CN111060232A - 一种压电执行器输出力的自感知方法 - Google Patents
一种压电执行器输出力的自感知方法 Download PDFInfo
- Publication number
- CN111060232A CN111060232A CN201911104275.9A CN201911104275A CN111060232A CN 111060232 A CN111060232 A CN 111060232A CN 201911104275 A CN201911104275 A CN 201911104275A CN 111060232 A CN111060232 A CN 111060232A
- Authority
- CN
- China
- Prior art keywords
- piezoelectric actuator
- operational amplifier
- force
- self
- integrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims abstract description 26
- 238000010521 absorption reaction Methods 0.000 claims abstract description 24
- 238000009413 insulation Methods 0.000 claims abstract description 18
- 238000006073 displacement reaction Methods 0.000 claims abstract description 5
- 239000013256 coordination polymer Substances 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 45
- 230000009471 action Effects 0.000 description 14
- 239000000919 ceramic Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000003068 static effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 229910000906 Bronze Inorganic materials 0.000 description 4
- 239000010974 bronze Substances 0.000 description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/16—Measuring force or stress, in general using properties of piezoelectric devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明公开了一种压电执行器输出力的自感知方法,包括用于获得压电执行器晶片表面电荷的积分器,积分器包括运算放大器和积分电容,压电执行器输出力的自感知表达式为:式中,Fest为压电执行器的自感知力,C、uout分别为积分器的积分电容、输出电压,α为电荷‑位移系数,RP为压电执行器的绝缘电阻,u为施加在压电执行器上的驱动电压,QDA为压电执行器晶片的介电吸收电荷,iBIAS为运算放大器的偏置电流。本发明无需给积分器中的反馈电容并联电阻,就能消除压电执行器中晶片的漏电阻对自感知精度的影响;并且,补偿了压电执行器中晶片的介电吸收及构成积分器的运算放大器的偏置电流,能进一步提高压电执行器输出力的自感知精度。
Description
技术领域
本发明属于精密驱动技术领域,涉及精密驱动系统中的压电执行器,特别涉及一种压电执行器输出力的自感知方法。
背景技术
压电执行器是一种能够产生纳米级运动精度与分辨率的致动器。相对于电磁式、磁致伸缩式、静电式、电热式、形状记忆合金式等其他形式的执行器,压电执行器具有体积小、刚度高、响应快、输出力大、位移分辨率高、不发热、无噪声等优点,因此被广泛应用于精密驱动系统中。如,采用叠堆式压电执行器(由多层压电陶瓷晶片机械上串联、电学上并联构成)来驱动柔性铰链机构式刀架,进而构成快速伺服刀具系统,在超精密加工中实现微进给;采用叠堆式压电执行器驱动柔性铰链机构式钳体以及采用悬臂梁式压电执行器(由单层压电陶瓷晶片与黄青铜或铍青铜粘接而成,即单晶片式压电执行器;或由两层压电陶瓷晶片分别与黄青铜或铍青铜的两表面粘接而成,即双晶片式压电执行器)作为钳指,进而构成压电微夹钳,在MEMS微装配中对微轴、微齿轮等微零件以及微马达、微泵等微部件进行拾取、搬运、装配等,以及在生物医学工程中用于捕捉和释放细胞等微操作。
在上述这些精密驱动系统中,需要感知微动机构输出力的大小。如,在采用快速伺服刀架进行超精密加工时,往往需要感知刀架的进给力,以保证进给力大小合适,进而保证加工精度及加工质量;在微装配与微操作手工作过程中,需要感知微夹钳钳指的输出力,以便于对其控制,使其大小合适,否则,输出力太小,微对象将会脱落,而输出力太大,则将会使微对象受到损害。
目前大都采用精密传感器(如电阻应变片、电感式传感器、电容式传感器)来感知精密驱动系统中微动机构输出力的大小。这些精密传感器价格昂贵,提高了微定位系统的成本;另外,在微装配与微操作等纳米定位系统中,受空间限制,往往无法安装传感器,这就增加了系统的设计难度。为降低微定位系统的成本及设计难度,目前也有采用自感知(即省掉精密传感器)的方法来获得压电执行器输出力的信息的,主要有电桥法和积分器法。
电桥法的原理是将压电执行器作为一个桥臂,同其他三个桥臂——参考电容、串联阻抗一同构成电桥,驱动电压未作用于压电执行器时电桥平衡,在驱动电压作用下,电桥便输出电压(即感知电压),该电压同压电执行器的驱动电压成比例关系,由于压电执行器的输出力也同驱动电压成比例关系,于是便可用感知电压来反映压电执行器的输出力。电桥法的实现原理及电路构成简单,但存在以下不足:仅适用于动态驱动情况,而不适用于静态或低频驱动情况,这是因为:压电陶瓷晶片并非理想的绝缘体,而是存在一定的漏电阻,在工作过程中会产生漏电流,静态或低频情况下漏电流会破坏电桥的平衡,而电桥的平衡被破坏时,会使系统的稳定性变差;同驱动电压相比,感知电压很小。
积分器法的原理是构成压电执行器的压电陶瓷晶片在驱动电压作用下,输出力的同时发生电极化,进而在晶片表面产生同驱动电压成比例关系的电荷,由于压电执行器的输出力也同驱动电压成比例关系,进而压电执行器的输出力也同晶片表面电荷成比例关系,但晶片表面电荷无法直接获得,需通过积分器(即积分电路)来获得,积分电路的输出电压便可反映压电执行器的输出力。积分器法的实现原理及电路构成也较简单,反映晶片表面电荷的积分电路输出电压(即感知电压)远大于电桥法的感知电压,且不仅适用于静态或低频驱动情况,也适用于动态驱动情况。可见,积分器法比电桥法更具有优势。但目前的积分器法(如专利ZL201510515293.1所公开的积分器法)还存在以下不足:
1)为消除压电陶瓷晶片的漏电阻所产生的漏电流对自感知精度的影响,给积分器中反馈电容的两端并联电阻,以满足CP×RP=C×R(该式为消除晶片漏电流的平衡条件,CP、RP分别为压电执行器中晶片的电容、漏电阻,C、R分别为积分器的反馈电容、反馈电阻),由于压电执行器中晶片的漏电阻RP往往达到1010Ω以上,从而使积分器的反馈电阻R要达到107Ω以上,这么高阻值的电阻很难购买到,往往需要通过多个串联来实现;并且,由于压电执行器中晶片的漏电阻RP易受环境温度、湿度的影响而变化,从而为满足CP×RP=C×R,积分器的反馈电阻R也要经常调节,这就使得积分器法实现起来比较困难,调节过程繁琐。
2)忽略了压电执行器中晶片在电压作用下所产生的介电吸收。但实际上,压电陶瓷晶片在电压作用下会产生介电吸收,从而在晶片表面产生电荷,该电荷并不会使压电执行器产生输出力,但会使构成积分器的运算放大器产生输出电压,进而降低压电执行器输出力的自感知精度。
3)忽略了构成积分器的运算放大器的偏置电流。但实际上,任何运算放大器都存在偏置电流,该偏置电流会引起积分器的输出,进而降低压电执行器输出力的自感知精度。
发明内容
本发明所要解决的技术问题是提供一种在消除压电执行器中晶片漏电阻所产生的漏电流对自感知精度的影响时,无需给积分器中的反馈电容并联电阻,且在考虑压电执行器中晶片在电压作用下所产生的介电吸收以及构成积分器的运算放大器的偏置电流的基础上,来提高自感知精度的压电执行器输出力的自感知方法。
本发明解决上述技术问题所采用的技术方案为:一种压电执行器输出力的自感知方法,该方法是,压电执行器在驱动电压u作用下会发生变形,当其输出端被完全受约束住时,该变形就转化为压电执行器的输出力F(如图1、图2所示),压电执行器在驱动电压作用下输出力的同时其晶片还会发生电极化,从而在晶片表面产生电荷Q(如图1、图2所示),该电荷Q中包含了压电执行器输出力F的信息,如果能够确定Q与F之间的关系,并且能够获得Q,便可获得F。
Q与F、u之间的关系,可通过第一类压电基本方程来获得。根据第一类压电基本方程,Q与F、u之间的关系可表示为:
Q=αF+Cpu (1)
式中,α为电荷-力系数,Cp为压电执行器的电容。
由式(1)可知,压电执行器的晶片表面电荷中包含了压电执行器输出力的信息,由于压电执行器的驱动电压已知,故只要获得压电执行器的晶片表面电荷,便可获得压电执行器的输出力,进而便可省掉外部力传感器,实现压电执行器输出力的自感知。
压电执行器的晶片表面电荷Q可通过对流过晶片的电流进行积分来获取,图3给出了获取压电执行器晶片表面电荷的积分电路(即积分器)。在图3中,积分器包括运算放大器A、积分电容C,其作用为对流过压电执行器的电流进行积分;放电回路包括开关K、限流电阻Rk,其作用为在每次驱动压电执行器前对积分电容C进行放电,以保证C上的电荷为零。
在图3中,压电执行器的正极接电源的正极(电源的负极接地),压电执行器的负极接运算放大器A的反向端(运算放大器A的同向端接地);积分电容C一端接运算放大器A的反向端,另一端接运算放大器A的输出端;开关K、限流电阻Rk串联后一端接运算放大器A的反向端,另一端接运算放大器A的输出端。
在图3中,运算放大器A的输出电压uout可表示为:
式中,C为积分器中的积分电容,QC为积分电容上的电荷,i为流过积分电容C及压电执行器PA的电流。
将式(1)代入式(2),可得:
由式(3)可知,运算放大器A的输出电压uout能反映压电执行器的输出力。因此,只要能准确获得uout,就能实现压电执行器输出力的精密自感知。为此,就需要考虑影响运算放大器输出电压uout精度的因素。这些因素主要有以下三方面:
1)压电执行器并非理想的绝缘体,其绝缘电阻(它与压电执行器的等效电容为并联关系)不是无穷大,在电压作用下会产生漏电流,该漏电流也会使运算放大器产生输出电压;
2)压电陶瓷材料具有介电吸收特性,会使压电执行器晶片表面产生电荷,该电荷也会使运算放大器产生输出电压;
3)运算放大器存在偏置电流,该偏置电流也会使运算放大器产生输出电压。
考虑上述三种因素,运算放大器的输出电压uout可表示为:
式(4)中等号右边的后三项即分别为由压电执行器漏电流、晶片表面介电吸收电荷、运算放大器偏置电流所引起的运算放大器的输出电压。其中,RP为压电执行器的绝缘电阻,QDA为压电执行器晶片的介电吸收电荷,iBIAS为运算放大器的偏置电流。
根据式(4),可得压电执行器输出力的自感知表达式为:
式中,Fest为压电执行器的自感知力。
由式(5)可知,只要辨识出α、RP、QDA、iBIAS,便可实现压电执行器输出力的自感知。α、RP、QDA、iBIAS的辨识过程如下。
1)运算放大器偏置电流iBIAS的辨识由于运算放大器的偏置电流与运算放大器本身有关,而与压电执行器的驱动电压u无关,故在辨识运算放大器的偏置电流iBIAS时,在不给压电执行器施加驱动电压(即u=0)的情况下,采集运算放大器的输出电压uout。由于压电执行器的驱动电压为零,故其输出力F、漏电流u/RP、介电吸收电荷QDA均为零,进而根据式(4),运算放大器的输出电压uout可表示为:
对式(6)两边同时求导数,可得:
由(7)可知,只要采集到无驱动电压下运算放大器的输出电压uout,便可辨识出iBIAS。由于iBIAS是uout的斜率,故为iBIAS的辨识结果准确,需要对uout进行连续几十秒的采集。
2)压电执行器绝缘阻RP的辨识
在辨识压电执行器的绝缘电阻RP时,在空载(即压电执行器不受约束,F=0)下给压电执行器施加恒定的驱动电压u,在驱动电压作用几百秒后(以消除运算放大器输出电压uout的漂移),采集运算放大器的输出电压uout。由于电介质的介电吸收仅与瞬时充放电过程有关,故此时QDA为零,进而根据式(4),运算放大器的输出电压uout可表示为:
对式(8)两边同时求导数,由于压电执行器的输出力F为常值,故其导数为零,于是可得:
进而,可得压电执行器的绝缘电阻为:
由于运算放大器的偏置电流iBIAS已被辨识出,故由式(10)就能辨识出压电执行器的绝缘电阻RP。可见,只要采集到恒定驱动电压下运算放大器的输出电压uout,便可辨识出压电执行器的绝缘电阻RP。
3)电荷-力系数α的辨识由式(1)可知,电荷-力系数α为外力F作用下压电执行器的晶片表面电荷与该力之比,而压电执行器的晶片表面电荷又与积分器中积分电容C上的电荷QC(即Cuout)相同,进而根据式(3),电荷-力系数α可表示为:
于是,在辨识电荷-力系数α时,在u=0(即不给压电执行器施加驱动电压)的情况下,给压电执行器施加动态标准力(如通过砝码施加阶跃力或通过激振器施加正弦波作用力,之所以施加动态力,是因为压电陶瓷存在漏电阻,静态情况下其表面电荷会很快泄漏掉),同时采集运算放大器的输出电压uout,进而根据式(11),便可辨识出电荷-力系数α。在式(11)中,uout、F取各自的幅值即可。
4)晶片表面介电吸收电荷QDA的辨识由式(2)可知:
QC=Q (12)
根据式(5),可得式(12)中的QC为:
QC=αFest (13)
式中,Fest可根据已辨识出的参数求出。
而式(12)中的Q则为外力作用下压电执行器的晶片表面电荷(即αF)与介电吸收电荷QDA之和,即:
Q=αF+QDA (14)
进而可得:
QDA=α(Fest-F)=αΔFest (15)
电介质的介电吸收QDA在量值上可用αΔFest与u之间的一阶传递函数来表示,即:
式中,k为静态灵敏度,τ为时间常数。
式(16)可进一步表示为:
式中,Q* DA(s)=QDA(s)/α,k*=k/α。
由式(17)可知,只要辨识出了k*、τ,就可辨识出Q* DA(s),进而就可辨识出时域QDA。在辨识k*、τ时,在u=0(即不给压电执行器施加驱动电压)的情况下,通过砝码给压电执行器施加阶跃力F,同时采集运算放大器的输出电压uout,根据已辨识出的参数求出Fest,进而求出Fest与F之差ΔFest,画出ΔFest随时间变化的曲线(即砝码作用下的ΔFest响应曲线),ΔFest的稳态值与砝码所产生力的稳态值之比即为k*,ΔFest达到稳态值63.2%所对应的时间即为τ。在辨识出Q* DA(s)后,对其进行拉氏反变换,即可求得Q* DA(s)的时域响应Q* DA,进而就可求得QDA。
与现有技术相比,本发明的优点是:
1)在消除压电执行器中晶片漏电阻所产生的漏电流对自感知精度的影响时,不是通过给积分器中反馈电容的两端并联电阻的方式(即无需满足消除晶片漏电流的平衡条件),而是在积分器的输出电压中,减掉由晶片漏电流所引起的输出部分,从而在提高电执行器输出力自感知精度的情况下,使得积分器法易于实现,且免去了反复调节平衡的过程;
2)考虑了压电执行器中晶片在电压作用下所产生的介电吸收,进而在积分器的输出电压中,减掉了由介电吸收所引起的输出部分,提高了电执行器输出力的自感知精度;
3)考虑了构成积分器的运算放大器的偏置电流,进而在积分器的输出电压中,减掉了由运算放大器偏置电流所引起的输出部分,进一步提高了压电执行器输出力的自感知精度。
附图说明
图1是叠堆式压电执行器在电压作用下产生力与电荷的示意图;
图2是双晶片式压电执行器在电压作用下产生力与电荷的示意图;
图3是压电执行器与自感知电路的连接示意图;
图4是叠堆式压电执行器与自感知电路的连接示意图;
图5是双晶片式压电执行器与自感知电路的连接示意图。
具体实施方式
以下结合附图对本发明的实施例作进一步详细描述。
实施例一,如图1和图4所示,一种压电执行器输出力的自感知方法,该方法是,叠堆式压电执行器在驱动电压u作用下会发生变形,当其输出端被完全受约束住时,该变形就转化为叠堆式压电执行器的输出力F(如图1所示),叠堆式压电执行器在驱动电压作用下输出力的同时其晶片还会发生电极化,从而在晶片表面产生电荷Q(如图1所示),该电荷Q中包含了叠堆式压电执行器输出力F的信息,如果能够确定Q与F之间的关系,并且能够获得Q,便可获得F。
Q与F、u之间的关系,可通过第一类压电基本方程来获得。根据第一类压电基本方程,Q与F、u之间的关系可表示为:
Q=αF+Cpu (1)
式中,α为电荷-力系数,Cp为压电执行器的电容。
由式(1)可知,叠堆式压电执行器的晶片表面电荷中包含了叠堆式压电执行器输出力的信息,由于叠堆式压电执行器的驱动电压已知,故只要获得叠堆式压电执行器的晶片表面电荷,便可获得叠堆式压电执行器的输出力,进而便可省掉外部力传感器,实现叠堆式压电执行器输出力的自感知。
叠堆式压电执行器的晶片表面电荷Q可通过对流过晶片的电流进行积分来获取,图4给出了获取叠堆式压电执行器晶片表面电荷的积分电路(即积分器)。在图4中,积分器包括运算放大器A、积分电容C,其作用为对流过叠堆式压电执行器的电流进行积分;放电回路包括开关K、限流电阻Rk,其作用为在每次驱动叠堆式压电执行器前对积分电容C进行放电,以保证C上的电荷为零。
在图4中,叠堆式压电执行器的正极接电源的正极(电源的负极接地),叠堆式压电执行器的负极接运算放大器A的反向端(运算放大器A的同向端接地);积分电容C一端接运算放大器A的反向端,另一端接运算放大器A的输出端;开关K、限流电阻Rk串联后一端接运算放大器A的反向端,另一端接运算放大器A的输出端。
在图4中,运算放大器A的输出电压uout可表示为:
式中,C为积分器中的积分电容,QC为积分电容上的电荷,i为流过积分电容C及叠堆式压电执行器PA的电流。
将式(1)代入式(2),可得:
由式(3)可知,运算放大器A的输出电压uout能反映叠堆式压电执行器的输出力。因此,只要能准确获得uout,就能实现叠堆式压电执行器输出力的精密自感知。为此,就需要考虑影响运算放大器输出电压uout精度的因素。这些因素主要有以下三方面:
1)叠堆式压电执行器并非理想的绝缘体,其绝缘电阻(它与压电执行器的等效电容为并联关系)不是无穷大,在电压作用下会产生漏电流,该漏电流也会使运算放大器产生输出电压;
2)压电陶瓷材料具有介电吸收特性,会使叠堆式压电执行器晶片表面产生电荷,该电荷也会使运算放大器产生输出电压;
3)运算放大器存在偏置电流,该偏置电流也会使运算放大器产生输出电压。
考虑上述三种因素,运算放大器的输出电压uout可表示为:
式(4)中等号右边的后三项即分别为由叠堆式压电执行器漏电流、晶片表面介电吸收电荷、运算放大器偏置电流所引起的运算放大器的输出电压。其中,RP为叠堆式压电执行器的绝缘电阻,QDA为叠堆式压电执行器晶片的介电吸收电荷,iBIAS为运算放大器的偏置电流。
根据式(4),可得叠堆式压电执行器输出力的自感知表达式为:
式中,Fest为叠堆式压电执行器的自感知力。
由式(5)可知,只要辨识出α、RP、QDA、iBIAS,便可实现叠堆式压电执行器输出力的自感知。α、RP、QDA、iBIAS的辨识过程如下。
1)运算放大器偏置电流iBIAS的辨识由于运算放大器的偏置电流与运算放大器本身有关,而与叠堆式压电执行器的驱动电压u无关,故在辨识运算放大器的偏置电流iBIAS时,在不给叠堆式压电执行器施加驱动电压(即u=0)的情况下,采集运算放大器的输出电压uout。由于叠堆式压电执行器的驱动电压为零,故其输出力F、漏电流u/RP、介电吸收电荷QDA均为零,进而根据式(4),运算放大器的输出电压uout可表示为:
对式(6)两边同时求导数,可得:
由(7)可知,只要采集到无驱动电压下运算放大器的输出电压uout,便可辨识出iBIAS。由于iBIAS是uout的斜率,故为iBIAS的辨识结果准确,需要对uout进行连续几十秒的采集。
2)压电执行器绝缘阻RP的辨识
在辨识叠堆式压电执行器的绝缘电阻RP时,在空载(即叠堆式压电执行器不受约束,F=0)下给叠堆式压电执行器施加恒定的驱动电压u,在驱动电压作用几百秒后(以消除运算放大器输出电压uout的漂移),采集运算放大器的输出电压uout。由于电介质的介电吸收仅与瞬时充放电过程有关,故此时QDA为零,进而根据式(4),运算放大器的输出电压uout可表示为:
对式(8)两边同时求导数,由于叠堆式压电执行器的输出力F为常值,故其导数为零,于是可得:
进而,可得叠堆式压电执行器的绝缘电阻为:
由于运算放大器的偏置电流iBIAS已被辨识出,故由式(10)就能辨识出叠堆式压电执行器的绝缘电阻RP。可见,只要采集到恒定驱动电压下运算放大器的输出电压uout,便可辨识出叠堆式压电执行器的绝缘电阻RP。
3)电荷-力系数α的辨识由式(1)可知,电荷-力系数α为外力F作用下叠堆式压电执行器的晶片表面电荷与该力之比,而叠堆式压电执行器的晶片表面电荷又与积分器中积分电容C上的电荷QC(即Cuout)相同,进而根据式(3),电荷-力系数α可表示为:
于是,在辨识电荷-力系数α时,在u=0(即不给压电执行器施加驱动电压)的情况下,给叠堆式压电执行器施加动态标准力(如通过砝码施加阶跃力或通过激振器施加正弦波作用力,之所以施加动态力,是因为压电陶瓷存在漏电阻,静态情况下其表面电荷会很快泄漏掉),同时采集运算放大器的输出电压uout,进而根据式(11),便可辨识出电荷-力系数α。在式(11)中,uout、F取各自的幅值即可。
4)晶片表面介电吸收电荷QDA的辨识由式(2)可知:
QC=Q (12)
根据式(5),可得式(12)中的QC为:
QC=αFest (13)
式中,Fest可根据已辨识出的参数求出。
而式(12)中的Q则为外力作用下叠堆式压电执行器的晶片表面电荷(即αF)与介电吸收电荷QDA之和,即:
Q=αF+QDA (14)
进而可得:
QDA=α(Fest-F)=αΔFest (15)
电介质的介电吸收QDA在量值上可用αΔFest与u之间的一阶传递函数来表示,即:
式中,k为静态灵敏度,τ为时间常数。
式(16)可进一步表示为:
式中,Q* DA(s)=QDA(s)/α,k*=k/α。
由式(17)可知,只要辨识出了k*、τ,就可辨识出Q* DA(s),进而就可辨识出时域QDA。在辨识k*、τ时,在u=0(即不给叠堆式压电执行器施加驱动电压)的情况下,通过砝码给叠堆式压电执行器施加阶跃力F,同时采集运算放大器的输出电压uout,根据已辨识出的参数求出Fest,进而求出Fest与F之差ΔFest,画出ΔFest随时间变化的曲线(即砝码作用下的ΔFest响应曲线),ΔFest的稳态值与砝码所产生力的稳态值之比即为k*,ΔFest达到稳态值63.2%所对应的时间即为τ。在辨识出Q* DA(s)后,对其进行拉氏反变换,即可求得Q* DA(s)的时域响应Q* DA,进而就可求得QDA。
实施例二,如图2和图5所示,与实施例一相似,不同之处在于压电执行器是双晶片式压电执行器。
本发明的最佳实施例已阐明,由本领域普通技术人员做出的各种变化或改型都不会脱离本发明的范围。
Claims (3)
1.一种压电执行器输出力的自感知方法,包括用于获得压电执行器晶片表面电荷的积分器,积分器包括运算放大器和积分电容,其特征是:所述的压电执行器输出力F的自感知表达式为:
式中,Fest为压电执行器的自感知力,C为积分器中的积分电容,uout为积分器中运算放大器的输出电压,α为电荷-位移系数,CP为压电执行器电容,RP为压电执行器的绝缘电阻,u为施加在压电执行器上的驱动电压,QDA为压电执行器晶片的介电吸收电荷,iBIAS为运算放大器的偏置电流;C的值、CP的值和u的值已知;
α的值是不给压电执行器施加驱动电压的情况下,给压电执行器施加动态标准力F,同时采集运算放大器的输出电压uout,进而通过运算式求得;QDA的值是通过运算式以及Q* DA(s)=QDA/α、k*=k/α求得;在辨识k*、τ时,在u=0(即不给压电执行器施加驱动电压)的情况下,通过砝码给压电执行器施加阶跃力F,同时采集运算放大器的输出电压uout,根据已辨识出的参数求出Fest,进而求出Fest与F之差ΔFest,画出ΔFest随时间变化的曲线,ΔFest的稳态值与砝码所产生力的稳态值之比即为k*,ΔFest达到稳态值63.2%所对应的时间即为τ;在辨识出Q* DA(s)后,对其进行拉式反变换,即可求得Q* DA(s)的时域响应Q* DA,进而就能求得QDA。
2.根据权利要求1所述的一种压电执行器输出位移的自感知方法,其特征是:所述的压电执行器为叠堆式压电执行器。
3.根据权利要求1所述的一种压电执行器输出位移的自感知方法,其特征是:所述的压电执行器为双晶片式压电执行器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911104275.9A CN111060232B (zh) | 2019-11-13 | 2019-11-13 | 一种压电执行器输出力的自感知方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911104275.9A CN111060232B (zh) | 2019-11-13 | 2019-11-13 | 一种压电执行器输出力的自感知方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111060232A true CN111060232A (zh) | 2020-04-24 |
CN111060232B CN111060232B (zh) | 2021-09-03 |
Family
ID=70297819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911104275.9A Active CN111060232B (zh) | 2019-11-13 | 2019-11-13 | 一种压电执行器输出力的自感知方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111060232B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111896150A (zh) * | 2020-07-09 | 2020-11-06 | 佛山科学技术学院 | 基于压电悬臂梁高频颤振的微尺度力传感器及其测量方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672272A (zh) * | 2002-07-31 | 2005-09-21 | 西门子公司 | 压电执行器及其制造方法 |
CN101390227A (zh) * | 2005-12-21 | 2009-03-18 | 伊德斯德国股份有限公司 | 三维堆叠压电元件和具有这种堆叠压电元件的压电执行器 |
US20110063743A1 (en) * | 2009-09-17 | 2011-03-17 | Hyun Phill Ko | Piezo actuator and lens actuating module using the same |
US20110163635A1 (en) * | 2010-01-04 | 2011-07-07 | Jae Kyung Kim | Piezoelectric actuator module |
CN103336429A (zh) * | 2013-06-24 | 2013-10-02 | 中国科学院长春光学精密机械与物理研究所 | 一种压电陶瓷执行器的高精度控制方法 |
CN103424657A (zh) * | 2013-08-16 | 2013-12-04 | 浙江展途动力科技有限公司 | 一种用于测试压电执行器工作性能的试验台 |
CN105196272A (zh) * | 2015-08-20 | 2015-12-30 | 宁波大学 | 四自由度压电微夹钳钳指输出位移与输出力的自感知方法 |
CN206003838U (zh) * | 2016-09-07 | 2017-03-08 | 四川源鑫瑞科微执行器有限公司 | 拨动机构及应用该拨动机构的斜齿拨动型压电执行器 |
CN206004553U (zh) * | 2016-09-07 | 2017-03-08 | 四川源鑫瑞科微执行器有限公司 | 直线型压电拨动机构及直线型压电执行器 |
-
2019
- 2019-11-13 CN CN201911104275.9A patent/CN111060232B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672272A (zh) * | 2002-07-31 | 2005-09-21 | 西门子公司 | 压电执行器及其制造方法 |
CN101390227A (zh) * | 2005-12-21 | 2009-03-18 | 伊德斯德国股份有限公司 | 三维堆叠压电元件和具有这种堆叠压电元件的压电执行器 |
US20110063743A1 (en) * | 2009-09-17 | 2011-03-17 | Hyun Phill Ko | Piezo actuator and lens actuating module using the same |
US20110163635A1 (en) * | 2010-01-04 | 2011-07-07 | Jae Kyung Kim | Piezoelectric actuator module |
CN103336429A (zh) * | 2013-06-24 | 2013-10-02 | 中国科学院长春光学精密机械与物理研究所 | 一种压电陶瓷执行器的高精度控制方法 |
CN103424657A (zh) * | 2013-08-16 | 2013-12-04 | 浙江展途动力科技有限公司 | 一种用于测试压电执行器工作性能的试验台 |
CN105196272A (zh) * | 2015-08-20 | 2015-12-30 | 宁波大学 | 四自由度压电微夹钳钳指输出位移与输出力的自感知方法 |
CN206003838U (zh) * | 2016-09-07 | 2017-03-08 | 四川源鑫瑞科微执行器有限公司 | 拨动机构及应用该拨动机构的斜齿拨动型压电执行器 |
CN206004553U (zh) * | 2016-09-07 | 2017-03-08 | 四川源鑫瑞科微执行器有限公司 | 直线型压电拨动机构及直线型压电执行器 |
Non-Patent Citations (1)
Title |
---|
崔玉国等: "压电微夹钳钳指位移与夹持力的检测", 《光学精密工程》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111896150A (zh) * | 2020-07-09 | 2020-11-06 | 佛山科学技术学院 | 基于压电悬臂梁高频颤振的微尺度力传感器及其测量方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111060232B (zh) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Elfrink et al. | Vibration energy harvesting with aluminum nitride-based piezoelectric devices | |
Minase et al. | A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators | |
Sarban et al. | Dynamic electromechanical modeling of dielectric elastomer actuators with metallic electrodes | |
Mo et al. | Behaviour of a unimorph circular piezoelectric actuator | |
WO2010027466A2 (en) | Displacement actuation and sensing for an electrostatic drive | |
JPH01253657A (ja) | 加速度センサ | |
CN110906852B (zh) | 一种压电执行器输出位移的自感知方法 | |
Dong et al. | Simultaneous actuation and displacement sensing for electrostatic drives | |
Xu et al. | Precise motion control of a nanopositioning PZT microstage using integrated capacitive displacement sensors | |
US7474455B2 (en) | Deformable mirror | |
JP2009097932A (ja) | 容量型検出装置 | |
CN111060232B (zh) | 一种压电执行器输出力的自感知方法 | |
Bazaei et al. | Displacement sensing by piezoelectric transducers in high-speed lateral nanopositioning | |
Mansour et al. | Piezoelectric bimorph actuator with integrated strain sensing electrodes | |
JP5486832B2 (ja) | 圧電アクチュエータの機械出力測定評価方法、制御方法及びこれらの方法を用いた装置 | |
CN110868193B (zh) | 一种压电执行器输出位移与输出力的自感知方法 | |
JP6673579B2 (ja) | アクチュエータ | |
CN108761128B (zh) | 压电振动激励自诊断mems加速度计表芯及加速度计 | |
Ivan et al. | Self-sensing measurement in piezoelectric cantilevered actuators for micromanipulation and microassembly contexts | |
CN116448286A (zh) | 一种硅谐振压力传感器及其在线校准方法 | |
Lai et al. | Electric modulation on the sensitivity and sensing range of CMOS-MEMS tactile sensor by using the PDMS elastomer fill-in | |
Liu et al. | The modeling and experiments of a PVDF mirco-force sensor | |
JP2017070133A (ja) | 部品ピックアップ機構 | |
Zahirovic et al. | Piezoresistive position sensing for the detection of hysteresis and dielectric charging in CMOS-MEMS variable capacitors | |
Zsurzsan et al. | Piezoelectric stack actuator parameter extraction with hysteresis compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |