CN111057755B - Cardiovascular and cerebrovascular disease genetic risk assessment detection panel and application thereof - Google Patents
Cardiovascular and cerebrovascular disease genetic risk assessment detection panel and application thereof Download PDFInfo
- Publication number
- CN111057755B CN111057755B CN201910515382.4A CN201910515382A CN111057755B CN 111057755 B CN111057755 B CN 111057755B CN 201910515382 A CN201910515382 A CN 201910515382A CN 111057755 B CN111057755 B CN 111057755B
- Authority
- CN
- China
- Prior art keywords
- dna
- artificial sequence
- cardiovascular
- gene
- cerebrovascular disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention belongs to the field of gene detection, and particularly relates to a genetic risk assessment detection panel for cardiovascular and cerebrovascular diseases and application thereof, wherein the detection panel is used for detecting 112 cardiovascular and cerebrovascular disease related susceptible genes of human genome DNA, and comprises a multiplex PCR amplification primer pair of 132 SNP sites of the 112 cardiovascular and cerebrovascular disease related susceptible genes and a single base extension primer of the 112 cardiovascular and cerebrovascular disease related susceptible genes. Compared with the prior art, the invention has the beneficial effects that: the invention covers the condition that the number of the cardiovascular and cerebrovascular disease related detection gene sites is large, and the method is specially used for evaluating and detecting the cardiovascular and cerebrovascular disease genetic risk of Asian people (particularly Chinese people), and can more efficiently evaluate the cardiovascular and cerebrovascular disease genetic risk of Asian people (particularly Chinese people).
Description
Technical Field
The invention belongs to the field of gene detection, and particularly relates to a genetic risk assessment and detection panel for cardiovascular and cerebrovascular diseases and application thereof.
Background
Chinese chronic disease prevention and treatment middle and long term plans (2017-2025) indicate that chronic diseases are a class of diseases seriously threatening the health of residents in China and become a great public health problem influencing the development of the national economy and society. According to statistics of 'Chinese cardiovascular disease report 2017' issued by the national cardiovascular disease center, the number of cardiovascular disease patients in China reaches 2.9 hundred million, the death rate of cardiovascular diseases accounts for more than 40 percent of the death rate of resident diseases, the death rate of cardiovascular diseases is higher than that of tumors and other diseases at the top, and the prevalence rate of cardiovascular diseases in China is still in an increasing trend. The cardiovascular and cerebrovascular diseases are the first killers of human health, and China enters the period of high incidence of the cardiovascular and cerebrovascular diseases, and the cardiovascular and cerebrovascular diseases have the characteristics of high incidence rate, high disability rate, high death rate, high recurrence rate and more complications.
The Nobel prize winner, Rough doctor Chuan, showed that "all diseases are related to genes except for trauma". Genetic testing can diagnose disease and can also be used for prediction of disease risk. On the gene level, diseases can be divided into monogenic diseases, polygenic diseases and acquired genetic diseases, most of common chronic diseases belong to polygenic diseases, such as hypertension, coronary heart disease, diabetes and the like, and everyone carries the internal cause of certain diseases, namely disease susceptibility genes.
In 2013, the Angelica julian Zhuli discovers a BRCA1 mutant genotype carrying high risk of breast cancer through gene detection, and the breast cancer incidence is reduced from 87% to 5% through mammary gland excision. The research result of the association between diseases and gene polymorphism makes the screening of disease susceptibility genes possible, the research result of the whole genome association analysis of cardiovascular and cerebrovascular diseases at home and abroad is gradually reported, and the relationship between the cardiovascular and cerebrovascular diseases and the gene polymorphism is gradually clear. For example, scientists find that the incidence risk of coronary heart disease is obviously related to the polymorphism of gene loci such AS C6orf10, CDKN2B-AS1, PHACTR1, PTPN11, ACP1 and the like. The ACP1 gene polymorphism site (rs3828329-T) can increase the coronary heart disease risk of women over 65 years old by 227%; the CDKN2B-AS1 researches find that the polymorphism of the gene is related to the risks of various diseases, such AS coronary heart disease, myocardial infarction, type 2 diabetes, ischemic stroke, periodontitis and the like; the C6orf10 gene has strong correlation with the coronary heart disease incidence at the gene polymorphism site (rs6903956) in Chinese population, and the coronary heart disease risk can be obviously improved by carrying the allele A. Hypertension-related susceptibility genes such as CORIN gene, CYP21A2 gene, FSTL4 gene, CACNA1D gene, BMPR1B gene and ADD2 gene. The CORIN gene encodes a member of type II transmembrane serine protease, the encoded protein converts atrial natriuretic peptide into bioactive atrial natriuretic peptide which is a cardiac hormone for regulating blood volume and blood pressure, and the polymorphic site research of the gene finds that two polymorphic sites of the gene are related to the occurrence of hypertension. The hypercholesterolemia risk gene APOE gene encodes a protein which is a main apolipoprotein of chylomicrons, and the mutation of the gene can cause abnormal normal catabolism of lipoproteins in triglyceride components in vivo, cause the increase of plasma cholesterol and further cause the risk of hypercholesterolemia. A study on 8626 patients with cerebral hemorrhage and 8046 normal control groups in the study on cerebral apoplexy GWAS shows that the risk of cerebral apoplexy at the polymorphic site (rs11833579-A) of WNK1 gene is increased by 1.08 times. The LPL gene is proved by Japanese scientists that the polymorphic site (rs264-A) of the gene has certain relevance with the attack risk of myocardial infarction, the site is used as a protective factor of the myocardial infarction, and the carrying allele A can reduce the attack risk of the myocardial infarction. Similar research results are many, with the application of gene detection in the medical field, more and more cardiovascular and cerebrovascular disease risk assessment products serve the market, and the early gene screening and the comprehensive disease risk assessment are used for understanding the genetic factors of individuals in the aspects of cardiovascular and cerebrovascular diseases and assessing the genetic risk of cardiovascular and cerebrovascular diseases, so that the method has important significance in early prevention, early intervention and auxiliary diagnosis of the cardiovascular and cerebrovascular diseases.
The association of cardiovascular and cerebrovascular diseases and gene single nucleotide polymorphisms has been widely confirmed by the scientific community. Related invention patents also disclose some susceptible gene detection kits related to cardiovascular and cerebrovascular series diseases, for example, the CN201810412509.5 patent discloses a primer for detecting familial hypercholesterolemia susceptibility related SNP sites and a detection method thereof, and 4 hypercholesterolemia susceptibility SNP sites are detected in total; the CN201610357101.3 patent provides a primer for detecting SNP sites related to hypertension susceptibility, which comprises a primer of the rs16849225 site of a FING gene, a primer of the rs6825911 site of an ENPEP gene, a primer of the rs1173766 site of an NPR3 gene and a primer of the rs35444 site of a TBX3 gene. The CN201510003036.X patent discloses 12 SNP sites of 8 major genes of sudden cardiac death, and combines the characteristics of specific allele PCR and temperature gradient drop PCR, and each SNP site adopts three specific primers of upstream and downstream respectively, and the mutation situation of the SNP site can be simultaneously determined by amplifying through the temperature gradient drop PCR program and analyzing through agarose gel electrophoresis. The problems of the invention patents related to the cardiovascular and cerebrovascular disease genetic risk assessment are concentrated at three points: firstly, the detection of cardiovascular and cerebrovascular diseases is single in type, and most of the detection is single in cardiovascular and cerebrovascular diseases; secondly, the number of susceptibility genes and SNP sites detected by each disease is small, and the scientificity of a genetic risk assessment system is reduced; thirdly, the detection method is complex to operate (such as PCR method and agarose gel electrophoresis analysis method), low in detection efficiency and high in cost.
Disclosure of Invention
In order to solve the technical problems, the invention provides a low-cost and high-efficiency genetic risk assessment and detection panel for cardiovascular and cerebrovascular diseases on one hand; the invention also provides application of the genetic risk assessment detection panel for the cardiovascular and cerebrovascular diseases in assessment of susceptibility, early prevention and clinical auxiliary diagnosis of the individual cardiovascular and cerebrovascular diseases.
In order to achieve the technical purpose, the invention adopts the following technical scheme:
a cardiovascular and cerebrovascular disease genetic risk assessment detection panel, said detection panel is used for detecting 112 cardiovascular and cerebrovascular disease related susceptible genes of human genomic DNA, said detection panel includes multiple PCR amplification primer pairs of 132 SNP loci of 112 cardiovascular and cerebrovascular disease related susceptible genes and single base extension primer of 112 cardiovascular and cerebrovascular disease related susceptible genes.
Furthermore, the cardiovascular and cerebrovascular disease genetic risk assessment tests 112 cardiovascular and cerebrovascular disease-related susceptibility genes of human genomic DNA covered by panel are shown in Table 1.
Furthermore, the genetic risk assessment for cardiovascular and cerebrovascular diseases detects 132 susceptible gene polymorphic sites covered by panel, which is shown in Table 2.
