CN111019932B - 磷酸铜-酶矿化材料的制备方法及其产品与应用 - Google Patents

磷酸铜-酶矿化材料的制备方法及其产品与应用 Download PDF

Info

Publication number
CN111019932B
CN111019932B CN201911192222.7A CN201911192222A CN111019932B CN 111019932 B CN111019932 B CN 111019932B CN 201911192222 A CN201911192222 A CN 201911192222A CN 111019932 B CN111019932 B CN 111019932B
Authority
CN
China
Prior art keywords
enzyme
phosphate
copper
mineralized
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911192222.7A
Other languages
English (en)
Other versions
CN111019932A (zh
Inventor
张晓兵
赵岩
宋国胜
孔维恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201911192222.7A priority Critical patent/CN111019932B/zh
Publication of CN111019932A publication Critical patent/CN111019932A/zh
Application granted granted Critical
Publication of CN111019932B publication Critical patent/CN111019932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0211Peroxy compounds
    • C01B13/0214Hydrogen peroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03004Glucose oxidase (1.1.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01006Catalase (1.11.1.6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种磷酸铜‑酶矿化材料的制备方法及其产品与应用,包括以下步骤:1)分别配置铜盐的水溶液,酶的水溶液、磷酸氢二钠和磷酸二氢钠组成的缓冲液;2)向酶的水溶液中加入缓冲液,混匀后,加入铜盐的水溶液,充分混匀后,静置,然后进行离心+水的清洗提纯,得到磷酸铜‑酶矿化材料;将其分散在水中,进行保存。本发明的制备方法简单,生成的磷酸铜‑酶矿化材料可以在很大程度上提高酶的稳定性,而且本发明的材料在不需要光子激发的情况下,就能产生单线态氧,在有机合成和生物领域有很好的应用前景。本发明的制备的磷酸铜‑酶矿化材料的尺寸在100nm以下,因而其比表面积大,催化活性好,而且尺寸小,更利于进入生物体内。

Description

磷酸铜-酶矿化材料的制备方法及其产品与应用
技术领域
本发明属于纳米材料技术领域,具体涉及磷酸铜-酶矿化材料的制备方法及其产品与应用。
背景技术
单线态氧,即激发态氧分子。基态氧原子(三线态氧分子)被激发后,原本两个2pπ*轨道中两个自旋平行的电子,既可以同时占据一个2pπ*轨道,自旋相反,也可以分别占据两个2pπ*轨道,自旋相反。在以往人们的认知中,单线态氧是具有很强活性的氧自由基,具细胞毒性作用,以细胞膜、线粒体等部位对其最为敏感,能与细胞中多种生物大分子发生作用,通过与分子结合造成细胞膜系统的损伤,而且有研究证明其与血液病有很大的关系,因而很多人认为其是单线态氧的存在很大的危害。但是,单线态氧在存在危害的同时,在很多领域也有,很广阔的应用,例如在有机合成反应中可以引起催化化学反应的作用;又如在癌症治疗领域,其可以作为杀死癌细胞的作用。
目前,常规的产生单线态氧主要是采用染料光敏化作用中产生,但是这种染料在某些有机化学催化应用中稳定性会比较差,在生物体内由于染料可能本身就有毒性,很容易引起排异反应。因而研究更多的可以产生单线态氧的稳定化合物在有机合成领域和生物医药领域有很重要的意义。
发明内容
本发明的目的是提供一种稳定性好的磷酸铜-酶矿化材料的制备方法及其产品与应用。
本发明这种磷酸铜-酶矿化材料的制备方法,包括以下步骤:
1)分别配置铜盐的水溶液,酶的水溶液、磷酸缓冲液组成的缓冲液;
2)向步骤1)中酶的水溶液中加入缓冲液,混匀后,加入铜盐的水溶液,充分混匀后,静置,然后进行离心+水的清洗提纯,得到磷酸铜-酶矿化材料;将其分散在水中,进行保存。
所述步骤1)中,铜盐为二水氯化铜,五水硫酸铜,硝酸铜,优选为二水氯化铜,铜盐的水溶液的浓度为150~250mM;酶为葡萄糖氧化酶,葡萄糖苷酶,过氧化氢酶,优选为葡萄糖氧化酶,酶的水溶液的浓度为5~15mg/mL;磷酸缓冲液的pH为7.2~7.6,优选的pH为7.4;磷酸缓冲液的浓度为1~100mM,优选的浓度为10mM.
所述步骤2)中,酶的水溶液、铜盐水溶液和缓冲液的体积比为(0.05~0.15):(0.3~1.5):(0.01~0.05);静置时间为1~60min,离心速率为4000~10000r/min,离心时间5~15min,清洗提纯次数为3~6次。
根据所述的制备方法制备得到磷酸铜-酶矿化材料。
所述的磷酸铜-酶矿化材料为纳米材料,其平均尺寸应该在100nm以下。
所述的磷酸铜-酶矿化材料中同时包含有Cu2+和Cu+
所述的磷酸铜-酶矿化材料在产生单线态氧中的应用。
所述的磷酸铜-酶矿化材料在产生羟基自由基中的应用。
所述的磷酸铜-酶矿化材料作为治疗肿瘤材料中的应用。
本发明的原理:本发明中的制备将Cu2+和PO4 3-进行矿化,在形成矿化材料的过程中,部分Cu2+会被还原(被蛋白上的氨基或巯基还原)形成Cu+,形成Cu3+x(PO4)2矿化酶(Cu-酶);Cu3+x(PO4)2作为载体能够产生光热效应,促进芬顿效应,因此在H2O2的作用下,可以促进单态氧(1O2)的生成,而不需要光子激发。
本发明的有益效果:1)本发明的制备方法简单,生成的磷酸铜-酶矿化材料可以在很大程度上提高酶的稳定性,而且本发明的材料在不需要光子激发的情况下,就能产生单线态氧,在有机合成和生物领域有很好的应用前景。2)本发明的制备的磷酸铜-酶矿化材料的尺寸在100nm以下,因而其比表面积大,催化活性好,而且尺寸小,更利于进入生物体内。
附图说明
图1实施例1制备的Cu-GOD矿化材料的TEM图;
图2实施例1制备的Cu-GOD矿化材料水合粒径测试结果DLS图;
图3实施例1制备的Cu-GOD矿化材料的XPS分析图;
图4实施例2制备的Cu-CAT矿化材料的TEM图;
图5实施例3中Cu-GOD矿化材料消耗葡萄糖产生双氧水能力测试结果;
图6实施例3中Cu-GOD矿化材料消耗谷胱甘肽能力测试;
图7实施例3中Cu-GOD矿化材料产生羟基自由基能力测试;
图8实施例4中Cu-GOD矿化材料产生单线态氧能力测试;
图9实施例5中在不同光热作用下Cu-GOD矿化材料的催化效果;
图10实施例6中不同浓度的Cu-GOD矿化材料正常细胞的毒性分析结果;
图11实施例6中不同浓度的Cu-GOD矿化材料对癌细胞的毒性分析结果;
图12实施例6中不同实验条件下Cu-GOD矿化材料处理对肿瘤细胞增长的曲线图。
具体实施方式
实施例1
磷酸铜-葡萄糖氧化酶矿化材料的制备,具体包括以下操作步骤:
(1)将100U/mg的葡萄糖氧化酶(GOD)配置成10mg/mL的水溶液,将二水氯化铜(CuCl2·2H2O)配置成200mM的水溶液,将磷酸氢二钠和磷酸二氢钠配成pH为7.4的缓冲液。
(2)取100μL的GOD水溶液加入到1.0mL的缓冲液中,混匀后,加入30μL的CuCl2·2H2O水溶液,充分混匀后,静置5min。
(3)将步骤(2)所得的混合液离心+水清洗提纯3次,其中:离心转速为8000r/min,每次离心时间为10min,得到Cu-GOD矿化材料,将得到的Cu-GOD矿化材料分散在0.5mL的水中,4℃保存。
(4)将步骤(3)所得的Cu-GOD分散液分别利用Bradford方法和ICP进行蛋白和离子的定量,定量结果是GOD浓度是450μg/mL,Cu的含量是25μg/mL。
将本实施例制备的Cu-GOD矿化材料进行TEM分析和粒径分析,其TEM结果如图1所示,水合粒径测试结果DLS图如图2所示。从图1中可以看出本实施例制备的Cu-GOD矿化材料基本在100nm左右;从图2可以看出,本实施例制备的Cu-GOD矿化材料的平均尺寸98nm。
对本实施例制备的Cu-GOD矿化材料进行XPS分析,其结果如图3所示:从图3可以看出,Cu-GOD矿化材料中包含有Cu2+和Cu+,其中Cu2+占87.4%,Cu+占12.6%。
实施例2
磷酸铜与过氧化氢酶矿化材料的制备方法,具体包括一下操作步骤:
(1)将200U/mg的过氧化氢酶(CAT)配置成100mg/mL的水溶液,将二水氯化铜(CuCl2·2H2O)配置成200mM的水溶液,将磷酸氢二钠和磷酸二氢钠配成pH为7.4的缓冲液。
(2)取100μL的CAT水溶液加入到0.3mL缓冲液中,再加入0.7mL的水,混匀后,加入30μL的CuCl2·2H2O水溶液,充分混匀后,静置5min;
(3)将步骤(2)所得的混合液离心+水清洗提纯5次,其中:离心转速为8000r/min,每次离心时间为10min,得到Cu-CAT矿化材料,将得到的Cu-CAT矿化材料分散在0.5mL,4℃保存。
(4)将步骤(3)所得的Cu-CAT分散液分别利用Bradford方法和ICP进行蛋白和离子的定量。定量结果是CAT浓度是25μg/mL,Cu的含量是16μg/mL。
将本实施例制备的Cu-CAT矿化材料进行TEM分析,其结果如图4所示:图4中可以看出颗粒的平均尺寸在100nm以下。
实施例3
1、GOD消耗葡萄糖产生双氧水能力测试
方法:取10μL实施例1中制备的Cu-GOD分散液,100μL的TMB(1.5mM,DMSO溶解),100μL的葡萄糖(200mM水溶液)混合均匀,室温下孵育,分别取15min,45min,90min和120min时间点进行紫外的测量,并记录其在650nm的吸光度。
其结果如图5所示,从图中可知:GOD消耗葡萄糖产生双氧水,随后双氧水与磷酸铜反应产生羟基自由基,通过TMB的紫外吸收可检测到,随着时间推移,产生的双氧水的含量增加,随之TMB的氧化吸收峰逐渐增强。
2、Cu-GOD消耗谷胱甘肽能力测试
方法:将不同体积的Cu-GOD与100μL的谷胱甘肽(5mM)混合至终体积为150μL,材料的体积分别是10,20,30,40,50μL。室温下孵育2小时后,将混合溶液在13300r/min下离心20分钟。取100μL的上清液加入到50μL的DTNB(2.5mg/mL,DMSO溶解)中,室温下孵育15分钟;利用紫外测得谷胱甘肽的消耗。
其结果如图6所示,从图6可知:Cu-GOD中的Cu2+可被谷胱甘肽还原为Cu+,同时谷胱甘肽被消耗掉。为了测定谷胱甘肽的消耗,使用了能与巯基反应生成有色产物的DTNB。随着Cu-GOD含量的增加,GSH含量逐渐降低。在加入50μL的Gu-GOD后,接近100%的谷胱甘肽都被消耗。
3、Cu-GOD产生羟基自由基能力测试
方法:取10μL实施例1中制备的Cu-GOD,100μL的TMB(1.5mM,DMSO溶解),100μL的双氧水(200mM水溶液)混合均匀,室温下孵育15min后进行紫外的测量,记录其在650nm的吸光度。另外,选用TMB和TMB+H2O2作为对照组。
其结果如图7所示,从图7可知:通过显色底物TMB来评价H2O2氧化Cu-GOD矿化材料的过氧化物酶活性,说明Cu-GOD在双氧水存在下能产生羟基自由基。
实施例4 Cu-GOD产生单线态氧能力测试
方法:取50μL实施例1中制备的Cu-GOD,4μL的SOSG(终浓度为4mM,DMSO溶解),150μL的双氧水(200mM水溶液)混合均匀后,测定其在630nm处的荧光变化,另外选用SOSG+Cu-GOD和SOSG+H2O2作为对照组。
测试结果如图8所示,从图8可知:通过单线态氧检测剂SOSG的荧光变化,说明Cu-GOD在双氧水存在下能产生单线态氧。这里无需外加激光的激发就可以产生的单线态氧,可以在深部肿瘤区域起到动力学治疗的效果,有效的解决了临床上光动力治疗的治疗深度的问题。
实施例5
下面对实施例1制备的Cu-GOD纳米材料的光热效果作进一步的检测。
1、光热转换能力测试
方法:将制备好的Cu-GOD纳米材料用PBS缓冲盐配制成一定梯度浓度的PBS溶液,材料浓度分别为4.2,8.3,12.5,16.6,20.8,25.0μg/mL,分别取2mL溶液置于石英比色皿中,用808nm的近红外激光在2W/cm2的激光功率下照射10min,检测其升温能力。同时,取20.8μg/mL浓度的材料溶液重复进行5轮升温测试,验证其光热稳定性。
结果:在近红外激光照射下,材料具有良好的光热转换能力。同时,在进行反复5轮的光热转换测试后,材料的光热稳定性良好。计算其光热转换效率约为30.51%。
2、光热增强Cu-GOD催化效果测试
方法:取20μL实施例1中制备的Cu-GOD,50μL的ABTS(2mM水溶液),100μL的双氧水(200mM水溶液),20μL of GSH(5mM水溶液)混合均匀后,用808nm的近红外激光在不同激光强度下(0,0.5,1.0,1.5和2.0W/cm2)照射,记录每分钟的ABTS的吸收变化。
其结果如图9所示:光照下ABTS的紫外吸收变化显著,且随着光强的增加,ABTS吸光度增加也加快;说明光照能促进Cu-GOD产生羟基自由基的速率。
实施例6
下面对实施例1制备的Cu-GOD纳米材料在细胞层次和活体肿瘤治疗层次效果作进一步的检测。
1、材料细胞毒性测试
将正常细胞(LO2)和癌细胞(4T1)分别培养于96孔板,细胞贴壁后,加入不同浓度的GOD和Cu-GOD孵育6h,然后用MTT方法进行毒性测试;
细胞存活率(%)=(A样品/A空白)×100%
结果:如图10所示,不同浓度纳米药物对正常细胞和癌细胞的毒性对比分析结果,从图11可以看出Cu-GOD纳米药物能够区分正常细胞和癌细胞,对癌细胞4T1有很好的杀伤作用,减轻其对正常细胞的毒副作用。
2、纳米药物对肿瘤生长的抑制以及小鼠生存率计算
方法:动物实验分为五组(空白、NIR、GOD、Cu-GOD、Cu-GOD+NIR),采用瘤内注射(体积为30μL)。
结果:如图12所示为肿瘤生长曲线,可以看出Cu-GOD+NIR能够显著抑制肿瘤的生长。
传统治疗上,为了达到有效的肿瘤治疗效果,一般采用多种治疗药物或治疗技术的联合使用,但这样可能会产生叠加性的副作用;其他的治疗方法例如肿瘤的光动力治疗一直依赖于激光与氧气,受限于激光的穿透深度,深层肿瘤的治疗无法得到精准高效治疗,因此研发一种不依赖于激光的治疗手段,对深层肿瘤治疗有促进效果。
本发明对肿瘤治疗的设计是采用一种材料,达到多种治疗效果,从而提高治疗效果,从根本上减少药物的副作用。本发明制备方法简单快速,无需昂贵的仪器设备;材料绿色环保,制备原料均无生物毒性,制备过程中无需添加有机类表面活性剂等对环境产生影响的试剂;制备成本低廉,原材料成本较低且易得。本发明制备的Cu-GOD矿化材料具有良好的形貌和纳米级别的尺寸,粒径分布均匀,合成过程中无需PVP等常用稳定剂的加入。本发明制备的Cu-GOD矿化材料可以提高葡萄糖氧化酶进入细胞的效率和速度。本发明制备的Cu-GOD矿化材料,其中GOD能有效地消耗葡萄糖,并在肿瘤细胞中产生足够的H2O2;肿瘤区GSH水平高,Cu3.2(PO4)2迅速转化为Cu+,产生Fenton反应,生成·OH;肿瘤的光动力治疗一直依赖于激光与氧气。受限于激光的穿透深度,深层肿瘤的治疗无法得到精准高效治疗。本发明制备的Cu-GOD矿化材料,在H2O2的作用下,Cu3.2(PO4)2可以在没有光子能量的情况下产生1O2,促进肿瘤的凋亡;Cu3(PO4)2可以在近红外产生热量,提高GOD催化葡萄糖消耗速率,促进Fenton反应。
在此基础上,功能化Cu-GOD在肿瘤治疗中起着层层递进的作用。实验结果表明,光热动力学联合饥饿疗法能显著提高肿瘤细胞的治疗效果,说明所设计的Cu-GOD具有巨大的临床应用潜力。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种磷酸铜-酶矿化材料的制备方法,其特征在于,所述制备方法将Cu2+和PO4 3-进行矿化,在形成矿化材料的过程中,部分Cu2+会被还原形成Cu+,形成Cu3+x (PO4)2矿化酶;所述制备方法具体包括以下步骤:
1)分别配置铜盐的水溶液,酶的水溶液、磷酸氢二钠和磷酸二氢钠组成的缓冲液;
2)向步骤 1)中酶的水溶液中加入缓冲液,混匀后,加入铜盐的水溶液,充分混匀后,静置,然后进行离心+水的清洗提纯,得到磷酸铜-酶矿化材料;将其分散在水中,进行保存;
步骤1)中,所述铜盐的水溶液的浓度为150~250mM;所述酶的水溶液的浓度为5~15mg/mL;所述磷酸缓冲液的pH为7.2~7.6;磷酸缓冲液的浓度为1~100 mM;
步骤2)中,所述酶的水溶液、铜盐水溶液和缓冲液的体积比为(0.05~0.15): (0.3~1.5): (0.01~0.05);静置时间为1~60min;
所述酶为葡萄糖氧化酶;所述铜盐为二水氯化铜。
2.根据权利要求1所述的磷酸铜-酶矿化材料的制备方法,其特征在于,所述步骤2)中,离心速率为4000~10000r/min,离心时间 5~15min,清洗提纯次数为 3~6次。
3.根据权利要求1所述的磷酸铜-酶矿化材料的制备方法制备得到磷酸铜-酶矿 化材料。
4.根据权利要求3所述的磷酸铜-酶矿化材料,其特征在于,所述的磷酸铜-酶矿化材料为纳米材料,其平均尺寸在100nm以下。
5.根据权利要求3所述的磷酸铜-酶矿化材料,其特征在于,所述的磷酸铜-酶矿化材料中同时包含有Cu2+和Cu+
6.根据权利要求3~5任意一项所述的磷酸铜-酶矿化材料在制备产生单线态氧材料中的应用。
7.根据权利要求3~5任意一项所述的磷酸铜-酶矿化材料在制备产生羟基自由基材料中的应用。
8.根据权利要求3~5任意一项所述的磷酸铜-酶矿化材料,其特征在于,所述的磷酸铜-酶矿化材料在制备治疗肿瘤材料中的应用。
CN201911192222.7A 2019-11-28 2019-11-28 磷酸铜-酶矿化材料的制备方法及其产品与应用 Active CN111019932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911192222.7A CN111019932B (zh) 2019-11-28 2019-11-28 磷酸铜-酶矿化材料的制备方法及其产品与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911192222.7A CN111019932B (zh) 2019-11-28 2019-11-28 磷酸铜-酶矿化材料的制备方法及其产品与应用

Publications (2)

Publication Number Publication Date
CN111019932A CN111019932A (zh) 2020-04-17
CN111019932B true CN111019932B (zh) 2023-11-14

Family

ID=70202991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911192222.7A Active CN111019932B (zh) 2019-11-28 2019-11-28 磷酸铜-酶矿化材料的制备方法及其产品与应用

Country Status (1)

Country Link
CN (1) CN111019932B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956029B (zh) * 2022-05-25 2024-01-23 中国机械总院集团武汉材料保护研究所有限公司 一种磷酸铜纳米片、制备方法及用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112679A1 (fr) * 2006-03-30 2007-10-11 Yuqing Zhang Nanoparticules de fibroïne de soie fixées par enzyme et procédé de production correspondant
CN102199592A (zh) * 2011-04-02 2011-09-28 重庆大学 一种制备共固定化葡萄糖氧化酶/过氧化氢酶微球的方法
CN102961753A (zh) * 2012-12-06 2013-03-13 东华大学 硫化铜/介孔二氧化硅核壳纳米材料及其制备方法和应用
CN104073483A (zh) * 2014-07-01 2014-10-01 清华大学 一种酶-无机晶体复合微球及其制备方法
CN105754985A (zh) * 2016-04-15 2016-07-13 清华大学 一种酶-金属离子纳米复合物及其制备方法
CN107502598A (zh) * 2017-10-19 2017-12-22 蒋文明 一种固定化葡萄糖氧化酶的制备方法
CN107974445A (zh) * 2017-11-20 2018-05-01 苏州艾缇克药物化学有限公司 一种包覆酶的磷酸铜/聚(ε-己内酯)晶体催化剂的制备方法及在螺羟吲哚类的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450967B (zh) * 2009-12-30 2014-09-01 Univ Nat Taiwan Science Tech 均勻之複合式觸媒/酵素結構及其製備方法與應用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112679A1 (fr) * 2006-03-30 2007-10-11 Yuqing Zhang Nanoparticules de fibroïne de soie fixées par enzyme et procédé de production correspondant
CN102199592A (zh) * 2011-04-02 2011-09-28 重庆大学 一种制备共固定化葡萄糖氧化酶/过氧化氢酶微球的方法
CN102961753A (zh) * 2012-12-06 2013-03-13 东华大学 硫化铜/介孔二氧化硅核壳纳米材料及其制备方法和应用
CN104073483A (zh) * 2014-07-01 2014-10-01 清华大学 一种酶-无机晶体复合微球及其制备方法
CN105754985A (zh) * 2016-04-15 2016-07-13 清华大学 一种酶-金属离子纳米复合物及其制备方法
CN107502598A (zh) * 2017-10-19 2017-12-22 蒋文明 一种固定化葡萄糖氧化酶的制备方法
CN107974445A (zh) * 2017-11-20 2018-05-01 苏州艾缇克药物化学有限公司 一种包覆酶的磷酸铜/聚(ε-己内酯)晶体催化剂的制备方法及在螺羟吲哚类的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Coordination of GMP ligand with Cu to enhance the multiple enzymes stability and substrate specificity by coimmobilization process;Amjad Hussain Memon等;Biochemical Engineering Journal;第136卷;第1-31页 *
Man Wang等.Recent Advances in Glucose-Oxidase-Based Nanocomposites for Tumor Therapy.Smal.2019,第1-26页. *
微生物葡萄糖氧化酶的研究进展;廖兆民;蔡俊;林建国;;食品与发酵工业(07);第312-319页 *
苏茉 ; 高亚朋 ; 梁建荣 ; 黄洁 ; 唐云明 ; .黑曲霉H1-9b葡萄糖氧化酶的分离纯化及部分性质研究.食品科学.2011,(03),第188-192页. *
黑曲霉H1-9b葡萄糖氧化酶的分离纯化及部分性质研究;苏茉;高亚朋;梁建荣;黄洁;唐云明;;食品科学(03);第188-192页 *

Also Published As

Publication number Publication date
CN111019932A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Zhao et al. Superoxide dismutase nanozymes: an emerging star for anti-oxidation
Wang et al. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles
Li et al. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo
Rincón et al. Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor
Castro-Alférez et al. Mechanistic model of the Escherichia coli inactivation by solar disinfection based on the photo-generation of internal ROS and the photo-inactivation of enzymes: CAT and SOD
Cai et al. Increment of Photocatalytic Killing of Cancer Cells Using TiO2 with the Aid of Superoxide Dismutase.
Hirakawa et al. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide
Chen et al. A Dual‐Nanozyme‐Catalyzed Cascade Reactor for Enhanced Photodynamic Oncotherapy against Tumor Hypoxia
Rincón et al. Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale: Implications in solar disinfection at low temperature of large quantities of water
Jukapli et al. Recent developments on titania nanoparticle as photocatalytic cancer cells treatment
Wu et al. Photo-modulated nanozymes for biosensing and biomedical applications
Cao et al. Biomedicine meets nanozyme catalytic chemistry
Harman Aging: a theory based on free radical and radiation chemistry
Zhang et al. Controlled synthesis and photocatalytic performance of biocompatible uniform carbon quantum dots with microwave absorption capacity
CN111019932B (zh) 磷酸铜-酶矿化材料的制备方法及其产品与应用
Sun et al. Vacancy-rich BiO2− x as a highly-efficient persulfate activator under near infrared irradiation for bacterial inactivation and mechanism study
Grynyuk et al. Photoexcited fullerene C60 disturbs prooxidant‐antioxidant balance in leukemic L1210 cells
CN114891354B (zh) 一种基于纳米酶级联反应的纳米复合材料及其制备方法和应用
CN106215937A (zh) 一种基于磁性碳质材料负载介孔TiO2复合光催化剂的制备方法及其用途
Yang et al. Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes
CN113117077B (zh) 一种用于肿瘤联合治疗的铂基单原子纳米酶及其制备方法
CN110327463B (zh) 一种包含多钨酸钆的纳米材料及其制备方法
CN105435766B (zh) 一种花状TiO2/石墨烯光催化剂的制备方法及其应用
Bragg et al. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process
Jung et al. Action spectra for the generation of singlet oxygen from mitochondrial membranes from soybean (Glycine max) hypocotyls

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant