CN111056828A - 铁酸钬基太赫兹超材料及其制备方法和光学器件 - Google Patents

铁酸钬基太赫兹超材料及其制备方法和光学器件 Download PDF

Info

Publication number
CN111056828A
CN111056828A CN201911410008.4A CN201911410008A CN111056828A CN 111056828 A CN111056828 A CN 111056828A CN 201911410008 A CN201911410008 A CN 201911410008A CN 111056828 A CN111056828 A CN 111056828A
Authority
CN
China
Prior art keywords
holmium
ferrite
preparation
terahertz metamaterial
metamaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911410008.4A
Other languages
English (en)
Other versions
CN111056828B (zh
Inventor
李勃
曾新喜
张晗
王荣
朱朋飞
周济
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen International Graduate School of Tsinghua University
Original Assignee
Shenzhen International Graduate School of Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen International Graduate School of Tsinghua University filed Critical Shenzhen International Graduate School of Tsinghua University
Priority to CN201911410008.4A priority Critical patent/CN111056828B/zh
Publication of CN111056828A publication Critical patent/CN111056828A/zh
Application granted granted Critical
Publication of CN111056828B publication Critical patent/CN111056828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种铁酸钬基太赫兹超材料及其制备方法和光学器件,该铁酸钬基太赫兹超材料的制备方法包括以下步骤:(1)按化学计量比称取氧化铁和氧化钬混合形成原料混合物,然后进行第一次烧结,形成铁酸钬基材料;(2)对所述铁酸钬基材料进行成型。本发明利用氧化铁和氧化钬为原料,制备出Ho原子与Fe原子的比例可调的全介质基超材料,能够更灵活地调控太赫兹超材料的振幅和频率,同时也避免了现有使用贵金属超材料导致的电磁波的吸收损耗大的问题。

Description

铁酸钬基太赫兹超材料及其制备方法和光学器件
技术领域
本发明涉及太赫兹超材料技术领域,尤其是涉及一种铁酸钬基太赫兹超材料及其制备方法和光学器件。
背景技术
太赫兹是0.1THz到10THz之间处于远红外和微波波段的一个电磁波段,太赫兹技术在国家安全、航天、生物和国防工业等多种行业都有重要的潜在应用价值。
太赫兹超材料(Terahertz metamaterials)是一种合成仍在发展的新材料,和它相互作用的频率是太赫兹,用来研究材料的频率范围一般定在0.1-10THz。传统的太赫兹超材料由金、铜等贵金属制成。然而,这些贵金属在地球上的资源有限、价格高昂,且金、铜等贵金属制备的超材料会将电磁波的能量转化为热能而形成大量能量损耗,这无法避免的能量损耗与资源有限、价格高昂共同限制了这些贵金属超材料的广泛应用。
铁酸钬基材料是一种复合氧化物型材料,目前有研究采用FeCl3·6H20为铁源、Ho2O3为钬源,添加NaOH和NaCl固体作为烧结助剂激活pH调节剂制备铁酸钬HoFeO3,但是该方法在烧结后需要洗涤以除去其他残余副产物,操作较为繁琐,并且采用铁盐FeCl3·6H20为铁源制备出的材料中Ho原子和Fe原子只能为1:1,无法调控Ho原子与Fe原子的比例,因此若基于该铁酸钬材料制成太赫兹超材料,其振幅和频率可调范围有限,不够灵活,无法满足更灵活的可调需求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种铁酸钬基太赫兹超材料及其制备方法和光学器件,该铁酸钬基太赫兹超材料中Ho原子和Fe原子比例可调,能够更灵活地调控太赫兹超材料的振幅和频率。
本发明所采取的技术方案是:
本发明的第一方面,提供一种铁酸钬基太赫兹超材料的制备方法,包括以下步骤:
(1)按化学计量比称取氧化铁和氧化钬混合形成原料混合物,然后进行第一次烧结,形成铁酸钬基材料;
(2)对所述铁酸钬基材料进行成型。
根据本发明的一些实施例,步骤(1)中,所述第一次烧结的温度为800~1100℃。
根据本发明的一些实施例,步骤(1)中,在第一次烧结后,还包括球磨的步骤。
根据本发明的一些实施例,所述球磨的速度为5~5000r/min。
根据本发明的一些实施例,步骤(2)中在成型之前还包括使用粘结剂将所述铁酸钬基材料形成浆料的步骤。
根据本发明的一些实施例,所述粘结剂为聚乙烯醇。
根据本发明的一些实施例,基于所述浆料的质量,所述粘结剂的质量分数为0.01~50%,所述铁酸钬基材料的质量分数为50~99.99%。
根据本发明的一些实施例,步骤(2)具体为:采用3-D直写成型技术对所述铁酸钬基材料进行打印,然后进行第二次烧结。
根据本发明的一些实施例,所述第二次烧结的温度为700~1800℃。
本发明的第二方面,提供一种铁酸钬基太赫兹超材料,由上述的铁酸钬基太赫兹超材料的制备方法制得,所述铁酸钬基太赫兹超材料的通式为Ho1+xFe1-xO3,其中-0.5≤x≤0.5。
本发明的第三方面,提供一种光学器件,包括上述的铁酸钬基太赫兹超材料。
本发明实施例的有益效果是:
本发明实施例提供一种铁酸钬基太赫兹超材料的制备方法,采用氧化铁为铁源,在制备过程中无需使用其他助剂,利用固相反应制备形成的材料中Ho原子与Fe原子的比例可调,具有优异的太赫兹电磁波振幅与频率的可调控性能,利用该铁酸钬基太赫兹超材料能够实现0.1THz到7THz的频率调控,实现太赫兹透射振幅表示的透射率在介于0与1之间实现自由调控,具有非常重要的应用前景。利用本发明实施例的制备方法制得的铁酸钬基太赫兹超材料是一种低损耗的全介质基超材料,在制备过程中可以通过调控原料的加入比例从而调控制得的材料中Ho原子与Fe原子的比例,进而形成一系列振幅和频率可调的铁酸钬基太赫兹超材料,从而能够更灵活地调控太赫兹超材料的振幅和频率。本发明实施例的方法具有可按要求进行定制化制备的优点,制备得到的材料具有优异的太赫兹电磁波振幅与频率的可调控特性,同时也避免了现有使用贵金属超材料导致的电磁波的吸收损耗大的问题,具有非常重要的应用前景。
附图说明
图1为实施例1中光栅结构的铁酸钬基太赫兹超材料在激光共聚焦显微镜下的图片;
图2为实施例1中光栅结构的铁酸钬基太赫兹超材料在光学显微镜下的图片;
图3为利用太赫兹光谱仪系统对实施例1中制得的光栅结构的铁酸钬基太赫兹超材料的测试结果图;
图4为实施例2中面心立方结构的铁酸钬基太赫兹超材料在光学显微镜下的图片;
图5为利用太赫兹光谱仪系统对实施例2中制得的面心立方结构的铁酸钬基太赫兹超材料的测试结果图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例提供一种铁酸钬基太赫兹超材料,该太赫兹超材料为光栅结构,按照以下步骤制备:
(1)取1moL氧化铁和1moL氧化钬混合形成原料混合物,然后在900℃进行第一次烧结,形成铁酸钬基材料HoFeO3,然后在3000r/min的条件下球磨破碎形成粉末;
(2)取步骤(1)中铁酸钬基材料HoFeO3粉末,加入聚乙烯醇的水溶液均匀混合形成浆料,其中,在浆料中铁酸钬基材料HoFeO3的质量分数为90%,然后采用3-D直写设备对上述浆料进行打印成型,然后在1400℃进行第二次烧结4h,制得的铁酸钬基太赫兹超材料为长条型材料构成的光栅结构,该光栅结构的样品大小为10mm×10mm,长条型材料的厚度为0.1mm,其在激光共聚焦显微镜下的图片如图1所示,在光学显微镜下的图片如图2所示。
取本实施例制得的光栅结构的铁酸钬基太赫兹超材料,利用太赫兹光谱仪系统(Zomega Z3)对其进行测试,测试结果如图3所示,从图中可以看出铁酸钬基太赫兹超材料在0.91THz和2.03THz处分别有两个谐振点。
实施例2
本实施例提供一种铁酸钬基太赫兹超材料,该铁酸钬基太赫兹超材料为面心立方结构,按照以下步骤制备:
(1)取1moL氧化铁和1moL氧化钬混合形成原料混合物,然后在900℃进行第一次烧结形成铁酸钬基材料HoFeO3,然后在3000r/min的条件下球磨破碎形成粉末;
(2)取步骤(1)中铁酸钬基材料HoFeO3粉末,加入聚乙烯醇的水溶液均匀混合形成浆料,其中,在浆料中铁酸钬基材料HoFeO3的质量分数为90%,然后采用3-D直写设备对浆料进行逐层打印成型,然后在1400℃进行第二次烧结4h,制得铁酸钬基太赫兹超材料为长条型材料构成的面心立方结构,该面心立方结构的样品大小为10mm×10mm,长条型材料的厚度为0.3mm,其在光学显微镜下的图片如图4所示。
取本实施例制得的面心立方结构的铁酸钬基太赫兹超材料,利用太赫兹光谱仪系统(Zomega Z3)对其进行测试,结果如图5所示,从图中可以看出铁酸钬基太赫兹面心立方结构超材料在0.68THz、0.82THz、1.06THz、1.21THz和2.03THz处分别有五个谐振点。
实施例3
本实施例提供一种铁酸钬基太赫兹超材料,该太赫兹超材料为光栅结构,按照以下步骤制备:
(1)取0.8moL氧化铁和1.2moL氧化钬混合形成原料混合物,然后在900℃进行第一次烧结形成铁酸钬基材料Ho1.2Fe0.8O3,然后在3000r/min的条件下球磨破碎形成粉末;
(2)取步骤(1)中铁酸钬基材料陶瓷粉末Ho1.2Fe0.8O3粉末,加入聚乙烯醇的水溶液均匀混合形成浆料,其中,在浆料中铁酸钬基材料陶瓷粉末Ho1.2Fe0.8O3的质量分数为90%,然后采用3-D直写设备对浆料进行逐层打印成型,然后在1400℃进行第二次烧结4h,制得铁酸钬基太赫兹超材料为光栅结构,该光栅结构的样品大小为10mm×10mm,长条型材料的厚度为0.1mm。
取本实施例制得的光栅结构的铁酸钬基Ho1.2Fe0.8O3太赫兹超材料,利用太赫兹光谱仪系统(Zomega Z3)对其进行测试,与实施例1中的铁酸钬基HoFeO3太赫兹超材料的测试结果相比,本实施例中制得的铁酸钬基Ho1.2Fe0.8O3太赫兹超材料整体发生频率移动,实验表明通过调控材料中Ho原子与Fe原子的比例,能够形成具有不同振幅和频率的铁酸钬基太赫兹超材料,利用本发明的方法可以定制化制备具有不同原子比例的材料,从而实现灵活地调控太赫兹超材料的振幅和频率的目的,具有非常重要的应用前景。

Claims (10)

1.一种铁酸钬基太赫兹超材料的制备方法,其特征在于,包括以下步骤:
(1)按化学计量比称取氧化铁和氧化钬混合形成原料混合物,然后进行第一次烧结,形成铁酸钬基材料;
(2)对所述铁酸钬基材料进行成型。
2.根据权利要求1所述的铁酸钬基太赫兹超材料的制备方法,其特征在于,步骤(1)中,在所述第一次烧结后,还包括球磨的步骤。
3.根据权利要求2所述的铁酸钬基太赫兹超材料的制备方法,其特征在于,所述球磨的速度为5~5000r/min。
4.根据权利要求1至3任一项所述的铁酸钬基太赫兹超材料的制备方法,其特征在于,步骤(2)中在成型之前还包括使用粘结剂将所述铁酸钬基材料形成浆料的步骤。
5.根据权利要求4所述的铁酸钬基太赫兹超材料的制备方法,其特征在于,所述粘结剂为聚乙烯醇。
6.根据权利要求4所述的铁酸钬基太赫兹超材料的制备方法,其特征在于,基于所述浆料的质量,所述粘结剂的质量分数为0.01~50%,所述铁酸钬基材料的质量分数为50~99.99%。
7.根据权利要求1至3任一项所述的铁酸钬基太赫兹超材料的制备方法,其特征在于,步骤(2)具体为:采用3-D直写成型技术对所述铁酸钬基材料进行打印成型,然后进行第二次烧结。
8.根据权利要求7所述的铁酸钬基太赫兹超材料的制备方法,其特征在于,所述第二次烧结的温度为700~1800℃。
9.一种铁酸钬基太赫兹超材料,其特征在于,由权利要求1至8任一项所述的铁酸钬基太赫兹超材料的制备方法制得,所述铁酸钬基太赫兹超材料的通式为Ho1+xFe1-xO3,其中-0.5≤x≤0.5。
10.一种光学器件,其特征在于,包括权利要求9所述的铁酸钬基太赫兹超材料。
CN201911410008.4A 2019-12-31 2019-12-31 铁酸钬基太赫兹超材料及其制备方法和光学器件 Active CN111056828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911410008.4A CN111056828B (zh) 2019-12-31 2019-12-31 铁酸钬基太赫兹超材料及其制备方法和光学器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911410008.4A CN111056828B (zh) 2019-12-31 2019-12-31 铁酸钬基太赫兹超材料及其制备方法和光学器件

Publications (2)

Publication Number Publication Date
CN111056828A true CN111056828A (zh) 2020-04-24
CN111056828B CN111056828B (zh) 2022-06-21

Family

ID=70305500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911410008.4A Active CN111056828B (zh) 2019-12-31 2019-12-31 铁酸钬基太赫兹超材料及其制备方法和光学器件

Country Status (1)

Country Link
CN (1) CN111056828B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835482A (zh) * 2022-05-10 2022-08-02 北京科技大学 一种基于稀土正铁氧体陶瓷的4d打印方法及超构材料
CN115321973A (zh) * 2022-05-10 2022-11-11 北京科技大学 一种基于稀土正铁氧体的太赫兹波介质陶瓷及其构筑方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035431A (ja) * 2007-07-31 2009-02-19 Taiyo Yuden Co Ltd 誘電体磁器、その製造方法及びそれを用いた積層セラミックコンデンサ
US20090261919A1 (en) * 2007-10-24 2009-10-22 Keycom Corporation Millimeter wave band nonreciprocal device
CN102011188A (zh) * 2010-12-08 2011-04-13 上海大学 二次熔融法生长稀土正铁氧体光磁功能晶体的方法
CN103575422A (zh) * 2013-11-13 2014-02-12 清华大学 一种基于三价稀土铁基氧化物作为温度传感材料的温度测量方法
CN105483822A (zh) * 2015-11-30 2016-04-13 上海大学 锰掺杂钬铁氧化物的磁性温敏材料及其单晶和多晶的制备方法
CN110137346A (zh) * 2019-06-18 2019-08-16 西安工业大学 一种锰掺杂铁酸钬HoMnxFe1-xO3磁电材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035431A (ja) * 2007-07-31 2009-02-19 Taiyo Yuden Co Ltd 誘電体磁器、その製造方法及びそれを用いた積層セラミックコンデンサ
US20090261919A1 (en) * 2007-10-24 2009-10-22 Keycom Corporation Millimeter wave band nonreciprocal device
CN102011188A (zh) * 2010-12-08 2011-04-13 上海大学 二次熔融法生长稀土正铁氧体光磁功能晶体的方法
CN103575422A (zh) * 2013-11-13 2014-02-12 清华大学 一种基于三价稀土铁基氧化物作为温度传感材料的温度测量方法
CN105483822A (zh) * 2015-11-30 2016-04-13 上海大学 锰掺杂钬铁氧化物的磁性温敏材料及其单晶和多晶的制备方法
CN110137346A (zh) * 2019-06-18 2019-08-16 西安工业大学 一种锰掺杂铁酸钬HoMnxFe1-xO3磁电材料的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GEORGIEV,DG等: "Weak Antiferromagnetism in YFeO3 and HoFeO3", 《SOLID STATE COMMUNICATION》 *
MINGJIE SHAO等: "Single crystalgrowth,magneticproperties and Schottkyanomaly of HoFeO3 orthoferrite", 《JOURNAL OFCRYSTALGROWTH》 *
PINA,P.C等: "Mossbauer spectroscopy of lanthanum and holmium ferrites", 《HYPERFINE INTERACTIONS》 *
ZENG XINXI等: "Terahertz time domain spectroscopic investigation of spin reorientation transitions in HoFeO3", 《OPTICS EXPRESS》 *
蒋东丽等: "铁酸钬与铁酸钐纳米晶的制备及其甲醛敏感特性研究", 《化工新型材料》 *
谢慧等: "HoFe1-xMnxO3(X=0,0.1,0.2)的磁热效应研究", 《低温物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835482A (zh) * 2022-05-10 2022-08-02 北京科技大学 一种基于稀土正铁氧体陶瓷的4d打印方法及超构材料
CN115321973A (zh) * 2022-05-10 2022-11-11 北京科技大学 一种基于稀土正铁氧体的太赫兹波介质陶瓷及其构筑方法

Also Published As

Publication number Publication date
CN111056828B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
Hwang Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst
CN111056828B (zh) 铁酸钬基太赫兹超材料及其制备方法和光学器件
Thakur et al. Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range
Sen et al. Influence of Ba and Mo co-doping on the structural, electrical, magnetic and optical properties of BiFeO3 ceramics
Pal Singh et al. The effect of Co doping on the structural, optical, and magnetic properties of Fe-doped ZnO nanoparticles
Rahman et al. Synthesis and characterization of Mg–Zn ferrite based flexible microwave composites and its application as SNG metamaterial
Akhter et al. Synthesis, structural and physical properties of Cu 1–x Zn x Fe 2 O 4 ferrites
Chang et al. Textured Z-type hexaferrites Ba3Co2Fe24O41 ceramics with high permeability by reactive templated grain growth method
Basandrai et al. Radiation losses in the microwave X band in Al-Cr substituted Y-type hexaferrites
Sharma et al. Magnetic and dielectric properties of Ce–Co substituted BiFeO3 multiferroics
Ullah et al. Effect of V2O5 addition on the structural and magnetic properties of Ni–Co–Zn ferrites
Sun et al. Effect of Zn substitution on the electromagnetic and microwave absorbing properties of BaCo 2 hexaferrite
Pal Singh et al. Effect of Ni doping on structural, optical, and magnetic properties of Fe-doped ZnO nanoparticles
Makhdoom et al. Structural and magnetic variations in Ba0. 5Sr0. 5Fe9Ce1Al2O19 hexaferrites at different sintering temperatures
Kaur et al. Fabrication of Zn0. 25Co0. 75 (MnZr) xFe2–2xO4 spinel ferrites as broadband microwave absorbers in 26.5–40 GHz frequency range
Li et al. Co2Z hexaferrites with equivalent permeability and permittivity in UHF band
Alshammari et al. Structural and magnetic conduct in Sm and Al substituted Ba0. 9Sm0. 1Fe10Al2O19 M-type hexaferrites at different sintering temperatures
Kamble et al. Synthesis of Mg0. 48Cu0. 12Zn0. 40Fe2O4 ferrite and its aptness for multilayer chip component application
Thakur et al. Investigations on structural, spectroscopic and magnetic properties of yttrium barium orthoferrite and nickel doped strontium hexaferrite composites
Patil et al. Influence of Ta2O5 additive on the structural, optical and magnetic properties of Ni-Cu-Zn nanocrystalline spinel ferrites
Harshapriya et al. Structural, magnetic, microwave absorption and electromagnetic properties of Y-Ag-doped bismuth ferrite nanoparticles for commercial applications
Huang et al. Microwave electromagentic and absorption properties of AFe2O4 (A= Ni, Mn, Zn) ferrites
Aggarwal et al. Synthesis of Ni-Zn-Mg-Zr spinel ferrites as high-performance electromagnetic wave absorber in Ku band
Asif et al. Effects of Zr substitution on structural, morphological, and magnetic properties of bismuth iron oxide phases
Zhao et al. Influence of Nd doping on microwave absorbing properties of nanocrystalline Ni-Zn ferrites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant