CN111040255B - 一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法 - Google Patents

一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法 Download PDF

Info

Publication number
CN111040255B
CN111040255B CN201911371545.2A CN201911371545A CN111040255B CN 111040255 B CN111040255 B CN 111040255B CN 201911371545 A CN201911371545 A CN 201911371545A CN 111040255 B CN111040255 B CN 111040255B
Authority
CN
China
Prior art keywords
bio
parts
polyethylene
starch
blown film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911371545.2A
Other languages
English (en)
Other versions
CN111040255A (zh
Inventor
李积迁
陈晓江
郭健
杨宏
李建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyou Hongcai New Material Technology Co.,Ltd.
Original Assignee
Shenzhen Hongcai New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hongcai New Material Technology Co ltd filed Critical Shenzhen Hongcai New Material Technology Co ltd
Priority to CN201911371545.2A priority Critical patent/CN111040255B/zh
Publication of CN111040255A publication Critical patent/CN111040255A/zh
Application granted granted Critical
Publication of CN111040255B publication Critical patent/CN111040255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/30Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/40Thiurams, i.e. compounds containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于塑料制备领域,具体涉及一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法。所述生物基聚乙烯/淀粉共混改性吹膜材料,以重量份数计,包括如下组分:生物基低密度聚乙烯25‑45份、生物基高密度聚乙烯5‑25份、乙烯丙烯酸乙酯4‑20份、相容剂1‑8份、淀粉30‑65份、增塑剂3‑19.5份、分散剂1‑8份、促进剂1‑8份。本发明提供的吹膜材料具有生物基含量高,熔融指数低,加工性能好,机械性能强的优点,有利于行业推广利用。

Description

一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法
技术领域
本发明属于塑料制备领域,具体涉及一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法。
背景技术
环境污染和资源短缺的影响,可生物降解高分子材料成为研究热点。淀粉作为一种绿色环保、可再生、可生物降解的物质,广泛用于生物降解高分子材料的制备。天然淀粉颗粒是由直链淀粉和支链淀粉的双螺旋结构组成的,其具有结晶区和非结晶区,天然淀粉由于颗粒中结晶区的存在不具有热塑加工性能,一般将对其进行改性,破坏其中的结晶区,使其满足加工性能的需求,这种淀粉具有热塑性,称之为热塑性淀粉。
热塑性淀粉用于制备可生物降解材料的缺点在于其淀粉分子上的多羟基结构使其易从环境中吸收水分,造成机械性能及产品储存性能的下降。为了改善此问题,常用的方法有两种,一是对天然淀粉进行化学改性后再制备热塑性淀粉,二是将热塑性淀粉与其他高聚物共混。将淀粉与其他高聚物共混可以有效提高复合材料的力学性能,且方法较为简单。
淀粉与聚乙烯(PE)混合的方法制备高分子可降解材料具有产量大、成本低且能耗低的优点。聚乙烯为疏水性高分子,极性很小,其与淀粉的结构及剂型相差较大,因此,聚乙烯与淀粉共混时存在相容性差、机械性能差的问题,需将淀粉的亲水性加以改进,或将合成聚合物的亲油性加以改进,另外,还可在淀粉与聚合物之间引入增容的第三组分。专利号201810969738.7提供了一种聚乙烯淀粉塑料的制备方法,在淀粉、聚乙烯、滑石粉、碳酸钙等混合后在双螺杆挤出机制备,具有加工性能好特点,但生物基含量低;专利号CN2018103-55130.5提供了一种改性淀粉基聚乙烯塑料的制备方法,将淀粉糊化,再通过淀粉酶改性,与聚乙烯共混后通过双螺杆挤出。上述专利技术方法中存在一定缺陷,主要表现在制备的淀粉/聚乙烯塑料材料生物基含量较低,且当淀粉/聚乙烯塑料材料中淀粉的含量稍增大时,体系的机械性能会明显下降,不利于当前行业推广应用。
发明内容
本发明所要解决的技术问题是提供一种高生物基含量,良好力学性能,加工性能好的生物基聚乙烯/热塑性淀粉共混改性吹膜材料及其制备方法。
本发明解决上述技术问题的具体技术方案如下:
一种生物基聚乙烯/淀粉共混改性吹膜材料,以重量份数计,包括如下组分:生物基低密度聚乙烯(LDPE)25-45份、生物基高密度聚乙烯(HDPE)5-25份、乙烯丙烯酸乙酯(EEA)4-20份、相容剂1-8份、淀粉30-65份、增塑剂3-19.5份、分散剂1-8份、促进剂1-8份。
生物基聚乙烯(LDPE、HDPE)是采用甘蔗为原料,先制备成乙醇,在制备成绿色聚乙烯,为巴西Braskem公司生产。
进一步地,所述的生物基聚乙烯/淀粉共混改性吹膜材料,以重量份数计,包括如下组分:生物基低密度聚乙烯35-40份、生物基高密度聚乙烯10-15份、乙烯丙烯酸乙酯8-12份、相容剂2-5份、淀粉40-50份、增塑剂8-12.5份、分散剂1-3份、促进剂3-6份。
更进一步地,所述的生物基聚乙烯/淀粉共混改性吹膜材料,以重量份数计,包括如下组分:生物基低密度聚乙烯38份、生物基高密度聚乙烯12份、乙烯丙烯酸乙酯10份、相容剂3份、淀粉45份、增塑剂10.35份、分散剂2份、促进剂5份。
进一步地,所述相容剂为马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)、线性低密度聚乙烯接枝甲基丙烯酸缩水甘油酯(LLDPE-g-GMA)、乙烯-醋酸乙烯共聚物接枝马来酸酐(EVA-g-MAH)中的至少一种。马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)、线性低密度聚乙烯接枝甲基丙烯酸缩水甘油酯(LLDPE-g-GMA)、乙烯-醋酸乙烯共聚物接枝马来酸酐(EVA-g-MAH)的接枝率为1.0-1.2%。
进一步地,所述增塑剂为白油、去离子水、乙酰基柠檬酸三正丁酯中的任意两种,质量比为1:1。
进一步地,所述分散剂为硬脂酰胺、硬脂酸钡、乙烯-醋酸乙烯共聚物、氧化聚乙烯蜡、三羟基聚氧化丙烯醚中的至少一种。
进一步地,所述分散剂为氧化聚乙烯蜡和三羟基聚氧化丙烯醚(1-3):1的混合物。
进一步地,所述分散剂为氧化聚乙烯蜡和三羟基聚氧化丙烯醚1:1的混合物。
进一步地,所述促进剂为N-叔丁基-2-苯骈噻唑次磺酰胺、四硫化双戊撑秋兰姆、2-硫醇基苯并噻唑中的至少一种。
本发明还提供了一种生物基聚乙烯/淀粉共混改性吹膜材料的制备方法,包括如下步骤:
S1.先将淀粉加入反应釜中,设定温度为140-160℃,开启搅拌轴,转速700-800rpm/min,时间25-45min,使淀粉水分控制在0.5%以内,再通过反应釜上端固体加料口加入增塑剂、促进剂继续混合20-40min,制得热塑性淀粉;
S2.再在反应釜中加入生物基低密度聚乙烯、生物基高密度聚乙烯、乙烯丙烯酸乙酯后混合3-8min,放出备用,制得生物基聚乙烯混合物;
S3.设定双螺杆挤出机模头温度,将热塑性淀粉从加料口的一端加入,另一端加入生物基聚乙烯混合物,两种物料混合物在料斗中汇合后,启动电机,待物料到达模头处,开启抽真空装置,真空度控制在0.1MPa以内,使水分控制在0.5%以内,通过切粒制备生物基聚乙烯/热塑性淀粉共混改性吹膜材料。
进一步地,所述双螺杆挤出机温度设定为160℃—165℃—170℃—180℃—190℃—190℃—190℃—185℃—185℃,模头温度为180℃。
现有技术中采用的聚乙烯为传统聚乙烯,即是从石油中得到的乙烯为原料,进行聚合反应得到的,在本申请中,本发明人采用生物基低密度聚乙烯和生物基高密度聚乙烯替代传统的聚乙烯,生物基聚乙烯具有可再生、环保的特点,符合可持续发展的理念。
为了提高淀粉与聚乙烯的相容性,本申请加入了乙烯丙烯酸乙酯(EEA)和相容剂,乙烯丙烯酸乙酯对极性材料和非极性材料都有很好的粘结性,其能很好的包覆在聚乙烯和淀粉的表面,提高聚乙烯和淀粉的相容性。相容剂马来酸酐接枝低密度聚乙烯、线性低密度聚乙烯接枝甲基丙烯酸缩水甘油酯、乙烯-醋酸乙烯共聚物接枝马来酸酐均为接枝改性的聚乙烯聚合物,通过接枝改性引入羧基,羧基会与淀粉的羟基形成氢键,另外该接枝改性的聚乙烯聚合物与聚乙烯、EEA有良好的相容性,因此相容剂的加入使生物基聚乙烯材料和淀粉、EEA等材料之间发生微反应,确保材料之间分散相和连续向成为一体。申请人发现,当EEA和相容剂共同使用时,聚乙烯材料和淀粉共混物的生物基含量可高达85%(实施例1),且熔融指数明显降低。但是在测试该高生物基含量的聚乙烯材料和淀粉共混物时,发现其拉伸强度和断裂伸长率较低,制得的吹膜材料质量较差,为了克服这个问题,发明人通过大量的筛选,发现当氧化聚乙烯蜡和三羟基聚氧化丙烯醚按1:1混合制备分散剂时该共混物的机械性能大大增强,这可能是因为氧化聚乙烯蜡和三羟基聚氧化丙烯醚中均含有羟基,能和淀粉形成氢键,使淀粉塑化后在塑料中分散均匀,提高复合材料的力学性能。
与现有技术相比,本发明提供的技术方案,具有以下有益效果:
(1)本申请提供的生物基聚乙烯/热塑性淀粉共混改性吹膜材料,以生物基聚乙烯替代传统的聚乙烯,具有可再生、减少污染,环保的优点。
(2)本申请提供的生物基聚乙烯/热塑性淀粉共混改性吹膜材料,通过加入乙烯丙烯酸乙酯和相容剂,改善了淀粉和聚乙烯的相容性,使该吹膜材料的生物基含量可达85%,且熔融指数明显降低,有利与生产性能的提高。
(3)本申请提供的生物基聚乙烯/热塑性淀粉共混改性吹膜材料,通过添加适宜的分散剂,明显改善了吹膜材料的机械性能。
具体实施方式
以下通过具体实施方式的描述对本发明作进一步说明,但这并非是对本发明的限制,本领域技术人员根据本发明的基本思想,可以做出各种修改或改进,但是只要不脱离本发明的基本思想,均在本发明的范围之内。
本发明中使用的生物基低密度聚乙烯熔融指数1-3g/10min;生物基高密度聚乙烯熔融指数为2-5g/10min;其他物质均为市售产品。
实施例1-5聚乙烯/热塑性淀粉共混改性吹膜材料的组分及其制备
实施例1-5,聚乙烯/热塑性淀粉共混改性吹膜材料的组分,如下表所示。
表1
Figure BDA0002339751650000051
Figure BDA0002339751650000061
实施例1-5,聚乙烯/热塑性淀粉共混改性吹膜材料的制备方法,步骤如下:
S1.先将淀粉加入反应釜中,设定温度为150℃,开启搅拌轴,转速800rpm/min,时间30min,使淀粉水分控制在0.5%以内,再通过反应釜上端固体加料口加入增塑剂、促进剂继续混合25min,制得热塑性淀粉;
S2.再在反应釜中加入生物基低密度聚乙烯、生物基高密度聚乙烯、乙烯丙烯酸乙酯后混合5min,放出备用,制得生物基聚乙烯混合物;
S3.双螺杆挤出机温度设定为160℃—165℃—170℃—180℃—190℃—190℃—190℃—185℃—185℃,模头温度为180℃,将热塑性淀粉从加料口的一端加入,另一端加入生物基聚乙烯混合物,两种物料混合物在料斗中汇合后,启动电机,待物料到达模头处,开启抽真空装置,真空度控制在0.1MPa以内,使水分控制在0.5%以内,通过切粒制备生物基聚乙烯/热塑性淀粉共混改性吹膜材料。
对比例1-4聚乙烯/热塑性淀粉共混改性吹膜材料的组分及其制备
对比例1-4,聚乙烯/热塑性淀粉共混改性吹膜材料的组分如下表所示。
表2
Figure BDA0002339751650000071
Figure BDA0002339751650000081
对比例1-4,聚乙烯/热塑性淀粉共混改性吹膜材料的制备方法参考实施例1-5的方法。
试验例1吹膜材料熔融指数的测定
参考《GB/T 3682-2000熔体质量流动速率》测定熔融指数。将试验的吹膜材料放入熔融指数检测仪的试样槽中,在温度190℃,标称负荷2.16kg的条件下,10min内流出的克数,记为该聚合物的熔融指数,单位为g/10min。
表3
Figure BDA0002339751650000082
Figure BDA0002339751650000091
从表中可知,实施例1-5的熔融指数均低于对比1-2的熔融指数,说明相容剂和乙烯丙烯酸乙酯复配使用时,能明显降低本申请中吹膜材料的熔融指数。
试验例2吹膜材料力学性能的测定
根据《GB 1040-79塑料拉伸试验方法》,室温下用WD-5型电子万能实验机测定试样的拉伸强度和断裂伸长率,试样的尺寸φ3×10mm,每个样品测量10次,取10次数据的平均值。测量前先将试样在相对湿度为50%的环境下放置48h,拉伸速率为100mm/min。测定结果如下表所示。
表4
样品 拉伸强度/MPa 断裂伸长率/%
实施例1 15.52 454.3
实施例2 15.69 463.8
实施例3 15.92 482.6
实施例4 15.63 460.4
实施例5 15.74 471.2
对比例3 12.82 280.3
对比例4 12.51 265.0
从表中可知,实施例1-5的拉伸强度均大于15MPa,断裂伸长率均大于450%,明显高于对比例3-4的数据,机械性能好。表明本申请中使用氧化聚乙烯蜡和三羟基聚氧化丙烯醚联合使用作为分散剂时能增强吹膜材料的机械性能。
本行业的技术人员应该了解,上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (3)

1.一种生物基聚乙烯/淀粉共混改性吹膜材料,其特征在于,以重量份数计,由如下组分组成:生物基低密度聚乙烯38份、生物基高密度聚乙烯12份、乙烯丙烯酸乙酯10份、相容剂3份、淀粉45份、增塑剂是淀粉重量的23%、分散剂2份、促进剂5份;
所述相容剂为线性低密度聚乙烯接枝甲基丙烯酸缩水甘油酯;
所述增塑剂为白油、乙酰基柠檬酸三正丁酯按质量比1:1组成;
所述分散剂为氧化聚乙烯蜡和三羟基聚氧化丙烯醚质量比为1:1的混合物;
所述促进剂为四硫化双戊撑秋兰姆。
2.根据权利要求1所述的生物基聚乙烯/淀粉共混改性吹膜材料的制备方法,其特征在于,包括如下步骤:
S1.先将淀粉加入反应釜中,设定温度为140-160℃,开启搅拌轴,转速700-800rpm/min,时间25-45min,使淀粉水分控制在0.5%以内,再通过反应釜上端固体加料口加入增塑剂、促进剂继续混合20-40min,制得热塑性淀粉;
S2.再在反应釜中加入生物基低密度聚乙烯、生物基高密度聚乙烯、乙烯丙烯酸乙酯后混合3-8min,放出备用,制得生物基聚乙烯混合物;
S3.设定双螺杆挤出机模头温度,将热塑性淀粉从加料口的一端加入,另一端加入生物基聚乙烯混合物,两种物料混合物在料斗中汇合后,启动电机,待物料到达模头处,开启抽真空装置,真空度控制在0.1MPa以内,使水分控制在0.5%以内,通过切粒制备生物基聚乙烯/热塑性淀粉共混改性吹膜材料。
3.根据权利要求2所述的生物基聚乙烯/淀粉共混改性吹膜材料的制备方法,其特征在于,所述双螺杆挤出机温度设定为160℃—165℃—170℃—180℃—190℃—190℃—190℃—185℃—185℃,模头温度为180℃。
CN201911371545.2A 2019-12-26 2019-12-26 一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法 Active CN111040255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911371545.2A CN111040255B (zh) 2019-12-26 2019-12-26 一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911371545.2A CN111040255B (zh) 2019-12-26 2019-12-26 一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111040255A CN111040255A (zh) 2020-04-21
CN111040255B true CN111040255B (zh) 2021-09-28

Family

ID=70240406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911371545.2A Active CN111040255B (zh) 2019-12-26 2019-12-26 一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111040255B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759800A (zh) * 2020-12-29 2021-05-07 武汉华丽环保科技有限公司 一种薄壁注塑用生物基复合材料及其制备方法
CN113150427A (zh) * 2021-06-09 2021-07-23 深圳市晓帆宇科技有限公司 一种可降解的生物基聚乙烯的制备系统
CN114989518B (zh) * 2022-07-27 2022-11-04 新乐华宝塑料薄膜有限公司 一种生物聚乙烯薄膜及其制备方法
CN116023730A (zh) * 2023-02-14 2023-04-28 天津市中泰创展科技有限公司 一种可降解透气流延膜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194798A (ja) * 1992-01-20 1993-08-03 Furukawa Electric Co Ltd:The 吸水材
CN102532647B (zh) * 2010-12-27 2014-06-04 上海杰事杰新材料(集团)股份有限公司 一种光、生物复合降解聚乙烯泡沫塑料及其制备方法
CN102153786A (zh) * 2011-03-25 2011-08-17 苏州汉丰新材料有限公司 冷冻用淀粉基生物降解包装容器
US20120283364A1 (en) * 2011-05-06 2012-11-08 Cerestech, Inc. Polymer blends comprising phase-encapsulated thermoplastic starch and process for making the same
CN103289171B (zh) * 2013-06-24 2015-04-15 苏州新区佳合塑胶有限公司 一种高强度易降解的塑料袋用母料的制备方法
CN105778452A (zh) * 2016-05-27 2016-07-20 李�杰 一种可生物降解的热收缩膜
CN108912407A (zh) * 2018-06-14 2018-11-30 安徽精良同硕塑膜科技股份有限公司 一种抗菌生物可降解地膜

Also Published As

Publication number Publication date
CN111040255A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN111040255B (zh) 一种生物基聚乙烯/淀粉共混改性吹膜材料及其制备方法
US7608649B2 (en) Biodegradable materials from starch-grafted polymers
US5115000A (en) Biodegradable starch plastics incorporating modified polyethylene
CN110818954A (zh) 具疏水性的热塑性淀粉复合材料与制造方法
US11732058B2 (en) Thermoplastic starch and starch-based biodegradable film
EP0749460A1 (en) Biodegradabel multi-component polymeric materials based on unmodified starch-like polysaccharides
CN109233162B (zh) 一种包装用环保型可降解复合膜及其制备方法
CN102604164A (zh) 一种可完全生物降解塑料膜的母料及其制备方法
CN105542365A (zh) 一种改性pva复合包装膜及其制备方法
CN113045789A (zh) 一种结构可再生聚烯烃基高阻隔薄膜及其制备方法
CN112552655A (zh) 适用于制备薄膜的改性纤维素填充pbat/pla组合物及其制备和应用
CN101497731B (zh) 环境降解的热塑葡甘聚糖膜及其制备方法
Kalambur et al. Rheological behavior of starch–polycaprolactone (PCL) nanocomposite melts synthesized by reactive extrusion
CN110229497B (zh) 生物基聚氨酯/聚乳酸合金吹膜材料及其制备方法
CN117364539A (zh) 一种食品用可降解全生物基淋膜纸、制备方法及应用
US3364284A (en) Extrusion of high molecular weight ethylene polymer using polystyrene as a processing aid
CN113462138B (zh) 一种改性pga可降解材料及其制备方法,以及可降解塑料薄膜
CN113388165A (zh) 一种用于生物塑料的热塑性淀粉及制备方法
CN112500600B (zh) 一种自清洁抗菌可降解日化瓶及其制备方法
CN114805697A (zh) 一种增加pla/pbat相容性的增容剂及高填充全生物降解复合材料
CN1939965A (zh) 疏水性可生物降解材料及其制备方法以及片材类成型制品
CN110804216A (zh) 一种薄膜级淀粉基复合材料及其制备方法
CN115536881B (zh) 一种生物降解pla复合薄膜的制备方法
CN114015138B (zh) 一种粉煤灰改性高密度聚乙烯复合材料及其制备方法和应用
CN115403905B (zh) 石墨烯全降解复合膜袋及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240108

Address after: 324000, Building 2, Phase III, Robot Industry Park, No. 21 Fucai Road, Zhejiang Longyou Economic Development Zone, Mohuan Township, Longyou County, Quzhou City, Zhejiang Province

Patentee after: Longyou Hongcai New Material Technology Co.,Ltd.

Address before: 518107 floor 5.6, building C and Building D, Hongao Industrial Park, the intersection of Genyu road and Nanming Road, Gongming office, Guangming New Area, Shenzhen, Guangdong (floor 1, building C)

Patentee before: SHENZHEN HONGCAI NEW MATERIAL TECHNOLOGY Co.,Ltd.