ obtained in the previous stage, the thermal diffusivity a T at different temperatures can be obtained according to the numerical calculation method.
S9、驱动机构驱动张紧机构,控制样品4产生微小位移量Δx(微米尺度),样品4产生不同的应变,根据步骤S2至S4求出在不同应变下样品4的导热系数和热扩散系数随温度变化的情况。改变薄膜应变量就可以获得不同应变下的导热系数λT和热扩散系数aT。S9. The driving mechanism drives the tensioning mechanism to control the
利用仿真软件对二氧化硅薄膜的热传递进行数值求解,得到图4至图7。从图6可以看出,当温度的误差范围在±1K时,对导热系数只有±2%的影响;而当导热系数在±10%的范围内波动时,引起的温度的变化有10K左右。说明这种计算方式下温度对导热系数的变化很敏感,而温度的误差对所求热导率带来的误差比较小,有利于获得准确结果。The heat transfer of the silicon dioxide thin film is numerically solved using simulation software, and Figures 4 to 7 are obtained. As can be seen from Figure 6, when the temperature error range is ±1K, the thermal conductivity is only affected by ±2%; and when the thermal conductivity fluctuates within the range of ±10%, the temperature change caused is about 10K. It shows that the temperature is very sensitive to the change of thermal conductivity in this calculation method, and the error of the temperature is relatively small to the obtained thermal conductivity, which is beneficial to obtain accurate results.
本发明对薄膜材料没有导电的要求,也不需要前处理过程,只需将待测样品的两端固定就可以测量,操作方便;本发明的加热方式是非接触式的,减小了接触热阻带来的影响,而且引入了真空环境,避免对流换热的影响,提高了计算的准确性和便捷性;本发明采用微元处理的实验图片结合数值计算方法,原理简单,可以直接算出各个温度下的导热系数和热扩散系数;本发明通过驱动机构使样品产生不同的应变,可以测量不同应变下的热物性参数;本发明通过激光加热,激光的输出功率是可调的,可以研究不同导热能力和不同尺寸材料在不同温度水平下的导热系数和热扩散系数。The present invention has no requirement for electrical conductivity of the film material, and does not require a pretreatment process. It is only necessary to fix both ends of the sample to be tested for measurement, and the operation is convenient; the heating method of the present invention is non-contact, which reduces the contact thermal resistance. In addition, the vacuum environment is introduced to avoid the influence of convective heat transfer, and the accuracy and convenience of calculation are improved. the thermal conductivity and thermal diffusivity under different strains; the present invention generates different strains of the sample through the driving mechanism, and can measure the thermal physical parameters under different strains; the present invention uses laser heating, the output power of the laser is adjustable, and different thermal conductivity can be studied. Capability and thermal conductivity and thermal diffusivity of materials of different sizes at different temperature levels.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that, for those skilled in the art, improvements or changes can be made according to the above description, and all these improvements and changes should fall within the protection scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911399938.4A CN111060555B (en) | 2019-12-30 | 2019-12-30 | Method and apparatus for measuring thermal conductivity and thermal diffusivity of thin film materials under strain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911399938.4A CN111060555B (en) | 2019-12-30 | 2019-12-30 | Method and apparatus for measuring thermal conductivity and thermal diffusivity of thin film materials under strain |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111060555A true CN111060555A (en) | 2020-04-24 |
CN111060555B CN111060555B (en) | 2021-05-18 |
Family
ID=70304967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911399938.4A Active CN111060555B (en) | 2019-12-30 | 2019-12-30 | Method and apparatus for measuring thermal conductivity and thermal diffusivity of thin film materials under strain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111060555B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112577992A (en) * | 2020-11-04 | 2021-03-30 | 亚士漆(上海)有限公司 | Thermal radiation testing device and method |
CN112630261A (en) * | 2020-12-11 | 2021-04-09 | 武汉大学 | Measuring device and measuring method for multiple thermophysical parameters of material |
CN114113207A (en) * | 2021-11-12 | 2022-03-01 | 中国科学院上海光学精密机械研究所 | A method for measuring thermal diffusivity of optical materials |
RU210253U1 (en) * | 2021-11-23 | 2022-04-04 | федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" | Device for measuring the thermal diffusivity of thin plates by thermographic method |
CN114577843A (en) * | 2022-01-17 | 2022-06-03 | 中国科学院合肥物质科学研究院 | Sample clamp for LFA series laser thermal conductivity instrument and application method thereof |
CN116297665A (en) * | 2023-05-11 | 2023-06-23 | 清华大学 | Heat transfer coefficient measurement system, heat transfer coefficient measurement method, computer device, and storage medium |
CN116297681A (en) * | 2023-05-16 | 2023-06-23 | 中建安装集团有限公司 | Method for detecting defects in axial heat affected zone of single-core cable comprising intermediate joint |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200022B1 (en) * | 1997-04-21 | 2001-03-13 | Ta Instruments, Inc. | Method and apparatus for localized dynamic mechano-thermal analysis with scanning probe microscopy |
JP2006292604A (en) * | 2005-04-13 | 2006-10-26 | Keio Gijuku | Thermal sensing remote sensing method and apparatus for thermal insulation properties |
JP2009203301A (en) * | 2008-02-27 | 2009-09-10 | Nippon Shokubai Co Ltd | Near-infrared ray absorbing adhesive composition |
CN101949873A (en) * | 2010-10-11 | 2011-01-19 | 华东师范大学 | Device for measuring solid material heat conductivity |
CN101995416A (en) * | 2009-08-12 | 2011-03-30 | 精工电子纳米科技有限公司 | Softening point measuring apparatus and thermal conductivity measuring apparatus |
JP2013057272A (en) * | 2011-09-07 | 2013-03-28 | Toyota Motor Corp | Internal combustion engine exhaust gas cooling system |
CN103267772A (en) * | 2013-04-24 | 2013-08-28 | 清华大学 | Hemispherical total emissivity measurement method for samples with large temperature difference based on transient analysis |
EP2685248A1 (en) * | 2012-07-13 | 2014-01-15 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for measuring the thermal conductivity of an anisotropic thin material |
CN104535609A (en) * | 2014-12-26 | 2015-04-22 | 怡维怡橡胶研究院有限公司 | Device for determining heat-conductivity coefficient |
US20150355158A1 (en) * | 2014-06-05 | 2015-12-10 | Geocosm, LLC | Predicting sediment and sedimentary rock properties |
CN105699419A (en) * | 2016-02-25 | 2016-06-22 | 东华大学 | Determination device for Seebeck coefficient of flexible thin film material |
CN105699418A (en) * | 2016-02-25 | 2016-06-22 | 东华大学 | Determination device for thermal conductivity of flexible thin film material |
CN106468671A (en) * | 2016-09-05 | 2017-03-01 | 北京航空航天大学 | A kind of transient state liquid crystal is used for measuring the measurement of instability method of convection transfer rate |
CN106950249A (en) * | 2017-03-14 | 2017-07-14 | 东北大学 | The analysis experimental provision of rock thermal conductivity is tested under a kind of simulation different pressures |
CN107153079A (en) * | 2017-05-18 | 2017-09-12 | 金华职业技术学院 | A kind of method for measuring film coefficient of heat transfer |
CN207611003U (en) * | 2017-11-14 | 2018-07-13 | 深圳烯创先进材料研究院有限公司 | A kind of test device of film or sheeting plane thermal conductivity |
CN108844990A (en) * | 2018-04-10 | 2018-11-20 | 西安交通大学 | One kind being based on MEMS technology thin film strain testing device for measuring thermal conductivity and method |
CN106596626B (en) * | 2016-11-29 | 2019-04-09 | 武汉大学 | Method and device for measuring thermal diffusivity of materials by transient fluorescence |
CN109709140A (en) * | 2019-01-16 | 2019-05-03 | 武汉大学 | A method and device for measuring local convection heat transfer coefficient at microscale |
CN109839406A (en) * | 2019-03-27 | 2019-06-04 | 桂林电子科技大学 | A kind of high precision measurement method of interface contact heat resistance |
CN109900737A (en) * | 2019-03-06 | 2019-06-18 | 中国科学院上海光学精密机械研究所 | Device and method for weak absorption testing of optical components based on equivalent temperature |
CN110133043A (en) * | 2019-06-04 | 2019-08-16 | 武汉科技大学 | Method and system for measuring thermal conductivity of solid materials |
CN110487842A (en) * | 2019-08-14 | 2019-11-22 | 北京理工大学 | The apparatus and method of thermal conductivity and infrared emittance in pellicular front are measured simultaneously |
CN110530923A (en) * | 2019-08-05 | 2019-12-03 | 西安交通大学 | A kind of the film cooling flowing and Experimental Study of Heat Transfer Characteristics test macro of band crossing current |
-
2019
- 2019-12-30 CN CN201911399938.4A patent/CN111060555B/en active Active
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200022B1 (en) * | 1997-04-21 | 2001-03-13 | Ta Instruments, Inc. | Method and apparatus for localized dynamic mechano-thermal analysis with scanning probe microscopy |
JP2006292604A (en) * | 2005-04-13 | 2006-10-26 | Keio Gijuku | Thermal sensing remote sensing method and apparatus for thermal insulation properties |
JP2009203301A (en) * | 2008-02-27 | 2009-09-10 | Nippon Shokubai Co Ltd | Near-infrared ray absorbing adhesive composition |
CN101995416A (en) * | 2009-08-12 | 2011-03-30 | 精工电子纳米科技有限公司 | Softening point measuring apparatus and thermal conductivity measuring apparatus |
CN101949873A (en) * | 2010-10-11 | 2011-01-19 | 华东师范大学 | Device for measuring solid material heat conductivity |
JP2013057272A (en) * | 2011-09-07 | 2013-03-28 | Toyota Motor Corp | Internal combustion engine exhaust gas cooling system |
EP2685248A1 (en) * | 2012-07-13 | 2014-01-15 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for measuring the thermal conductivity of an anisotropic thin material |
CN103267772A (en) * | 2013-04-24 | 2013-08-28 | 清华大学 | Hemispherical total emissivity measurement method for samples with large temperature difference based on transient analysis |
US20150355158A1 (en) * | 2014-06-05 | 2015-12-10 | Geocosm, LLC | Predicting sediment and sedimentary rock properties |
CN104535609A (en) * | 2014-12-26 | 2015-04-22 | 怡维怡橡胶研究院有限公司 | Device for determining heat-conductivity coefficient |
CN105699419A (en) * | 2016-02-25 | 2016-06-22 | 东华大学 | Determination device for Seebeck coefficient of flexible thin film material |
CN105699418A (en) * | 2016-02-25 | 2016-06-22 | 东华大学 | Determination device for thermal conductivity of flexible thin film material |
CN106468671A (en) * | 2016-09-05 | 2017-03-01 | 北京航空航天大学 | A kind of transient state liquid crystal is used for measuring the measurement of instability method of convection transfer rate |
CN106596626B (en) * | 2016-11-29 | 2019-04-09 | 武汉大学 | Method and device for measuring thermal diffusivity of materials by transient fluorescence |
CN106950249A (en) * | 2017-03-14 | 2017-07-14 | 东北大学 | The analysis experimental provision of rock thermal conductivity is tested under a kind of simulation different pressures |
CN107153079A (en) * | 2017-05-18 | 2017-09-12 | 金华职业技术学院 | A kind of method for measuring film coefficient of heat transfer |
CN207611003U (en) * | 2017-11-14 | 2018-07-13 | 深圳烯创先进材料研究院有限公司 | A kind of test device of film or sheeting plane thermal conductivity |
CN108844990A (en) * | 2018-04-10 | 2018-11-20 | 西安交通大学 | One kind being based on MEMS technology thin film strain testing device for measuring thermal conductivity and method |
CN109709140A (en) * | 2019-01-16 | 2019-05-03 | 武汉大学 | A method and device for measuring local convection heat transfer coefficient at microscale |
CN109900737A (en) * | 2019-03-06 | 2019-06-18 | 中国科学院上海光学精密机械研究所 | Device and method for weak absorption testing of optical components based on equivalent temperature |
CN109839406A (en) * | 2019-03-27 | 2019-06-04 | 桂林电子科技大学 | A kind of high precision measurement method of interface contact heat resistance |
CN110133043A (en) * | 2019-06-04 | 2019-08-16 | 武汉科技大学 | Method and system for measuring thermal conductivity of solid materials |
CN110530923A (en) * | 2019-08-05 | 2019-12-03 | 西安交通大学 | A kind of the film cooling flowing and Experimental Study of Heat Transfer Characteristics test macro of band crossing current |
CN110487842A (en) * | 2019-08-14 | 2019-11-22 | 北京理工大学 | The apparatus and method of thermal conductivity and infrared emittance in pellicular front are measured simultaneously |
Non-Patent Citations (2)
Title |
---|
RONG ZENG ET AL.: ""Influence of strain induced grain boundary migration on grain growthof 300M during static and meta-dynamic recrystallization"", 《PROCEDIA ENGINEERING》 * |
唐天国 等: ""水工大体积混凝土温度场模拟及光纤监测分析"", 《水力发电》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112577992A (en) * | 2020-11-04 | 2021-03-30 | 亚士漆(上海)有限公司 | Thermal radiation testing device and method |
CN112630261A (en) * | 2020-12-11 | 2021-04-09 | 武汉大学 | Measuring device and measuring method for multiple thermophysical parameters of material |
CN114113207A (en) * | 2021-11-12 | 2022-03-01 | 中国科学院上海光学精密机械研究所 | A method for measuring thermal diffusivity of optical materials |
CN114113207B (en) * | 2021-11-12 | 2024-03-01 | 中国科学院上海光学精密机械研究所 | Method for measuring thermal diffusivity of optical material |
RU210253U1 (en) * | 2021-11-23 | 2022-04-04 | федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" | Device for measuring the thermal diffusivity of thin plates by thermographic method |
CN114577843A (en) * | 2022-01-17 | 2022-06-03 | 中国科学院合肥物质科学研究院 | Sample clamp for LFA series laser thermal conductivity instrument and application method thereof |
CN116297665A (en) * | 2023-05-11 | 2023-06-23 | 清华大学 | Heat transfer coefficient measurement system, heat transfer coefficient measurement method, computer device, and storage medium |
CN116297665B (en) * | 2023-05-11 | 2023-08-08 | 清华大学 | Heat transfer coefficient measurement system, method, computer equipment and storage medium |
CN116297681A (en) * | 2023-05-16 | 2023-06-23 | 中建安装集团有限公司 | Method for detecting defects in axial heat affected zone of single-core cable comprising intermediate joint |
CN116297681B (en) * | 2023-05-16 | 2023-10-03 | 中建安装集团有限公司 | Method for detecting defects in axial heat affected zone of single-core cable comprising intermediate joint |
Also Published As
Publication number | Publication date |
---|---|
CN111060555B (en) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111060555B (en) | Method and apparatus for measuring thermal conductivity and thermal diffusivity of thin film materials under strain | |
Donaldson et al. | A study of free jet impingement. Part 2. Free jet turbulent structure and impingement heat transfer | |
CN106153670A (en) | A kind of linear expansion coefficient measuring instrument based on Hall effect | |
CN110487842A (en) | The apparatus and method of thermal conductivity and infrared emittance in pellicular front are measured simultaneously | |
CN107389728A (en) | A kind of thermal conductivity of thin diamond films measurement apparatus and measuring method | |
CN107817054A (en) | A kind of infrared thermoviewer temp measuring method for vacuum chamber part | |
WO2018214466A1 (en) | Method for measuring thermal conductivity of thin film based on fluorescent micro-nano-particles | |
CN105424972A (en) | Near wall surface flow velocity measuring method and apparatus | |
CN207051431U (en) | Suitable for the tool of wafer-level test | |
CN102053006B (en) | Data processing improvement method for measuring absorption loss of optical element | |
CN102818820A (en) | System for measuring heat conductivity coefficient of nano materials based on vanadium dioxide nano wires | |
Jovanovic et al. | Temperature measurement of photovoltaic modules using non-contact infrared system | |
Sazhin | Novel mass air flow meter for automobile industry based on thermal flow microsensor. II. Flow meter, test procedures and results | |
CN104048767A (en) | Strip-shaped foil type transient radiation heat flow meter | |
Ortega et al. | Thermal wake models for forced air cooling of electronic components | |
Kotov et al. | The analysis of applicability of thermoelectric radiation detectors for heat flux measurements behind a reflected shock wave | |
Oh et al. | Bulk-micromachined circular foil type micro heat-flux sensor | |
CN1752881A (en) | Temperature feedback control device and method for large-area digital X-ray flat panel detector | |
Carlomagno | THEFIMO-FLUID-DYNAMIC APPLICATIONS OF QUANTITATIVE INFRARED THERMOGRAPHY | |
CN216593820U (en) | On-orbit calibration device for double-star infrared sea temperature camera | |
CN108981923A (en) | The device and method of optical element surface temperature rise under on-line measurement continuous wave laser action | |
Li et al. | Rapid and nondestructive testing for simultaneous measurement of thermal conductivity and thermal diffusivity of flat materials based on thermography | |
Kaessinger et al. | Utilizing Schlieren imaging to visualize heat transfer studies | |
CN212433027U (en) | A device for measuring the phase transition temperature of thin film materials | |
TW201905446A (en) | Thermal characteristic measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |