CN111048623A - 一种提高方阻均匀性的发射极制备方法 - Google Patents

一种提高方阻均匀性的发射极制备方法 Download PDF

Info

Publication number
CN111048623A
CN111048623A CN201911328455.5A CN201911328455A CN111048623A CN 111048623 A CN111048623 A CN 111048623A CN 201911328455 A CN201911328455 A CN 201911328455A CN 111048623 A CN111048623 A CN 111048623A
Authority
CN
China
Prior art keywords
silicon
silicon wafer
preparation
phosphorus
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911328455.5A
Other languages
English (en)
Inventor
邱家梁
黄惜惜
周肃
黄国平
李菁楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CECEP Solar Energy Technology Zhenjiang Co Ltd
Original Assignee
CECEP Solar Energy Technology Zhenjiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CECEP Solar Energy Technology Zhenjiang Co Ltd filed Critical CECEP Solar Energy Technology Zhenjiang Co Ltd
Priority to CN201911328455.5A priority Critical patent/CN111048623A/zh
Publication of CN111048623A publication Critical patent/CN111048623A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种提高方阻均匀性的发射极制备方法,硅片预处理后在硅片表面沉积一层掺磷(硼)氧化硅层;PN结制备时,利用扩散炉不添加掺杂气源进行高温扩散。本发明通过在硅片表面沉积一层掺磷(硼)的氧化硅层,此过程中,形成的氧化硅层具有优异的均匀性,为后续步骤提供了更加均匀的前提,使用扩散炉进行高温扩散,不添加掺杂气源,利用均匀的掺磷(硼)氧化硅层,实现高均匀性方阻。

Description

一种提高方阻均匀性的发射极制备方法
技术领域
本发明具体涉及一种提高方阻均匀性的发射极制备方法。
背景技术
随着太阳能电池技术的发展,高方阻的发射区制备技术越来越受到高效太阳能电池研发的重视。
其中PN结的制备是最关键的步骤之一,对于晶硅电池的光电转换效率起到了非常重要的作用。目前行业的趋势是逐步提高扩散方阻,进一步提升电池效率。
专利CN104319308A公开了一种提高方阻扩散均匀性的方法,该专利使用缓冲层降低扩散速度,专利CN207282513U公开了一种提高方阻均匀性的方法,该专利通过改善扩散炉结构来提高气体分布均匀性,但是随着硅片尺寸逐渐增大,需要更多的考虑由此带来的不利影响。
发明内容
本发明的目的是为了解决以上现有技术的不足,提出了一种提高方阻均匀性的发射极制备方法,包括以下步骤:
(1)硅片预处理:对硅片进行清洗和减反射表面制备;
(2)磷(硼)硅玻璃层沉积;
(3)PN结制备:在P型硅正面进行扩散,形成N型发射极;在N型硅正面进行扩散,形成P型发射极;
(4)表面钝化:对硅片进行热退火,然后在硅片背面进行氧化铝和氮化硅的膜层制备,在硅片正面和背面进行氮化硅、氮氧化硅、二氧化硅、氧化铝、非晶硅、透明导电层等减反射膜的制备;
(5)金属化:在硅片表面进行背电极、背电场以及正面电极制备,并进行固化、烧结,完成电池制备。
优选地,步骤(2)中,掺磷(硼)氧化硅层使用等离子气相辅助化学沉积法沉积而成。
优选地,其中等离子气相辅助化学沉积法沉积掺磷(硼)氧化硅层使用管式或平板式等离子气相辅助化学沉积法的方式进行。
优选地,使用等离子气相辅助化学沉积法沉积时,加热温度为200-400℃;反应气体硅烷使用氮气稀释,硅烷的浓度<10%;氧化性气体笑气的流量为0.5-1L/min;反应气体磷烷浓度为0.02-0.2%,流量0.6-1L/min;反应室气体总压力为0.06-3托。
有益效果:
1、本发明通过在硅片表面沉积一层掺磷(硼)的氧化硅层,此过程中,形成的氧化硅层具有优异的均匀性,为后续步骤提供了更加均匀的前提。
2、本发明使用扩散炉进行高温扩散,不添加掺杂气源,利用均匀的掺磷氧化硅层,实现高均匀性方阻。
附图说明
图1是使用等离子气相辅助化学沉积法沉积掺杂氧化硅后再扩散的硅片进行方阻测试之后的对比图。
具体实施方式
为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
一种提高方阻均匀性的发射极制备方法,包括以下步骤:
(1)硅片预处理:对硅片进行清洗和减反射表面制备;
(2)磷(硼)硅玻璃层沉积;
(3)PN结制备:在P型硅正面进行扩散,形成N型发射极;在N型硅正面进行扩散,形成P型发射极;
(4)表面钝化:对硅片进行热退火,然后在硅片背面进行氧化铝和氮化硅的膜层制备,在硅片正面和背面进行氮化硅、氮氧化硅、二氧化硅、氧化铝、非晶硅、透明导电层等减反射膜的制备;
(5)金属化:在硅片表面进行背电极、背电场以及正面电极制备,并进行固化、烧结,完成电池制备。
步骤(2)中,掺磷(硼)氧化硅层使用等离子气相辅助化学沉积法沉积而成,其中等离子气相辅助化学沉积法沉积掺磷(硼)氧化硅层使用管式或平板式等离子气相辅助化学沉积法的方式进行。
使用等离子气相辅助化学沉积法沉积时,加热温度为200-400℃;反应气体硅烷使用氮气稀释,硅烷的浓度<10%;氧化性气体笑气的流量为0.5-1L/min;反应气体磷烷浓度为0.02-0.2%,流量0.6-1L/min;反应室气体总压力为0.06-3托。
实施例中,通过使用等离子气相辅助化学沉积法在硅片表面沉积一层掺磷的氧化硅层,此过程中,使用到硅烷、笑气、磷烷(硼烷)作为等离子反应气体。由于等离子气相辅助化学沉积法工艺的特征,形成的氧化硅层具有优异的均匀性,为后续步骤提供了更加均匀的前提,使用扩散炉不添加掺杂气源进行高温扩散,利用均匀的掺磷(硼)氧化硅层,实现高均匀性方阻。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种提高方阻均匀性的发射极制备方法,包括以下步骤,其特征在于;
(1)硅片预处理:对硅片进行清洗和减反射表面制备;
(2)磷(硼)硅玻璃层沉积;
(3)PN结制备:在P型硅正面进行扩散,形成N型发射极;在N型硅正面进行扩散,形成P型发射极;
(4)表面钝化:对硅片进行热退火,然后在硅片背面进行氧化铝和氮化硅的膜层制备,在硅片正面和背面进行氮化硅、氮氧化硅、二氧化硅、氧化铝、非晶硅、透明导电层等减反射膜的制备;
(5)金属化:在硅片表面进行背电极、背电场以及正面电极制备,并进行固化、烧结,完成电池制备。
2.根据权利要求1所述的一种提高方阻均匀性的发射极制备方法,其特征在于,步骤(2)中,掺磷(硼)氧化硅层使用等离子气相辅助化学沉积法沉积而成。
3.根据权利要求2所述的一种提高方阻均匀性的发射极制备方法,其特征在于,其中等离子气相辅助化学沉积法沉积掺磷(硼)氧化硅层使用管式或平板式等离子气相辅助化学沉积法的方式进行。
4.根据权利要求2所述的一种提高方阻均匀性的发射极制备方法,其特征在于,使用等离子气相辅助化学沉积法沉积时,加热温度为200-400℃;反应气体硅烷使用氮气稀释,硅烷的浓度<10%;氧化性气体笑气的流量为0.5-1L/min;反应气体磷烷浓度为0.02-0.2%,流量0.6-1L/min;反应室气体总压力为0.06-3托。
CN201911328455.5A 2019-12-20 2019-12-20 一种提高方阻均匀性的发射极制备方法 Pending CN111048623A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911328455.5A CN111048623A (zh) 2019-12-20 2019-12-20 一种提高方阻均匀性的发射极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911328455.5A CN111048623A (zh) 2019-12-20 2019-12-20 一种提高方阻均匀性的发射极制备方法

Publications (1)

Publication Number Publication Date
CN111048623A true CN111048623A (zh) 2020-04-21

Family

ID=70238203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911328455.5A Pending CN111048623A (zh) 2019-12-20 2019-12-20 一种提高方阻均匀性的发射极制备方法

Country Status (1)

Country Link
CN (1) CN111048623A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538485A (zh) * 2014-11-06 2015-04-22 浙江正泰太阳能科技有限公司 一种双面电池的制备方法
JP2015109361A (ja) * 2013-12-05 2015-06-11 信越化学工業株式会社 太陽電池の製造方法
US20150337145A1 (en) * 2012-10-22 2015-11-26 Cambridge Enterprise Limited Functional Inks Based on Layered Materials and Printed Layered Materials
CN105576083A (zh) * 2016-03-11 2016-05-11 泰州中来光电科技有限公司 一种基于apcvd技术的n型双面太阳能电池及其制备方法
CN105702809A (zh) * 2016-04-07 2016-06-22 南昌大学 一种低温气相沉积固态扩散源制备用于太阳电池的掺杂硅的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150337145A1 (en) * 2012-10-22 2015-11-26 Cambridge Enterprise Limited Functional Inks Based on Layered Materials and Printed Layered Materials
JP2015109361A (ja) * 2013-12-05 2015-06-11 信越化学工業株式会社 太陽電池の製造方法
CN104538485A (zh) * 2014-11-06 2015-04-22 浙江正泰太阳能科技有限公司 一种双面电池的制备方法
CN105576083A (zh) * 2016-03-11 2016-05-11 泰州中来光电科技有限公司 一种基于apcvd技术的n型双面太阳能电池及其制备方法
CN105702809A (zh) * 2016-04-07 2016-06-22 南昌大学 一种低温气相沉积固态扩散源制备用于太阳电池的掺杂硅的方法

Similar Documents

Publication Publication Date Title
CN110164759B (zh) 一种区域性分层沉积扩散工艺
US8124502B2 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
CN109004038B (zh) 太阳能电池及其制备方法和光伏组件
Balaji et al. Surface passivation schemes for high-efficiency c-Si solar cells-A review
US20100258168A1 (en) Silicon-based dielectric stack passivation of si-epitaxial thin-film solar cells
CN105097961A (zh) Perc及pert太阳能电池的制备方法
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
WO2010046284A1 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
CN103632934A (zh) N型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
WO2023092977A1 (zh) 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
CN101609796B (zh) 薄膜形成方法和薄膜太阳能电池的制造方法
CN102903785A (zh) 一种采用增氢钝化提高太阳能电池片转换效率的方法
CN115394863A (zh) 一种太阳电池及其制备方法
CN114267753A (zh) 一种TOPCon太阳能电池及其制备方法、光伏组件
CN111416014B (zh) 一种钝化接触背结硅异质结太阳电池及其制备方法
CN112768534A (zh) 一种氧化硅钝化perc双面电池及其制备方法
CN114725239B (zh) 一种异质结电池的制备方法
CN110965044A (zh) 降低perc电池电致衰减的介质钝化膜及其制备方法
CN111048623A (zh) 一种提高方阻均匀性的发射极制备方法
CN114023635A (zh) 一种提效降本的太阳能电池硼扩散方法
CN115020539A (zh) 一种perc电池背面结构、制备工艺及perc电池
CN114843175A (zh) 一种n型掺杂氧化微晶硅、异质结太阳能电池及两者的制备方法
CN114823969A (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
US7629236B2 (en) Method for passivating crystal silicon surfaces
CN111312859A (zh) 一种重掺杂型硅基薄膜的制备方法和由此得到的薄膜及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200421