Further, the multiple PCR amplification primer sequence pair is a nucleotide sequence shown in SEQ ID NO.1-SEQ ID NO. 264.
Further, the sequence of the single-base extension primer is the nucleotide sequence shown in SEQ ID NO.265-SEQ ID NO. 396. .
Furthermore, the genetic risk assessment and detection panel results of cardiovascular and cerebrovascular diseases comprise the genetic risk assessment of nine cardiovascular and cerebrovascular diseases such as hypertension, coronary heart disease, myocardial infarction, hypertriglyceridemia, hypercholesterolemia, ischemic stroke, hemorrhagic stroke, intracranial aneurysm and sudden cardiac death.
Further, the detection method for detecting panel by evaluating the genetic risk of cardiovascular and cerebrovascular diseases comprises the following steps:
firstly, extracting human genome DNA from oral mucosa, peripheral blood and tissues of a human as sample DNA;
step two, performing multiple PCR amplification on the sample DNA obtained in the step one by using a multiple PCR amplification primer pair and a single base extension primer for detecting 132 SNP sites of 112 cardiovascular and cerebrovascular disease related susceptibility genes of human genome DNA in the panel, and then performing SNP typing on the sample by adopting a matrix assisted laser analysis ionization time-of-flight mass spectrometry to obtain a genotype result of the SNP sites of the sample;
step three, according to the genotype result of the SNP locus of the sample obtained in the step two, a risk comprehensive evaluation system is utilized to evaluate the susceptibility of the individual cardiovascular and cerebrovascular disease risk
The application of the genetic risk assessment detection panel for the cardiovascular and cerebrovascular diseases comprises screening high risk groups of the cardiovascular and cerebrovascular diseases from a genetic level and auxiliary diagnosis of clinical cardiovascular and cerebrovascular diseases.
Compared with the prior art, the invention has the beneficial effects that:
the invention covers the genetic risk assessment and detection of cardiovascular and cerebrovascular diseases of Asian population (especially Chinese population) with more sites for detecting cardiovascular and cerebrovascular diseases related to the cardiovascular and cerebrovascular diseases, and can more efficiently assess the genetic risk of cardiovascular and cerebrovascular diseases of Asian population (especially Chinese population); the detection result of the invention comprises the evaluation of the genetic risk of nine cardiovascular and cerebrovascular diseases, can screen high risk groups of the cardiovascular and cerebrovascular diseases, and provides a new way for the early prevention, the early intervention and the clinical auxiliary diagnosis of clinical cardiovascular and cerebrovascular diseases; the detection panel of the invention utilizes multiple PCR technology, adopts matrix-assisted laser desorption ionization time-of-flight mass spectrometry to carry out SNP typing after multiple PCR amplification, detects 132 polymorphic sites related to cardiovascular and cerebrovascular disease susceptibility genes at one time, and has high detection efficiency, high accuracy and lower cost.
Drawings
FIG. 1-1 is a nucleic acid mass spectrum peak of a multiple pore 1 genotype at site rs361508 of TRDN gene;
FIG. 1-2 is a chromatogram of the nucleic acid peak of the diplopore 2 genotype at the rs361508 locus of the TRDN gene;
FIGS. 1-3 are the nucleotide mass spectrum peak diagrams of the multiple-hole 3 genotype at the locus rs361508 of the TRDN gene;
FIG. 2-1 is the nucleic acid mass spectrum peak of the rs9298506 locus diplopore 1 genotype of the SOX17 gene;
FIG. 2-2 is a nucleic acid mass spectrum peak of the diplopore 2 genotype at the rs9298506 site of the SOX17 gene;
FIG. 2-3 is a nucleic acid mass spectrum peak of the diplopore 3 genotype at the rs9298506 site of the SOX17 gene;
FIG. 3-1 is the peak diagram of the RNA mass spectrum of multiple pore 1 genotype at locus rs3798220 of LPA gene;
FIG. 3-2 is a nucleic acid mass spectrum peak of a diplopore 2 genotype at rs3798220 locus of the LPA gene;
FIG. 3-3 is a diagram of a nucleic acid mass spectrum peak of a multiple pore 3 genotype at locus rs3798220 of LPA gene;
FIG. 4-1 is a nucleic acid mass spectrum peak of a diplopore 1 genotype at the rs10021303 site of the BMPR1B gene;
FIG. 4-2 is a nucleic acid mass spectrum peak diagram of the double-well 2 genotype at the rs10021303 site of the BMPR1B gene;
FIG. 4-3 is the nucleic acid mass spectrum peak of the rs10021303 locus of the BMPR1B gene with the 3 genotype of multiple wells;
in the figure, FIGS. 1, 2, 3 and 4 are graphs of 4-site mass spectra of randomly selected RY-CC-1 samples; the 3 complex pore mass spectrum peaks of the corresponding sites of the figure 1 are figures 1-1, 1-2 and 1-3; the peak patterns of 3 multiple pore mass spectra at the corresponding site in FIG. 2/3/4 are shown in FIGS. 2/3/4-1, 2/3/4-2 and 2/3/4-3, respectively.
Detailed Description
The invention is described in detail below with reference to specific examples, but the invention can be implemented in many different ways as defined and covered by the claims.
EXAMPLE 1 establishment of the protocol
Firstly, determining susceptibility genes (table 1) and SNP sites (table 2) of cardiovascular and cerebrovascular diseases according to the relationship between genetic risk and gene polymorphism of the cardiovascular and cerebrovascular diseases.
Secondly, aiming at the SNP sites covered in the detection panel, designing a multiplex PCR amplification primer pair (the nucleotide sequence shown by SEQ ID NO.1-SEQ ID NO. 264) and a single-base extension primer SEQ ID NO.265-SEQ ID NO.396 (the nucleotide sequence shown by SEQ ID NO.265-SEQ ID NO. 396).
Thirdly, taking human genome DNA as a sample (oral mucosa, peripheral blood and tissues), and performing multiplex PCR amplification on the primers in the detection panel to obtain an amplification product and an extension product.
Matrix-assisted laser analysis ionization time-of-flight mass spectrometry is adopted to carry out SNP genotyping, and the genetic risk degree of the individual cardiovascular and cerebrovascular diseases is evaluated through a disease risk evaluation system.
TABLE 1 genetic Risk assessment for cardiovascular and cerebrovascular diseases detection of the panel detection Gene
ABO | TOMM40-APOE | ADAMTS7-MORF4L | PMF1 |
APOB | FADS1-FADS2 | BCAP29 | CDCL5L/SUPT3H |
APOE | MLXIPL | KLAA1462 | NAA25 |
CDKN2A/B | BMPR1B | PTPN11 | CDKN2A,CDKN2B |
CDKN2A/CDKN2B | FSTL4 | RBBP8 | FMNL2 |
CDKN2B-AS1 | LINC01317 | BOLL | ARL6IP6 |
CNNM2 | CDH13 | KL/STARD13 | TSPAN2 |
DOCK7 | CACNA1D | LOX | |
EDNRA | CYP21A2 | ||
8∶143913252 | | ||
GCKR | MED13L | ||
5∶122091535 | HABP2 | ||
HDAC9 | ADD2 | RRBP1 | ALDH2 |
LINCO137 | BCAT1 | | PRKCH |
LPL | |||
1∶239273242 | | AQP9 | |
PHACTR1 | |||
8∶139167781 | 2∶197326170 | HNRNPA3P1-CXCL12 | |
PITX2 | MYBPC1 | MAPKAP1 | 21∶17414857 |
RYR2 | 13∶67461239 | TRAPPC9 | 21∶17415195 |
SCN5A | SLC4A7 | ITM2C | MIA3 |
SMARCA4 | C12orf51 | F2 | WDR12 |
SOX17 | GUCY1A3 | SEMA3C | CDKN2BAS |
TCF21 | TTC32/WDR35 | CPEB-2 | LIPA |
TRIB1 | ATP2B1 | LOC105375977 | PCSK9 |
ZFHX3 | GPX1 | AVEN/RYR3 | FLT1 |
HMGCR | C6orf105 | WNK2 | PSRC1 |
CETP | C6orf10-BTNL2 | ERLIN1 | KCNQ1 |
APOC1 | ADTRP | NINJ2 | ADRB2 |
ABCA1 | TERT | NPR3/C5orf23 | CALM1 |
APOA5-A4-C3-A1 | ACP1 | WNK1 | TRDN |
BUD13-ZNF259 | PDGFD | DLC1 | GJA5 |
TABLE 2 genetic Risk assessment for cardiovascular and cerebrovascular diseases detection of the panel detection site
rs2824292 | rs361508 | rs6538595 | rs10744777 |
rs2824293 | rs11067763 | rs6841581 | rs12122341 |
rs579459 | rs2271037 | rs11661542 | rs2107595 |
rs1746048 | rs6711736 | rs9315204 | rs7193343 |
rs1122608 | rs6596140 | rs9298506 | rs1986743 |
rs3798220 | rs1937506 | rs2303656 | rs4471613 |
rs264 | rs2021783 | rs1132274 | rs879324 |
rs11591147 | rs7961152 | rs5742904 | rs2304556 |
rs12190287 | rs2820037 | rs3764261 | rs12204590 |
rs9319428 | rs11110912 | rs4420638 | rs2505083 |
rs599839 | rs6729869 | rs429358 | rs12232780 |
rs17465637 | rs3755351 | rs10889353 | rs2076185 |
rs1412444 | rs10021303 | rs12654264 | rs12524865 |
rs4977574 | rs10495809 | rs1883025 | rs9268402 |
rs12413409 | rs9810888 | rs2954029 | rs4380028 |
rs9369640 | rs6997709 | rs7412 | rs11066280 |
rs10757274 | rs3749585 | rs2984613 | rs7136259 |
rs6842241 | rs820430 | rs16936752 | rs7865618 |
rs1333040 | rs9308945 | rs3111754 | rs10069690 |
rs6475606 | rs11196288 | rs1324694 | rs1333042 |
rs1429412 | rs556621 | rs877087 | rs3828329 |
rs4628172 | rs6843082 | rs6449093 | rs9349379 |
rs763497 | rs17696736 | rs11833579 | rs12526453 |
rs10958409 | rs2230500 | rs12679196 | rs2123536 |
rs2891168 | rs12932445 | rs7853368 | rs10953541 |
rs10757278 | rs11984041 | rs3211928 | rs11879293 |
rs390446 | rs2723334 | rs10986769 | rs11066301 |
rs10757272 | rs2200733 | rs713536 | rs439401 |
rs1042714 | rs1260326 | rs12425791 | rs7016880 |
rs1805126 | rs964184 | rs4867131 | rs17145738 |
rs3766871 | rs326 | rs3814843 | rs780094 |
rs11720524 | rs1260333 | rs2283222 | rs157580 |
rs35594137 | rs12286037 | rs790896 | rs174546 |
Example 2 sample extraction and analysis
In order to verify the accuracy and effectiveness of the primer for genetic risk assessment and detection of cardiovascular and cerebrovascular diseases, 2 samples (RY-CC-1 and RY-CC-2) are selected, each sample is provided with 3 multiple holes, and SNP typing is carried out on a nucleic acid mass spectrum platform, wherein the process comprises the following steps:
a whole blood genome DNA extraction: the genomic DNA of the sample blood is extracted by using a Hangzhou Bori Biospin whole blood genomic DNA extraction kit. Adding a certain amount of absolute ethyl alcohol into the protein rinsing liquid and the washing liquid. Taking 200uL of blood sample from the sampling tube, putting the blood sample into a new 1.5ml FP tube, adding 10uL of protease K, then adding 200uL of lysate, and shaking and uniformly mixing for 5-10 seconds; incubation at 56 ℃ for 15 minutes; adding 200uL of absolute ethyl alcohol into the centrifugal tube, fully shaking, uniformly mixing and centrifuging; transferring the liquid to a purification column with a collecting pipe, centrifuging for 1min at 6,000-8,000 Xg, and removing the waste liquid in the outer sleeve; adding 500uL deproteinized rinsing liquid on a purification column, centrifuging for 1min at 6,000-8,000 Xg, and discarding the waste liquid in an outer sleeve; adding 700uL of washing solution into a purification column, centrifuging for 1min at 10,000 Xg, and discarding waste liquid in an outer sleeve; repeating the steps once; the column was returned to the pipette and centrifuged at 10,000 Xg for 2 min; the column was transferred to a clean 1.5ml centrifuge tube. 70uL of the eluate was added to the column, and the column was left standing at room temperature for 1min, centrifuged at 13,000 Xg for 1min, and the column was discarded, and the liquid in the tube contained genomic DNA.
B, PCR amplification: preparing PCR Mix (ddH2O 15.8.8 uL, 10 XPCR Buffer 4.4 uL, MgCl23.5 uL, dNTP 0.9 uL, PCR enzyme 1.8uL), shaking and mixing uniformly, and then according to a reaction system for multiplex PCR amplification (5 uL): sequentially adding PCR Mix 3uL, an amplification primer Mix 1uL and template DNA (20ng/uL)1uL into a 384-pore plate, sealing by using a sealing plate membrane to prevent a sample from evaporating, shaking, uniformly mixing and centrifuging; the sealed 384-Well plate is placed on an ABI 384 Well Thermal Cycler for amplification reaction, and the reaction conditions are as follows: pre-denaturation at 95 deg.C for 2min, (30 s at 95 deg.C, 30s at 56 deg.C, 1min at 72 deg.C) for 45 cycles, 5min at 72 deg.C, and maintaining at 4 deg.C; obtaining PCR amplification products, and centrifuging for later use.
SAP digestion: taking out the PCR amplification product in the step B, centrifuging, removing a sealing plate film, and placing on an ice plate at 4 ℃ for later use; preparing SAP Mix (ddH2O 13.7.7 uL, SAP Buffer 1.5 uL, SAP enzyme 2.7 uL), shaking, mixing uniformly, adding into 2uL of each reaction well of 384-well plate, sealing with sealing plate film to prevent sample evaporation, shaking, mixing uniformly, and centrifuging; the SAP digestion reaction was performed by placing the sealed 384 Well plates on an ABI 384 Well Thermal Cycler under the following reaction conditions: at 37 deg.C for 40min, at 85 deg.C for 5min, and maintaining at 4 deg.C; SAP digest was obtained and centrifuged for use.
D. Single base extension reaction: preparing iPLEX Mix (ddH2O 5.9.9 uL, iPLEX Buffer 1.9 uL, Termination Mix 1.9 uL and iPLEX enzyme 0.4 uL), vibrating and mixing uniformly, adding the mixture into each reaction hole of a 384-hole plate for 1.06uL, then respectively adding corresponding extension primers Mix0.94uL into each reaction hole, sealing tightly by using a sealing plate film to prevent a sample from evaporating, vibrating and mixing uniformly, and centrifuging; the sealed 384-Well plate was placed on an ABI 384 Well Thermal Cycler for extension reaction under the following conditions: pre-denaturation at 94 ℃ for 30s, denaturation at 94 ℃ for 5s, (5 s at 52 ℃ and 5s at 80 ℃) for 5 repeats; keeping at 72 deg.C for 3min and 4 deg.C; the extension product is obtained and centrifuged for further use.
E. Resin purification: d, after the 384-hole plate of the single-base extension product obtained in the step D is gently torn off the plate sealing film, 16 mu L of ddH2O is added into each hole, the mixture is uniformly stirred and vibrated, and the mixture is centrifugally placed on an ice plate at 4 ℃ for later use; placing a 6MG 384 board on clean A4 paper, taking a proper amount of purified resin with a spoon, repeatedly pushing the purified resin horizontally with a plastic board, and compacting to make the resin content in each hole uniform; pressing the 384 plate upside down on the 6MG 384 plate, exchanging the two plates, knocking the 6MG plate on the upper side, knocking the back of the 6MG plate, and making the resin fall into the 384-well plate filled with the single-base extension product; after the sealing plate film is sealed, the rotanal Mixer WH-986 is turned upside down and mixed evenly for 15min, and then the mixture is fully purified.
F. Chip sample application: placing the 384-pore plate in the step E in a high-speed refrigerated centrifuge ST16R, centrifuging at 3000rpm for 5min, and removing the sealing plate membrane for later use; starting a MassARRAY Nanodispenser RS1000 sample applicator, and transferring the extension product after resin purification to a 384-hole SpectroCHIP chip; the spotted chip was analyzed by MALDI-TOF, typed by TYPER4.0 software, and output the detection result.
Example 3 analysis of Gene test results
And (3) carrying out SNP genotyping by using a matrix-assisted laser desorption ionization time-of-flight mass spectrometry, carrying out genotyping by using TYPER4.0 software, and outputting a detection result. Tables 3 and 4 show the SNP locus gene detection results of RY-CC-1 and RY-CC-2, respectively, and it can be seen from tables 3 and 4 that the genotypes of 132 loci of the two embodiments can be accurately detected, and the detection rate is 100%; after 3 multiple-pore genotypes of all sites are compared, the coincidence rate reaches 100%, and 3 multiple-pore mass spectrum maps of 4 sites of the RY-CC-1 sample of the embodiment are randomly selected and shown in the attached drawing for description, and the detailed description is shown in the attached drawing.
TABLE 3 example RY-CC-1 SNP site gene assay results
SNP site | The result of the detection | SNP site | The result of the detection | SNP site | The result of the detection | SNP site | The result of the detection |
rs10021303 | G | rs12526453 | C | rs264 | G | rs6449093 | AG |
rs10069690 | C | rs1260326 | T | rs2723334 | T | rs6475606 | T |
rs1042714 | C | rs1260333 | A | rs2820037 | A | rs6538595 | GA |
rs10495809 | GA | rs12654264 | AT | rs2824292 | G | rs6596140 | C |
rs10744777 | C | rs12679196 | CT | rs2824293 | G | rs6711736 | GA |
rs10757272 | T | rs12932445 | T | rs2891168 | G | rs6729869 | AT |
rs10757274 | G | rs1324694 | C | rs2954029 | T | rs6841581 | AG |
rs10757278 | G | rs1333040 | T | rs2984613 | CT | rs6842241 | CA |
rs10889353 | A | rs1333042 | G | rs3111754 | C | rs6843082 | G |
rs10953541 | TC | rs1412444 | T | rs3211928 | C | rs6997709 | G |
rs10958409 | GA | rs1429412 | A | rs326 | A | rs7016880 | G |
rs10986769 | A | rs157580 | GA | rs35594137 | CT | rs713536 | CT |
rs11066280 | T | rs16936752 | GT | rs361508 | CT | rs7136259 | C |
rs11066301 | A | rs17145738 | C | rs3749585 | G | rs7193343 | CT |
rs11067763 | A | rs174546 | CT | rs3755351 | G | rs7412 | C |
rs11110912 | C | rs1746048 | C | rs3764261 | C | rs763497 | GA |
rs11196288 | GA | rs17465637 | C | rs3766871 | G | rs780094 | T |
rs1122608 | G | rs17696736 | A | rs3798220 | T | rs7853368 | G |
rs1132274 | A | rs1805126 | AG | rs3814843 | T | rs7865618 | A |
rs11591147 | G | rs1883025 | C | rs3828329 | CT | rs790996 | GA |
rs11661542 | C | rs1937506 | G | rs390446 | G | rs7961152 | C |
rs11720524 | C | rs1986743 | AG | rs429358 | T | rs820430 | GA |
rs11833579 | AG | rs2021783 | C | rs4380028 | C | rs877087 | T |
rs11879293 | G | rs2076185 | TC | rs439401 | CT | rs879324 | G |
rs11984041 | C | rs2107595 | G | rs4420638 | A | rs9268402 | GA |
rs12122341 | C | rs2123536 | C | rs4471613 | G | rs9298506 | GA |
rs12190287 | C | rs2200733 | CT | rs4628172 | GT | rs9308945 | AG |
rs12204590 | T | rs2230500 | AG | rs4867131 | C | rs9315204 | C |
rs12232780 | G | rs2271037 | G | rs4977574 | G | rs9319428 | AG |
rs12286037 | C | rs2283222 | T | rs556621 | G | rs9349379 | A |
rs12413409 | G | rs2303656 | G | rs5742904 | C | rs9369640 | A |
rs12425791 | AG | rs2304556 | GT | rs579459 | T | rs964184 | C |
rs12524865 | CA | rs2505083 | TC | rs599839 | A | rs9810888 | T |
TABLE 4 example RY-CC-2 SNP site gene detection results of sample
SNP site | The result of the detection | SNP site | The result of the detection | SNP site | The result of the detection | SNP site | The result of the detection |
rs10021303 | G | rs12526453 | C | rs264 | G | rs6449093 | A |
rs10069690 | TC | rs1260326 | C | rs2723334 | CT | rs6475606 | T |
rs1042714 | C | rs1260333 | G | rs2820037 | TA | rs6538595 | G |
rs10495809 | GA | rs12654264 | AT | rs2824292 | GA | rs6596140 | T |
rs10744777 | C | rs12679196 | CT | rs2824293 | GA | rs6711736 | GA |
rs10757272 | T | rs12932445 | T | rs2891168 | A | rs6729869 | AT |
rs10757274 | A | rs1324694 | C | rs2954029 | T | rs6841581 | AG |
rs10757278 | G | rs1333040 | T | rs2984613 | CT | rs6842241 | CA |
rs10889353 | CA | rs1333042 | G | rs3111754 | C | rs6843082 | GA |
rs10953541 | C | rs1412444 | C | rs3211928 | G | rs6997709 | G |
rs10958409 | G | rs1429412 | A | rs326 | A | rs7016880 | G |
rs10986769 | A | rs157580 | G | rs35594137 | C | rs713536 | C |
rs11066280 | T | rs16936752 | T | rs361508 | CT | rs7136259 | T |
rs11066301 | A | rs17145738 | C | rs3749585 | G | rs7193343 | C |
rs11067763 | A | rs174546 | CT | rs3755351 | GT | rs7412 | C |
rs11110912 | GC | rs1746048 | CT | rs3764261 | C | rs763497 | GA |
rs11196288 | A | rs17465637 | A | rs3766871 | G | rs780094 | C |
rs1122608 | G | rs17696736 | A | rs3798220 | T | rs7853368 | G |
rs1132274 | CA | rs1805126 | AG | rs3814843 | T | rs7865618 | A |
rs11591147 | G | rs1883025 | C | rs3828329 | CT | rs790896 | G |
rs11661542 | CA | rs1937506 | G | rs390446 | G | rs7961152 | C |
rs11720524 | C | rs1986743 | AG | rs429358 | T | rs820430 | GA |
rs11833579 | AG | rs2021783 | CT | rs4380028 | TC | rs877087 | T |
rs11879293 | G | rs2076185 | C | rs439401 | CT | rs879324 | G |
rs11984041 | C | rs2107595 | G | rs4420638 | A | rs9268402 | G |
rs12122341 | C | rs2123536 | CT | rs4471613 | G | rs9298506 | G |
rs12190287 | G | rs2200733 | C | rs4628172 | GT | rs9308945 | AG |
rs12204590 | T | rs2230500 | G | rs4867131 | CA | rs9315204 | CT |
rs12232780 | G | rs2271037 | GT | rs4977574 | A | rs9319428 | AG |
rs12286037 | C | rs2283222 | T | rs556621 | T | rs9349379 | G |
rs12413409 | AG | rs2303656 | GT | rs5742904 | C | rs9369640 | A |
rs12425791 | AG | rs2304556 | GT | rs579459 | CT | rs964184 | C |
rs12524865 | CA | rs2505083 | T | rs599839 | A | rs9810888 | G |
Example 4 interpretation of Gene detection results
After SNP genotyping is carried out on a detected person by a panel through cardiovascular and cerebrovascular disease genetic risk assessment and detection, a disease risk comprehensive system is utilized to carry out comprehensive assessment on the disease genetic risk of the detected person. The interpretation of the gene detection results of RY-CC-1 in the example sample is shown in Table 5.
TABLE 5 interpretation of the results of the RY-CC-1 Gene assay in the samples of examples
Table 5 interpretation of test results: whether the column is mutated, "+" risk genotype (contributing to disease risk), "+" protective genotype (favorable factors), "-" wild genotype (unmutated); the risk evaluation system comprehensively evaluates the disease risk degree of the examinee according to the number of mutation sites detected by each disease and the contribution value of the mutation sites to the disease. (as hypertension risk assessment 63.33%, interpreted as 63.33% of the big data of Chinese healthy people and patients, subject risk of hypertension).
The above description is only a preferred embodiment of the invention, and is not intended to limit the scope of the invention, which is defined by the claims, and all modifications and variations that can be made from the description of the invention, or directly or indirectly applied to other related technical fields, are included in the scope of the invention.
Sequence listing
<110> Shanxi Jiuzhou medical inspection Co., Ltd
<120> cardiovascular and cerebrovascular disease genetic risk assessment detection panel and application thereof
<141> 2019-06-14
<160> 396
<170> SIPOSequenceListing 1.0
<210> 1
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 1
acgttggatg ggccatctag aagtccttac 30
<210> 2
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 2
acgttggatg tgtactggca ttggttggtc 30
<210> 3
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 3
acgttggatg tactaagaat tccctccccc 30
<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 4
acgttggatg gaggtgtctg ggaaaacttc 30
<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 5
acgttggatg agacctccat tctggtttgc 30
<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 6
acgttggatg taagtgcggg tttcttttcg 30
<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 7
acgttggatg agaagggtaa agggtggtag 30
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 8
acgttggatg ttcccttctg tcatggtagc 30
<210> 9
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 9
acgttggatg agtgctctca tttcgtcgtg 30
<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 10
acgttggatg tgtctcacgt gcctgtgctg 30
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 11
acgttggatg gcaatatctg cttgtgtggg 30
<210> 12
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 12
acgttggatg acaccaagaa gtgaacctcg 30
<210> 13
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 13
acgttggatg ttcactctct tgaaggtggg 30
<210> 14
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 14
acgttggatg ccaaggatat agtcctgtgc 30
<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 15
acgttggatg actacgagga gctggtgcta 30
<210> 16
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 16
acgttggatg tggaaggtgg ctgtggttc 29
<210> 17
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 17
acgttggatg attaccaagc gcaattcccc 30
<210> 18
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 18
acgttggatg tcctccatgt gcaaatagac 30
<210> 19
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 19
acgttggatg catctatgag tcatgtttgg g 31
<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 20
acgttggatg ttttcccttg ccacgaaacc 30
<210> 21
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 21
acgttggatg aagagaaaga aataggagc 29
<210> 22
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 22
acgttggatg agcttactct atgagtcttc 30
<210> 23
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 23
acgttggatg tttgatggag acacagaacc 30
<210> 24
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 24
acgttggatg catgttatct tgcactatga c 31
<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 25
acgttggatg tttgggtgtg aaaggccttc 30
<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 26
acgttggatg aagagcaagg ttgttgccac 30
<210> 27
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 27
acgttggatg gtttgctttc agggtacatc 30
<210> 28
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 28
acgttggatg gttggtgttc caaacaggac 30
<210> 29
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 29
acgttggatg ttcaggaggg attctcaagc 30
<210> 30
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 30
acgttggatg cagatacaga ctgcagcttc 30
<210> 31
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 31
acgttggatg tgggctactg gagaataagg 30
<210> 32
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 32
acgttggatg cggtgtgtag atactgttgc 30
<210> 33
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 33
acgttggatg cgtgggtcaa atctaagctg 30
<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 34
acgttggatg tagaattccc tacccctatc 30
<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 35
acgttggatg gttattctgg ttggctgatt c 31
<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 36
acgttggatg gtcatctagt agggttagac 30
<210> 37
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 37
acgttggatg gagtgcccac ttatggaatg 30
<210> 38
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 38
acgttggatg tctgtacctt cctctctgtc 30
<210> 39
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 39
acgttggatg aagaacatgg cacccaatcc 30
<210> 40
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 40
acgttggatg ttgtagaaca caacaacccc 30
<210> 41
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 41
acgttggatg tagtgtagac tcttcgaggg 30
<210> 42
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 42
acgttggatg gatgtattat gtgatcagg 29
<210> 43
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 43
acgttggatg ctagtaggat ttccctccac 30
<210> 44
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 44
acgttggatg gaggagaata aagcggcatc 30
<210> 45
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 45
acgttggatg gccaacgaaa tgtgatggag 30
<210> 46
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 46
acgttggatg acatctaggc ctacatcgag 30
<210> 47
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 47
acgttggatg agttctgcct agtgattgcc 30
<210> 48
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 48
acgttggatg cacagaagag ttagagttag 30
<210> 49
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 49
acgttggatg gatgttccag tcactctaac 30
<210> 50
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 50
acgttggatg cttgctgaag ggactcaatg 30
<210> 51
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 51
acgttggatg agttggaact gaactgaggc 30
<210> 52
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 52
acgttggatg ctactctgtc ttgattctgc 30
<210> 53
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 53
acgttggatg acttacctga gagctaagtg 30
<210> 54
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 54
acgttggatg aagccaatgg cagcctcaac 30
<210> 55
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 55
acgttggatg gctgggatta tgaaaggtcg 30
<210> 56
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 56
acgttggatg cttgtccttg cttcaatatc 30
<210> 57
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 57
acgttggatg aagtactact agggctgagg 30
<210> 58
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 58
acgttggatg ctacaaagca gggatgagtc 30
<210> 59
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 59
acgttggatg ccacaagtct ttgtggagag 30
<210> 60
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 60
acgttggatg ccacttccaa gacagttcac 30
<210> 61
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 61
acgttggatg acccacaaca attagttccc 30
<210> 62
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 62
acgttggatg tttcaggctg taaacgccac 30
<210> 63
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 63
acgttggatg ctgctacttt ttgtggccat 30
<210> 64
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 64
acgttggatg tgatgtgtgg gattagagcg 30
<210> 65
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 65
acgttggatg ttgttttcct cagacaggac 30
<210> 66
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 66
acgttggatg ctcagggacc aacataaagg 30
<210> 67
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 67
acgttggatg cttagctaaa tcaagcaggg 30
<210> 68
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 68
acgttggatg tgcagtctct ttccataacg 30
<210> 69
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 69
acgttggatg tgcggagctt ctccaattct 30
<210> 70
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 70
acgttggatg taagacgtct cacccagacc 30
<210> 71
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 71
acgttggatg caattttgga agtgccctgc 30
<210> 72
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 72
acgttggatg ctagtgaggc caacacttac 30
<210> 73
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 73
acgttggatg gtggctatga agagtgaatg 30
<210> 74
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 74
acgttggatg tataccgcac tgtgttggtc 30
<210> 75
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 75
acgttggatg attgaaccct cagcctagca 30
<210> 76
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 76
acgttggatg aaaaacctca gcccctcatc 30
<210> 77
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 77
acgttggatg ctgtccaagg agctgcagg 29
<210> 78
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 78
acgttggatg tgcacctcgc cgcggtact 29
<210> 79
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 79
acgttggatg gggatctcag agaagttacc 30
<210> 80
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 80
acgttggatg ttgggcactt tgcactcatc 30
<210> 81
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 81
acgttggatg acctcaattc cgccaaacag 30
<210> 82
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 82
acgttggatg agcaacaagg tacgactgcc 30
<210> 83
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 83
acgttggatg taaaacagat aggatccac 29
<210> 84
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 84
acgttggatg ggaacctgaa ttctgaggtc 30
<210> 85
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 85
acgttggatg agctgctgat ggtattttac 30
<210> 86
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 86
acgttggatg acgagctttg tgtcatgagg 30
<210> 87
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 87
acgttggatg acctgcgcaa gctgcgtaa 29
<210> 88
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 88
acgttggatg gccccggcct ggtacactg 29
<210> 89
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 89
acgttggatg gatttcagct caccgcaatc 30
<210> 90
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 90
acgttggatg caggcatggt agtaggcac 29
<210> 91
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 91
acgttggatg atgtgggtca tcattctccg 30
<210> 92
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 92
acgttggatg ttaaacaggc gaacgggaag 30
<210> 93
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 93
acgttggatg ttctctgctt tcctgccgct 30
<210> 94
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 94
acgttggatg ctgacggtct tgaaacatgc 30
<210> 95
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 95
acgttggatg ccttgaaggc ttgtgtgatg 30
<210> 96
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 96
acgttggatg ggcaatatgt gcccatggtt 30
<210> 97
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 97
acgttggatg gattctcact gctttggcct 30
<210> 98
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 98
acgttggatg gaagataagc ttgttgctgg 30
<210> 99
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 99
acgttggatg actgatctaa agaagccccc 30
<210> 100
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 100
acgttggatg agatggtggt cagtgttatg 30
<210> 101
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 101
acgttggatg ctttctggaa aaccttatt 29
<210> 102
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 102
acgttggatg gattttcaca acaggagtgc 30
<210> 103
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 103
acgttggatg gatgccacaa aacacctacg 30
<210> 104
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 104
acgttggatg tggcccgtcc agtacaatg 29
<210> 105
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 105
acgttggatg gagcaaaata gaggaaacct g 31
<210> 106
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 106
acgttggatg ccagtggtca taactgttag 30
<210> 107
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 107
acgttggatg gatccctgtg agagagattc 30
<210> 108
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 108
acgttggatg ggatgcactt ctaaattacg 30
<210> 109
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 109
acgttggatg tcccccatca tttatccagc 30
<210> 110
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 110
acgttggatg attgagaaga gggtaagggc 30
<210> 111
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 111
acgttggatg taatcagccc cttgtttctc 30
<210> 112
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 112
acgttggatg gggcatcctt tcccaaagag 30
<210> 113
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 113
acgttggatg gagcagagct tccagcattt 30
<210> 114
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 114
acgttggatg gaaggaactg gttgtcagag 30
<210> 115
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 115
acgttggatg gacatagcct tgggcttgaa 30
<210> 116
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 116
acgttggatg tatttctaga ggactgttg 29
<210> 117
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 117
acgttggatg tagattttct gccagaggg 29
<210> 118
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 118
acgttggatg atctcctcta ccaaccaccc 30
<210> 119
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 119
acgttggatg tagaaggctg gactttccgt 30
<210> 120
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 120
acgttggatg ggctgtgaag cttcctcatt 30
<210> 121
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 121
acgttggatg tgaggtcagc tccacaaaac 30
<210> 122
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 122
acgttggatg cctttccact acatacttgc 30
<210> 123
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 123
acgttggatg acccaatgga agccatgcg 29
<210> 124
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 124
acgttggatg atgagagaca tgacgatgcc 30
<210> 125
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 125
acgttggatg gatgaggctt atctggttgg 30
<210> 126
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 126
acgttggatg tgagtattcg gtcctgtctg 30
<210> 127
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 127
acgttggatg tcagtgtgga cgatgcaaag 30
<210> 128
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 128
acgttggatg ttcatttgga gcaggccttc 30
<210> 129
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 129
acgttggatg ttcccttcct tggaaaggtc 30
<210> 130
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 130
acgttggatg ggaaggcaga gttatcttcg 30
<210> 131
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 131
acgttggatg ttgagcctgt cagttgttcc 30
<210> 132
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 132
acgttggatg agagtaggaa gaagtgggag 30
<210> 133
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 133
acgttggatg acagaaattc tctgggttgc 30
<210> 134
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 134
acgttggatg tgtatgaccc ttacaagtgc 30
<210> 135
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 135
acgttggatg acaaaaccag gaaggtcctc 30
<210> 136
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 136
acgttggatg ttcttggtag aaccagatgc 30
<210> 137
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 137
acgttggatg tttctgcatt ccaccagacc 30
<210> 138
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 138
acgttggatg tgatgtgcag attgagagag 30
<210> 139
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 139
acgttggatg tagatgtggg tcttggcaac 30
<210> 140
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 140
acgttggatg accagaaaag tgtctctaac 30
<210> 141
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 141
acgttggatg ctatgacaaa gctgtcatcc 30
<210> 142
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 142
acgttggatg tctgggctgt tcacttttac 30
<210> 143
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 143
acgttggatg aatcaggctt ggaaaatgtg 30
<210> 144
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 144
acgttggatg cctttggaca tatccattac 30
<210> 145
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 145
acgttggatg aggaagacag gaaggaactc 30
<210> 146
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 146
acgttggatg tgtcaggcac tgaccaagtc 30
<210> 147
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 147
acgttggatg gcaaagcatt tattcagtg 29
<210> 148
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 148
acgttggatg cccagccagt atacttttag 30
<210> 149
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 149
acgttggatg ctagtagctc tattgtgagg 30
<210> 150
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 150
acgttggatg aagagtaatc acaggctctc 30
<210> 151
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 151
acgttggatg tggatgactc aagtttaccc 30
<210> 152
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 152
acgttggatg agaggaagcc tgctataaag 30
<210> 153
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 153
acgttggatg gacaggattc tcacagacac 30
<210> 154
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 154
acgttggatg ccaacattta gaaggcacac 30
<210> 155
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 155
acgttggatg cacacatttt gtgttcagcg 30
<210> 156
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 156
acgttggatg ctgagattat aagtggctcc 30
<210> 157
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 157
acgttggatg gcctttcagt agtggaagtc 30
<210> 158
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 158
acgttggatg gtagaaccat cagccttgtc 30
<210> 159
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 159
acgttggatg tacatggcag ttccaattcc 30
<210> 160
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 160
acgttggatg actcactgtc ttctgtcaag 30
<210> 161
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 161
acgttggatg ttgagtagcg gaaaagagcc 30
<210> 162
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 162
acgttggatg cgttttctac atggggtcag 30
<210> 163
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 163
acgttggatg cacctaagtt ctatcaagcc 30
<210> 164
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 164
acgttggatg tacccaaatc ctttcacgtc 30
<210> 165
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 165
acgttggatg cattgaactt gaaataagag 30
<210> 166
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 166
acgttggatg aaatgctcaa tcgtgcactg 30
<210> 167
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 167
acgttggatg aacaagccct tcaggaagtg 30
<210> 168
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 168
acgttggatg gattctccaa agttttgatg c 31
<210> 169
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 169
acgttggatg aagaggatat cggatggaag 30
<210> 170
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 170
acgttggatg tggtctcttt gtgaggcaac 30
<210> 171
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 171
acgttggatg ataaggtttg ccctgtgtag 30
<210> 172
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 172
acgttggatg gttctgaagg tctcttcagg 30
<210> 173
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 173
acgttggatg tgtgtggagg gtagggattc 30
<210> 174
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 174
acgttggatg tcagacccac tgtgtttctc 30
<210> 175
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 175
acgttggatg actgttggtg atgagtggtg 30
<210> 176
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 176
acgttggatg ttctggtgtc ctgggatttg 30
<210> 177
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 177
acgttggatg tgagcattac gtcaggatag 30
<210> 178
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 178
acgttggatg cttgaagtct ttgtcctcag 30
<210> 179
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 179
acgttggatg tgctttgcca taggtgatgc 30
<210> 180
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 180
acgttggatg atcacgtcct tcttcagcac 30
<210> 181
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 181
acgttggatg gcttgtccaa aagtaagccg 30
<210> 182
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 182
acgttggatg cagaagggca gttaaaaggg 30
<210> 183
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 183
acgttggatg tgtggtggat gcactgtatg 30
<210> 184
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 184
acgttggatg ttactagatc tgtcatgcac 30
<210> 185
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 185
acgttggatg ccatgaatga gtttccaacc 30
<210> 186
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 186
acgttggatg ccattgaatc tgatcatctg 30
<210> 187
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 187
acgttggatg ttctgccttg gtggtacttg 30
<210> 188
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 188
acgttggatg ctcattcttc aaaactacc 29
<210> 189
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 189
acgttggatg ttccattgtg tgaatagacc 30
<210> 190
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 190
acgttggatg ggtggaaaca atcaagtctg 30
<210> 191
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 191
acgttggatg accatcgtaa tgctgatggg 30
<210> 192
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 192
acgttggatg atgacctgtg gtttcctgag 30
<210> 193
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 193
acgttggatg gaaggatgag gagccattac 30
<210> 194
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 194
acgttggatg tttgtgtgct tgtacattc 29
<210> 195
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 195
acgttggatg tcgagtccta atggcatgtc 30
<210> 196
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 196
acgttggatg gaggggaaag tttgaacagc 30
<210> 197
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 197
acgttggatg catcgttcta tagcagtccc 30
<210> 198
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 198
acgttggatg gtttaacata cttctccag 29
<210> 199
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 199
acgttggatg taaatttaca aatcatccat t 31
<210> 200
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 200
acgttggatg gtctccattt tgtcacaatc 30
<210> 201
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 201
acgttggatg cttctgcctc tgggaaggtt 30
<210> 202
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 202
acgttggatg ggtgccagtg ttctgtaaac 30
<210> 203
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 203
acgttggatg cagctttcgt ccagtggaac 30
<210> 204
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 204
acgttggatg ctgagcatca cctctcaaag 30
<210> 205
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 205
acgttggatg gctcaaatgt taccacttcc 30
<210> 206
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 206
acgttggatg gagataaaag aggagaggac 30
<210> 207
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 207
acgttggatg tgtagactca gagctcttcc 30
<210> 208
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 208
acgttggatg gaggaaacct ttgtcatccc 30
<210> 209
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 209
acgttggatg ccagtcagca agatgtgtct 30
<210> 210
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 210
acgttggatg tctggcttcc ctgcaaaatc 30
<210> 211
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 211
acgttggatg gcttctctcc aagtaggtag 30
<210> 212
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 212
acgttggatg tcttgggtct agcagctttc 30
<210> 213
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 213
acgttggatg tggaggtgct ttacgagtag 30
<210> 214
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 214
acgttggatg ttaccacttt agcctttggg 30
<210> 215
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 215
acgttggatg ggcagtaagc ttaatcaatg g 31
<210> 216
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 216
acgttggatg cttgggatgc tttgatcgtc 30
<210> 217
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 217
acgttggatg gggcatggaa aggttaagt 29
<210> 218
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 218
acgttggatg gcactggaat taggccagtc 30
<210> 219
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 219
acgttggatg caggccagag aggttctttc 30
<210> 220
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 220
acgttggatg gtattgcgtg aatttgtcag c 31
<210> 221
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 221
acgttggatg ctatgccaca tagcttaggg 30
<210> 222
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 222
acgttggatg cagaaatgcg ttgcaatttc g 31
<210> 223
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 223
acgttggatg aggtttgctc ttatggtaac 30
<210> 224
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 224
acgttggatg gccccacaaa tacattgaat 30
<210> 225
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 225
acgttggatg ctgtttgaaa cgggttcctg 30
<210> 226
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 226
acgttggatg cgtcatctga ggagagtgtg 30
<210> 227
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 227
acgttggatg ggcaagggga cataccaaac 30
<210> 228
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 228
acgttggatg cagtgctatt ccagtacatc 30
<210> 229
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 229
acgttggatg gccacagatt tacactccac 30
<210> 230
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 230
acgttggatg cagagtatta tttggaacgg 30
<210> 231
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 231
acgttggatg gtctatgccc ttgagatcat 30
<210> 232
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 232
acgttggatg ttttaaaact cagctcgtgg 30
<210> 233
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 233
acgttggatg gacatctgcc tctctagact 30
<210> 234
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 234
acgttggatg caagcccatg caagaaagtg 30
<210> 235
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 235
acgttggatg actgcgaaac tgcaaactac 30
<210> 236
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 236
acgttggatg cctcacgaga caattttgcc 30
<210> 237
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 237
acgttggatg gacctattat gggtacctaa g 31
<210> 238
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 238
acgttggatg ggactaaggg ttctgtttcc 30
<210> 239
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 239
acgttggatg ccttcccaat tggtttttca g 31
<210> 240
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 240
acgttggatg ctggtatctt caagatcggg 30
<210> 241
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 241
acgttggatg gtaaaggata tgttctgctg 30
<210> 242
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 242
acgttggatg tgccatccat aatctaaccc 30
<210> 243
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 243
acgttggatg ttggatggaa gcccaggag 29
<210> 244
<211> 28
<212> DNA
<213> Artificial Sequence
<400> 244
acgttggatg ttggtgggaa ccctcctc 28
<210> 245
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 245
acgttggatg agcaggttaa atgggctaag 30
<210> 246
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 246
acgttggatg ttgctaccac tactgcagtc 30
<210> 247
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 247
acgttggatg accttctact gccttacacc 30
<210> 248
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 248
acgttggatg tcccccctct aaatgctatg 30
<210> 249
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 249
acgttggatg gcctcaacaa atgtattgat 30
<210> 250
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 250
acgttggatg ggtgacttat tctgctccag 30
<210> 251
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 251
acgttggatg caagccagac ttctcttgtg 30
<210> 252
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 252
acgttggatg tttgggtccc atacccaag 29
<210> 253
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 253
acgttggatg tagtggcatt gtccctcaag 30
<210> 254
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 254
acgttggatg aataacaaca gccaccctgc 30
<210> 255
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 255
acgttggatg agaagaccaa ccacatccag 30
<210> 256
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 256
acgttggatg acctgggtcc ctttgtcac 29
<210> 257
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 257
acgttggatg cctccatgac actaatcacc 30
<210> 258
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 258
acgttggatg ggaacttgaa gtctagtggg 30
<210> 259
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 259
acgttggatg tgtctgcatg cctgtctatc 30
<210> 260
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 260
acgttggatg actcaggcca catcagaatc 30
<210> 261
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 261
acgttggatg acattacaag accctggctc 30
<210> 262
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 262
acgttggatg tcaggcttag agtatgtgcg 30
<210> 263
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 263
acgttggatg ggaatcaaat ggcttcagac 30
<210> 264
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 264
acgttggatg cagaatttcg aagactgcac 30
<210> 265
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 265
<210> 266
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 266
<210> 267
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 267
<210> 268
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 268
<210> 269
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 269
ttcgtcgtgt aaaaggcca 19
<210> 270
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 270
aagaacagcc tagacacttc 20
<210> 271
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 271
<210> 272
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 272
gccaggccgt cctcctcgga a 21
<210> 273
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 273
aagggctgag aacttcggtg a 21
<210> 274
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 274
tttcattgaa cttagagcaa cc 22
<210> 275
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 275
<210> 276
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 276
gggtcttgca ctatgacaaa aaa 23
<210> 277
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 277
ttttatctat ttgcctttaa acac 24
<210> 278
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 278
ggtacatcaa atgcattcta tagc 24
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 279
aagctttttg tagaagagta aatg 24
<210> 280
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 280
ggatactgtt gcaaaatcac tgtta 25
<210> 281
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 281
tctatctagt gaatttcaat tatgtc 26
<210> 282
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 282
ttggctgatt ctccctc 17
<210> 283
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 283
<210> 284
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 284
<210> 285
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 285
<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 286
caaagcggca tcttgtaaa 19
<210> 287
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 287
<210> 288
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 288
<210> 289
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 289
<210> 290
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 290
<210> 291
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 291
gcaaccccag ccaatataag g 21
<210> 292
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 292
attatgaaag gtcgtaagaa g 21
<210> 293
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 293
gcactgtcta acaataggat at 22
<210> 294
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 294
ccgtctttgt ggagagacgc ac 22
<210> 295
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 295
ggggtcctgg actttgtgaa aa 22
<210> 296
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 296
tcttagtaat atttctttgc attc 24
<210> 297
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 297
ccacagccta catatttgaa agcg 24
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 298
gggaagggat tttaacttaa gtaa 24
<210> 299
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 299
ggcaaggctc agacctcggc atgtc 25
<210> 300
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 300
<210> 301
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 301
<210> 302
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 302
<210> 303
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 303
<210> 304
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 304
gcactcatct catttaagg 19
<210> 305
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 305
ctttcttttc tgaagcatcc 20
<210> 306
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 306
acagatagga tccacagatt c 21
<210> 307
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 307
ttgttctgct aatttgtagt tgc 23
<210> 308
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 308
ccgcgatgcc gatgacctgc agaag 25
<210> 309
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 309
ccgcaatctc cgcctcc 17
<210> 310
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 310
<210> 311
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 311
tctccattcc ctcatttc 18
<210> 312
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 312
agtgctatgg taggcgtca 19
<210> 313
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 313
<210> 314
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 314
ggccccctaa cactctcaat t 21
<210> 315
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 315
atggaaaacc ttatttcgga t 21
<210> 316
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 316
cagctggcca ggtgccaaaa ga 22
<210> 317
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 317
ctcataactg ttagactgtt act 23
<210> 318
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 318
gagattcttg cttatggcac tag 23
<210> 319
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 319
tactgaaaaa ttctgtgtga aaga 24
<210> 320
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 320
ccatataaaa tgtatgaaca cctta 25
<210> 321
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 321
acctggtaaa aagattttgt gccaac 26
<210> 322
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 322
gatgttacta tttgaatcca agtggg 26
<210> 323
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 323
<210> 324
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 324
<210> 325
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 325
gcagtgtttc ctggcaaa 18
<210> 326
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 326
ggaccacgac gtcacgcag 19
<210> 327
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 327
ggagtggctc agacagggc 19
<210> 328
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 328
tgaggaagaa gccaagggg 19
<210> 329
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 329
tccttggaaa ggtcaaaatt a 21
<210> 330
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 330
tctttttaat cgtatctgtc gc 22
<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 331
gcatattctt aattgcctga acta 24
<210> 332
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 332
<210> 333
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 333
<210> 334
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 334
<210> 335
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 335
<210> 336
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 336
gaagttatac ctgtggaga 19
<210> 337
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 337
tttgtcagat tcccaaactc 20
<210> 338
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 338
<210> 339
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 339
ccccacaggc tctcttttag a 21
<210> 340
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 340
aaaggttaag agcatccata g 21
<210> 341
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 341
cagagatgta gcattgggta a 21
<210> 342
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 342
gttcagcgac agtatctctt ta 22
<210> 343
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 343
tcagccttgt cttgattttc ttt 23
<210> 344
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 344
gatcaagtca ggactaaaca tta 23
<210> 345
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 345
cctgccaact ttagccatcc tgga 24
<210> 346
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 346
taagttctat caagccaaat aagt 24
<210> 347
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 347
cctactgcaa atttgcatgt ttgttt 26
<210> 348
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 348
caagttttga tgctttagct atattt 26
<210> 349
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 349
aagtattatt ttaaaggact ttgagg 26
<210> 350
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 350
<210> 351
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 351
<210> 352
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 352
<210> 353
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 353
cacaccaaac aaaagacct 19
<210> 354
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 354
ataggtgatg cttgcaaga 19
<210> 355
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 355
<210> 356
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 356
<210> 357
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 357
acttgtccca tcaaacttca c 21
<210> 358
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 358
tacttgggtt ttgattttga t 21
<210> 359
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 359
<210> 360
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 360
cccagcagta ccctgcggac atc 23
<210> 361
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 361
gtgtgcttgt acattctttt ttg 23
<210> 362
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 362
aatgtcaatt aaaggggtca cca 23
<210> 363
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 363
cccaaacact ttatttttct taact 25
<210> 364
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 364
aatttacaaa tcatccattt acaac 25
<210> 365
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 365
ctctgcctct gggaaggttt tcaca 25
<210> 366
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 366
cagtggaacg cagagtacct tcatt 25
<210> 367
<211> 27
<212> DNA
<213> Artificial Sequence
<400> 367
tttttttttt ttttcccaat tttagat 27
<210> 368
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 368
<210> 369
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 369
<210> 370
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 370
ttcttctctc tcagctac 18
<210> 371
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 371
<210> 372
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 372
gctttgatcg tcttcaatc 19
<210> 373
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 373
ggcaaatgtg ggacgttgg 19
<210> 374
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 374
<210> 375
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 375
<210> 376
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 376
ttaattaacg ttccatgatg c 21
<210> 377
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 377
cggtgtgagg tggacagagg t 21
<210> 378
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 378
cagggacata ccaaacacta ac 22
<210> 379
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 379
cctccactgt ctctaaaaca tga 23
<210> 380
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 380
atatggccaa tgattttaag cta 23
<210> 381
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 381
ctccgcctct ctagactata aact 24
<210> 382
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 382
ggaacctaca gactttatgc tgcg 24
<210> 383
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 383
cgtccaaatc tagtatctct attgc 25
<210> 384
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 384
agtaaagatc gggacaaaac actcg 25
<210> 385
<211> 26
<212> DNA
<213> Artificial Sequence
<400> 385
ggtcggctgc attatttgta ataaca 26
<210> 386
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 386
ccgccggcac tctcttc 17
<210> 387
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 387
<210> 388
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 388
ctgacccttc acacattta 19
<210> 389
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 389
acaaatgtat tgatcagcaa a 21
<210> 390
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 390
tgggtcccat acccaaggaa cct 23
<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 391
<210> 392
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 392
<210> 393
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 393
tctgatgtac tgttttcct 19
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 394
<210> 395
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 395
<210> 396
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 396
atagtacaat gtctttacca aa 22
Claims (1)
1. A detection panel for cardiovascular and cerebrovascular disease genetic risk assessment is characterized in that the detection panel comprises a multiplex PCR amplification primer pair and a single-base extension primer of 132 SNP sites of a susceptibility gene related to cardiovascular and cerebrovascular diseases;
rs2824292, rs361508, rs6538595, rs10744777, rs2824293, rs11067763, rs 6841581581, rs 12122322341, rs579459, rs2271037, rs11661542, rs2107595, rs1746048, rs6711736, rs9315204, rs7193343, rs 2601128, rs6596140, rs9298506, rs1986743, rs3798220, rs1937506, rs2303656, rs4471613, rs2021783, rs1132274, rs879324, rs11591147, rs7961152, rs5742904, rs 2990454556, rs12190287 287, rs 2837, rs 64261, rs 12290, rs 11112, rs 4438, rs 447757780, rs 250571049, rs 33574556375637569, rs 330577569, rs 333556375637569, rs 3335563756375637569, rs 725637563756375637569, rs 7256375637569, rs 72563756375637569, rs 72563756375637563756375637569, rs 725637563756375637563756375637569, rs 72563756375637563756375637563756375637563756375637563756375637563756375637569, rs 7256375637563756375637569, rs 72563756375637563756375637563756375637563756375637563756375637563756375637563756375637563756375637567, rs 729, rs 175637563756375637563756375637567, rs 729, rs 72563756375637563756375637563756375637563756375637563756375637563756375637563756375637563756375637563756375637563756375637563756375637563756375637567, rs 729, rs 6656375637563756375637563756375637567, rs 729, rs 72, rs11720524, rs1260333, rs2283222, rs157580, rs35594137, rs12286037, rs790896, rs 174546;
the sequence of the multiplex PCR amplification primer pair is a nucleotide sequence shown by SEQ ID NO.1-SEQ ID NO. 264;
the sequence of the single-base extension primer is a nucleotide sequence shown in SEQ ID NO.265-SEQ ID NO. 396.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910515382.4A CN111057755B (en) | 2019-06-14 | 2019-06-14 | Cardiovascular and cerebrovascular disease genetic risk assessment detection panel and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910515382.4A CN111057755B (en) | 2019-06-14 | 2019-06-14 | Cardiovascular and cerebrovascular disease genetic risk assessment detection panel and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111057755A CN111057755A (en) | 2020-04-24 |
CN111057755B true CN111057755B (en) | 2022-07-26 |
Family
ID=70297403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910515382.4A Active CN111057755B (en) | 2019-06-14 | 2019-06-14 | Cardiovascular and cerebrovascular disease genetic risk assessment detection panel and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111057755B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112481372B (en) * | 2020-12-10 | 2023-08-08 | 北京大学人民医院 | Primer for detecting SNP locus of gene related to accurate medication of chronic heart failure and application |
CN113215241A (en) * | 2021-04-16 | 2021-08-06 | 武汉吉诺百客医学科技有限公司 | Detection primer group for risk early warning of cardiovascular and cerebrovascular diseases and application thereof |
RU2762958C1 (en) * | 2021-08-30 | 2021-12-24 | Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр терапии и профилактической медицины" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТПМ" Минздрава России) | Method for predicting the risk of developing coronary heart disease based on genetic testing data |
CN117487923B (en) * | 2023-12-27 | 2024-05-31 | 湖南家辉生物技术有限公司 | Application of HABP2 gene mutant as detection target, detection reagent and/or detection kit with HABP2 gene mutant |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008545387A (en) * | 2005-05-18 | 2008-12-18 | サムスン エレクトロニクス カンパニー リミテッド | Method and configuration for cardiovascular disease diagnosis |
CN101354344A (en) * | 2007-07-27 | 2009-01-28 | 上海主健生物工程有限公司 | Genetic information and health evaluating management |
CN105002286A (en) * | 2015-07-30 | 2015-10-28 | 中国医学科学院阜外心血管病医院 | Multiple single nucleotide polymorphic loca related to onset risks of hypertension and/or cardiovascular disease and associated application |
CN106893783A (en) * | 2017-04-05 | 2017-06-27 | 李爱娟 | It is a kind of for the accurate early warning of cardiovascular and cerebrovascular disease risk and the detection method and primer special of accurate medication |
CN107034273A (en) * | 2016-12-30 | 2017-08-11 | 北京毅新博创生物科技有限公司 | CYP2C19 and ABCB1 gene detecting kits |
CN108823301A (en) * | 2018-06-25 | 2018-11-16 | 厦门飞朔生物技术有限公司 | It is a kind of for detecting the multiple PCR detection kit of people's drug gene polymorphism |
-
2019
- 2019-06-14 CN CN201910515382.4A patent/CN111057755B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008545387A (en) * | 2005-05-18 | 2008-12-18 | サムスン エレクトロニクス カンパニー リミテッド | Method and configuration for cardiovascular disease diagnosis |
CN101354344A (en) * | 2007-07-27 | 2009-01-28 | 上海主健生物工程有限公司 | Genetic information and health evaluating management |
CN105002286A (en) * | 2015-07-30 | 2015-10-28 | 中国医学科学院阜外心血管病医院 | Multiple single nucleotide polymorphic loca related to onset risks of hypertension and/or cardiovascular disease and associated application |
CN107034273A (en) * | 2016-12-30 | 2017-08-11 | 北京毅新博创生物科技有限公司 | CYP2C19 and ABCB1 gene detecting kits |
CN106893783A (en) * | 2017-04-05 | 2017-06-27 | 李爱娟 | It is a kind of for the accurate early warning of cardiovascular and cerebrovascular disease risk and the detection method and primer special of accurate medication |
CN108823301A (en) * | 2018-06-25 | 2018-11-16 | 厦门飞朔生物技术有限公司 | It is a kind of for detecting the multiple PCR detection kit of people's drug gene polymorphism |
Non-Patent Citations (3)
Title |
---|
"Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study";Barbara Kofler et al.;《BMC Medical Genetics》;20090421;第10卷;第1-7页 * |
"基于高通量测序技术下的心脑血管疾病患病风险评估模型研究";裴晶晶等;《云南民族大学学报:自然科学版》;20181231;第27卷(第3期);第243-248页 * |
MSR1基因多态性与缺血性脑卒中遗传易感性的关联研究;徐正琴等;《齐齐哈尔医学院学报》;20131231;第34卷(第01期);第2-5页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111057755A (en) | 2020-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111057755B (en) | Cardiovascular and cerebrovascular disease genetic risk assessment detection panel and application thereof | |
US20190136330A1 (en) | Method for screening cancer | |
CN113025701B (en) | Early screening method and kit for non-alcoholic fatty liver disease susceptibility gene | |
CN101838683B (en) | Detection method of nucleotide mutation points of KRAS gene and/or BRAF gene | |
WO2016049878A1 (en) | Snp profiling-based parentage testing method and application | |
CN111235272B (en) | Composition for once detecting multiple gene mutation of lung cancer and application thereof | |
CN107022641B (en) | Primer for detecting deafness gene and application thereof | |
CN111944912B (en) | Skin gene detection method | |
WO2016192252A1 (en) | Systemic lupus erythematosus biomarker and diagnostic kit thereof | |
CN111748628A (en) | Primer and kit for detecting thyroid cancer prognosis related gene variation | |
CN113817833B (en) | Kit for detecting cervical cell gene methylation based on fluorescent quantitative PCR technology and application | |
WO2022100441A1 (en) | Probe set for detecting human papillomaviruses hpv16 and hpv18, and kit thereof | |
CN110846408A (en) | Primer combination for detecting TTN gene mutation and application thereof | |
CN103789440A (en) | Spinal muscular atrophy-related gene mutation detection method, related detection probe composition and detection kit as well as related application | |
CN110819709A (en) | Method for detecting CYP2C9 and VKORC1 gene polymorphism by fluorescent quantitative PCR (polymerase chain reaction) | |
CN116716386A (en) | Detection kit for vitamin C deficiency risk assessment and application method thereof | |
CN113025702B (en) | Early screening method and kit for ankylosing spondylitis susceptibility genes | |
CN112592972B (en) | Early screening method and kit for diffuse toxic goiter susceptibility genes | |
CN110029162B (en) | SNP marker for detecting susceptibility of systemic lupus erythematosus in non-coding gene region and application thereof | |
CN110734970A (en) | auto-inflammatory monogenic disease detection primer group and method | |
CN111411149A (en) | Primer group, kit and method for detecting gene mutation of hypertrophic cardiomyopathy | |
RU2804110C1 (en) | Set of oligonucleotide primers and probes for determining alleles of the rs55986091 polymorphism and method for its use | |
CN112195280B (en) | Probe for detecting human papilloma virus HPV39 and kit thereof | |
CN117721209B (en) | Combined detection reagent and kit for cervical cancer detection | |
CN112646869B (en) | Guidance method and kit for atorvastatin personalized medicine genes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |