CN111019361A - 一种多分子层可食性生物膜的制备方法 - Google Patents

一种多分子层可食性生物膜的制备方法 Download PDF

Info

Publication number
CN111019361A
CN111019361A CN201911263900.4A CN201911263900A CN111019361A CN 111019361 A CN111019361 A CN 111019361A CN 201911263900 A CN201911263900 A CN 201911263900A CN 111019361 A CN111019361 A CN 111019361A
Authority
CN
China
Prior art keywords
solution
kafirin
bamboo leaf
leaf polyphenol
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911263900.4A
Other languages
English (en)
Other versions
CN111019361B (zh
Inventor
黄涛
杨文鸽
张进杰
岑世杰
鲁金佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201911263900.4A priority Critical patent/CN111019361B/zh
Publication of CN111019361A publication Critical patent/CN111019361A/zh
Application granted granted Critical
Publication of CN111019361B publication Critical patent/CN111019361B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/463Edible packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0058Biocides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

本发明公开了一种多分子层可食性生物膜的制备方法,特点是包括将高粱醇溶蛋白溶液和鱼明胶溶液分别过高压处理2次,并将高粱醇溶蛋白溶液分成2等份,并向其中一份高粱醇溶蛋白溶液中加入甘油;竹叶多酚溶于壳聚糖溶液中得到壳聚糖‑竹叶多酚溶液的步骤;通过反溶剂法将不含甘油的一份高粱醇溶蛋白溶液滴入壳聚糖‑竹叶多酚溶液得到载竹叶多酚微球溶液的步骤;将载竹叶多酚微球溶液经凝胶注入法注入到经高压处理的鱼明胶溶液中得到膜溶液的步骤;最后将膜溶液采用手提式注入法注入到含有甘油的高粱醇溶蛋白溶液中,通过溶剂蒸发法制备得到多分子层可食性生物膜,优点是具有较高的多酚包埋率、机械强度、抗拉伸强度和较低的溶解性。

Description

一种多分子层可食性生物膜的制备方法
技术领域
本发明属于食品包装技术领域,尤其是涉及一种多分子层可食性生物膜制备方法。
背景技术
现代食品工业越来越关注食品的营养与健康,在食品加工、运输和贮藏过程中均会采取一些保护措施,来保护其中的营养成分如不饱和脂肪酸、多糖和生物活性物质等,从而提高产品的货架期和市场竞争力。近年来,食品塑料膜中存在的微量塑化剂迁移到食品中,以逐渐引起消费者的重视,并且食品塑料难以降解引发的“白色污染”也受到全球各国政府和人民的重视。因此,制备生物活性膜将其应用于食品中,从而替代塑料膜,成为食品包装材料的热点之一。
可用于可食性蛋白膜的基质主要有蛋白质、多糖、脂类等,其中蛋白质基质膜具有良好的阻气、提高食品感官和品质的特点而备受关注。但是,蛋白膜具有溶解度高、机械强度和热学稳定性差等缺点,并不能完全替代塑料膜而应用于食品包装中。虽然有关生物活性膜的报道很多,但大多仍然集中于单分子层或双分子层膜的研究,如CN108892810A公开报道了采用明胶、淀粉和壳聚糖等制备的一种全生物降解可食保鲜膜,但是该方法制备的膜生物存在高溶解度、低生物活性和机械强度差等的缺点。
发明内容
本发明所要解决的技术问题是提供一种具有较高的多酚包埋率、机械强度、抗拉伸强度和较低的溶解性的多分子层可食性生物膜的制备方法。
本发明解决上述技术问题所采用的技术方案为:一种多分子层可食性生物膜的制备方法,包括以下步骤:
(1)原料溶液的制备:将高粱醇溶蛋白溶于80%的乙醇中配制成质量浓度为0.2-0.6%的高粱醇溶蛋白溶液;将鱼明胶溶于蒸馏水中配制成质量浓度为0.2-0.4%的鱼明胶溶液;将壳聚糖溶于4wt%的醋酸溶液中配制成质量浓度为0.2-0.8%的壳聚糖溶液;
(2)动态高压微射流处理蛋白溶液:将高粱醇溶蛋白溶液和鱼明胶溶液分别过40-100Mpa的高压处理2次,并将高粱醇溶蛋白溶液分成2等份,并向其中一份高粱醇溶蛋白溶液中加入一定量的甘油使甘油质量浓度为5-20%;
(3)壳聚糖-竹叶多酚溶液的制备:称取适量的竹叶多酚溶于壳聚糖溶液中使竹叶多酚质量浓度为1-2%,得到壳聚糖-竹叶多酚溶液;
(4)载竹叶多酚微球溶液的制备:通过反溶剂法将步骤(2)得到的不含甘油的一份高粱醇溶蛋白溶液以10-50滴/分钟的速度滴入壳聚糖-竹叶多酚溶液,得到载竹叶多酚微球溶液;
(5)凝胶注入法制备成膜溶液:将载竹叶多酚微球溶液经凝胶注入法注入到步骤(2)处理得到的鱼明胶溶液中,得到膜溶液;
(6)溶剂蒸发法:将膜溶液采用手提式注入法注入到步骤(2)得到的另一份含有甘油的高粱醇溶蛋白溶液中,通过溶剂蒸发法制备得到多分子层可食性生物膜。
与现有技术相比,本发明的优点在于:
(1)采用动态高压微射流处理高粱醇溶蛋白和鱼明胶溶液。动态高压微射流可通过对流体进行高速剪切、高频振荡、空穴、瞬时高压等作用,显著改善蛋白质的大分子结构,发生去折叠、柔顺大分子。因此,有助于后期生物膜厚度的降低,保证了其良好的物化性能;
(2)以动态高压微射流处理的高粱醇溶蛋白和壳聚糖-竹叶多酚溶液为原料,通过反溶剂法制备高粱醇溶蛋白/壳聚糖/竹叶多酚粒子。高粱醇溶蛋白不溶于水,当其以一定的速度滴入壳聚糖-竹叶多酚溶液后,会迅速形成外包颗粒,包裹壳聚糖-竹叶多酚;
(3)选取竹叶多酚为生物活性物质,竹叶多酚不仅具有抑菌还有抗氧化的功效,此外,多酚也可以与蛋白质进行交联反应,有助于增强膜的机械强度;
(4)高粱醇溶蛋白是一种不溶于水而溶于50%~90%乙醇溶液的疏水性蛋白质,有良好的生物相容性和可降解性,可用于制备微颗粒或纳米颗粒,是一种理想的疏水性药物或功能活性成分的载体。不溶于水的高粱醇溶蛋白可以与壳聚糖通过反溶剂法形成纳米粒子,并且该粒子可包埋活性物质,具有较好的生物活性包埋率,是一种潜在的生物活性膜制备原料。
综上所述,本发明一种多分子层可食性生物膜的制备方法,以高粱醇溶蛋白、壳聚糖、竹叶多酚为原料,应用动态高压微射流、反溶剂法、凝胶注入法和溶剂蒸发法等技术,制备出一种多分子层可食性的生物膜,即保证了竹叶多酚的活性,赋予生物膜良好的抗菌、抗氧化效果,同时也有良好的机械性能、热学稳定性、遮光、阻隔气体和水蒸气等物理功效,可应用于食品包装中,本方法操作简单,可以应用于工业生产,且生产的生物膜功能性质好,可广泛使用于食品包装领域。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1
一种多分子层可食性生物膜的制备方法,包括以下步骤:
(1)蛋白、多糖溶液的制备:称取适量的高粱醇溶蛋白溶于80%的乙醇中,配制成0.2%(w/v)的高粱醇溶蛋白溶液;称取适量的鱼明胶溶于蒸馏水中配制成0.2% (w/v)的鱼明胶溶液;称取适量的壳聚糖溶于4wt%的醋酸溶液中配制成0.2%(w/v)壳聚糖溶液;
(2)动态高压微射流处理蛋白溶液:将(1)中的高粱醇溶蛋白溶液和鱼明胶溶液分别过40Mpa的高压处理2次,并将高粱醇溶蛋白溶液分成2等份,并向其中一份高粱醇溶蛋白溶液中加入一定量的甘油,甘油浓度为5%(w/v);
(3)壳聚糖-竹叶多酚溶液的制备:称取适量的竹叶多酚溶于步骤(1)中的壳聚糖溶液中,多酚浓度为1%(w/v);
(4)载竹叶多酚微球溶液的制备:通过反溶剂法将步骤(2)中的一份高粱醇溶蛋白溶液以10滴/分钟的速度滴入步骤(3)中的溶液,制备载竹叶多酚微球;
(5) 凝胶注入法制备成膜溶液:将步骤(4)制备的载多酚微球溶液经凝胶注入法注入到(2)中的鱼明胶溶液中;
(6)溶剂蒸发法:将步骤(5)的溶液采用手提式注入法注入到(2)的另一份含有甘油的高粱醇溶蛋白溶液中,通过溶剂蒸发法,制备出多分子层可食性生物膜F1。本发明生产得到的生物膜,其竹叶多酚包埋率为89.2±1.23%,机械强度为6.78±0.41MPa, 抗拉伸强度为67.81±0.98%,溶解度为12.54±2.31%。
实施例2
一种多分子层可食性生物膜的制备方法,包括以下步骤:
(1)蛋白、多糖溶液的制备:称取适量的高粱醇溶蛋白溶于80%的乙醇中配制成0.4%(w/v)的高粱醇溶蛋白溶液;称取适量的鱼明胶溶于蒸馏水中配制成0.4%(w/v)的鱼明胶溶液;称取适量的壳聚糖溶于4wt%的醋酸溶液中配制成0.4%(w/v)壳聚糖溶液;
(2)动态高压微射流处理蛋白溶液:将(1)中的高粱醇溶蛋白溶液和鱼明胶溶液分别过80Mpa的高压处理2次,并将高粱醇溶蛋白溶液分成2等份,并向其中一份高粱醇溶蛋白溶液中加入一定量的甘油,甘油浓度为20%(w/v);
(3)壳聚糖-竹叶多酚溶液的制备:称取适量的竹叶多酚溶于步骤(1)中的壳聚糖溶液中,多酚浓度为2%(w/v);
(4)载竹叶多酚微球溶液的制备:通过反溶剂法将步骤(2)中的一份高粱醇溶蛋白溶液以20滴/分钟的速度滴入步骤(3)中的溶液,制备载竹叶多酚微球;
(5) 凝胶注入法制备成膜溶液:将步骤(4)制备的载多酚微球溶液经凝胶注入法注入到(2)中的鱼明胶溶液中;
(6)溶剂蒸发法:将步骤(5)的溶液采用手提式注入法注入到(2)的另一份含有甘油的高粱醇溶蛋白溶液中,通过溶剂蒸发法,制备出多分子层可食性生物膜F2。本发明生产得到的生物膜,其竹叶多酚包埋率为90.2±0.83%,机械强度为8.42±0.34MPa,抗拉伸强度为63.04±0.24%,溶解度为8.13±1.48%。
实施例3
一种多分子层可食性生物膜的制备方法,包括以下步骤:
(1)蛋白、多糖溶液的制备:称取适量的高粱醇溶蛋白溶于80%的乙醇中配制成0.6%(w/v)的高粱醇溶蛋白溶液;称取适量的鱼明胶溶于蒸馏水中配制成0.4%(w/v)的鱼明胶溶液;称取适量的壳聚糖溶于4wt%的醋酸溶液中配制成0.8%(w/v)壳聚糖溶液;
(2)动态高压微射流处理蛋白溶液:将(1)中的高粱醇溶蛋白溶液和鱼明胶溶液分别过100Mpa的高压处理2次,并将高粱醇溶蛋白溶液分成2等份,并向其中一份高粱醇溶蛋白溶液中加入一定量的甘油,甘油浓度为10%(w/v);
(3)壳聚糖-竹叶多酚溶液的制备:称取适量的竹叶多酚溶于步骤(1)中的壳聚糖溶液中,多酚浓度为2%(w/v);
(4)载竹叶多酚微球溶液的制备:通过反溶剂法将步骤(2)中的一份高粱醇溶蛋白溶液以50滴/分钟的速度滴入步骤(3)中的溶液,制备载竹叶多酚微球;
(5) 凝胶注入法制备成膜溶液:将步骤(4)制备的载多酚微球溶液经凝胶注入法注入到(2)中的鱼明胶溶液中;
(6)溶剂蒸发法:将步骤(5)的溶液采用手提式注入法注入到(2)的另一份含有甘油的高粱醇溶蛋白溶液中,通过溶剂蒸发法,制备出多分子层可食性生物膜F3。本发明生产得到的生物膜,其竹叶多酚包埋率为93.2±1.29%,机械强度为12.59±0.26MPa,抗拉伸强度为54.11±1.09%,溶解度为6.78±1.94%。
综上所述,本方法制备的生物膜具有较高的多酚包埋率、机械强度、抗拉伸强度和较低的溶解性,可以广泛应用于食品包装领域。本方法操作简单,实用性强,为制备可食性生物膜的制备提供了一种新的方法。
上述说明并非对本发明的限制,本发明也并不限于上述举例。本技术领域的普通技术人员在本发明的实质范围内,做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (1)

1.一种多分子层可食性生物膜的制备方法,其特征在于包括以下步骤:
(1)原料溶液的制备:将高粱醇溶蛋白溶于80%的乙醇中配制成质量浓度为0.2-0.6%的高粱醇溶蛋白溶液;将鱼明胶溶于蒸馏水中配制成质量浓度为0.2-0.4%的鱼明胶溶液;将壳聚糖溶于4wt%的醋酸溶液中配制成质量浓度为0.2-0.8%的壳聚糖溶液;
(2)动态高压微射流处理蛋白溶液:将高粱醇溶蛋白溶液和鱼明胶溶液分别过40-100Mpa的高压处理2次,并将高粱醇溶蛋白溶液分成2等份,并向其中一份高粱醇溶蛋白溶液中加入一定量的甘油使甘油质量浓度为5-20%;
(3)壳聚糖-竹叶多酚溶液的制备:称取适量的竹叶多酚溶于壳聚糖溶液中使竹叶多酚质量浓度为1-2%,得到壳聚糖-竹叶多酚溶液;
(4)载竹叶多酚微球溶液的制备:通过反溶剂法将步骤(2)得到的不含甘油的一份高粱醇溶蛋白溶液以10-50滴/分钟的速度滴入壳聚糖-竹叶多酚溶液,得到载竹叶多酚微球溶液;
(5)凝胶注入法制备成膜溶液:将载竹叶多酚微球溶液经凝胶注入法注入到步骤(2)处理得到的鱼明胶溶液中,得到膜溶液;
(6)溶剂蒸发法:将膜溶液采用手提式注入法注入到步骤(2)得到的另一份含有甘油的高粱醇溶蛋白溶液中,通过溶剂蒸发法制备得到多分子层可食性生物膜。
CN201911263900.4A 2019-12-11 2019-12-11 一种多分子层可食性生物膜的制备方法 Active CN111019361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911263900.4A CN111019361B (zh) 2019-12-11 2019-12-11 一种多分子层可食性生物膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911263900.4A CN111019361B (zh) 2019-12-11 2019-12-11 一种多分子层可食性生物膜的制备方法

Publications (2)

Publication Number Publication Date
CN111019361A true CN111019361A (zh) 2020-04-17
CN111019361B CN111019361B (zh) 2021-08-03

Family

ID=70208767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911263900.4A Active CN111019361B (zh) 2019-12-11 2019-12-11 一种多分子层可食性生物膜的制备方法

Country Status (1)

Country Link
CN (1) CN111019361B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480784A (zh) * 2021-06-04 2021-10-08 南京中医药大学 一种壳聚糖-醇溶蛋白-精油-多酚可食性乳状液膜的制备方法
CN116023716A (zh) * 2022-10-31 2023-04-28 华中农业大学 一种层层纳米颗粒填充型保鲜-指示复合薄膜、制备方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955670A (zh) * 2010-09-13 2011-01-26 福州大学 一种明胶-壳聚糖复合食品包装膜及其制备方法
CN103087355A (zh) * 2012-12-29 2013-05-08 浙江工业大学 一种含茶多酚的壳聚糖-鱼糜蛋白复合膜及其制备方法
CN104140568A (zh) * 2014-07-30 2014-11-12 江南大学 一种具有持续抗氧化功能的可食用膜及其制备方法以及应用
CN104845383A (zh) * 2015-05-21 2015-08-19 浙江海洋学院 肌原纤维蛋白-壳聚糖纳米微球复合膜
CN105646951A (zh) * 2016-03-03 2016-06-08 武汉市九合生物技术有限公司 功能性可溶可食复合膜的制备方法
CN106633925A (zh) * 2016-12-11 2017-05-10 戴琪 一种高韧性胶原蛋白食品保鲜膜的制备方法
CN106750425A (zh) * 2016-11-23 2017-05-31 宁波大学 一种竹叶黄酮改性鱼鳞明胶‑壳聚糖复合膜的制备方法
CN106957458A (zh) * 2017-03-27 2017-07-18 广西大学 一种以壳聚糖玉米醇溶蛋白为原料的复合保鲜膜或涂层的制备方法
CN107603243A (zh) * 2017-10-19 2018-01-19 蒋文明 一种抑菌型蛋白基可食性食品包装膜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955670A (zh) * 2010-09-13 2011-01-26 福州大学 一种明胶-壳聚糖复合食品包装膜及其制备方法
CN103087355A (zh) * 2012-12-29 2013-05-08 浙江工业大学 一种含茶多酚的壳聚糖-鱼糜蛋白复合膜及其制备方法
CN104140568A (zh) * 2014-07-30 2014-11-12 江南大学 一种具有持续抗氧化功能的可食用膜及其制备方法以及应用
CN104845383A (zh) * 2015-05-21 2015-08-19 浙江海洋学院 肌原纤维蛋白-壳聚糖纳米微球复合膜
CN105646951A (zh) * 2016-03-03 2016-06-08 武汉市九合生物技术有限公司 功能性可溶可食复合膜的制备方法
CN106750425A (zh) * 2016-11-23 2017-05-31 宁波大学 一种竹叶黄酮改性鱼鳞明胶‑壳聚糖复合膜的制备方法
CN106633925A (zh) * 2016-12-11 2017-05-10 戴琪 一种高韧性胶原蛋白食品保鲜膜的制备方法
CN106957458A (zh) * 2017-03-27 2017-07-18 广西大学 一种以壳聚糖玉米醇溶蛋白为原料的复合保鲜膜或涂层的制备方法
CN107603243A (zh) * 2017-10-19 2018-01-19 蒋文明 一种抑菌型蛋白基可食性食品包装膜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480784A (zh) * 2021-06-04 2021-10-08 南京中医药大学 一种壳聚糖-醇溶蛋白-精油-多酚可食性乳状液膜的制备方法
CN116023716A (zh) * 2022-10-31 2023-04-28 华中农业大学 一种层层纳米颗粒填充型保鲜-指示复合薄膜、制备方法及应用
CN116023716B (zh) * 2022-10-31 2024-03-29 华中农业大学 一种层层纳米颗粒填充型保鲜-指示复合薄膜、制备方法及应用

Also Published As

Publication number Publication date
CN111019361B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Cazón et al. Mechanical and barrier properties of chitosan combined with other components as food packaging film
Moreno et al. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts
Liu et al. A review of cellulose and its derivatives in biopolymer-based for food packaging application
Torkamani et al. Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning
Muñoz-Bonilla et al. Bio-based polymers with antimicrobial properties towards sustainable development
Menezes et al. Effect of tannic acid as crosslinking agent on fish skin gelatin-silver nanocomposite film
Pérez-Guzmán et al. A review of zein as a potential biopolymer for tissue engineering and nanotechnological applications
Torres-Giner et al. Nanoencapsulation of Aloe vera in synthetic and naturally occurring polymers by electrohydrodynamic processing of interest in food technology and bioactive packaging
Zhong et al. Nanoscalar structures of spray-dried zein microcapsules and in vitro release kinetics of the encapsulated lysozyme as affected by formulations
Díaz-Montes Polysaccharides: Sources, characteristics, properties, and their application in biodegradable films
Li et al. Recent advances on pickering emulsions stabilized by diverse edible particles: Stability mechanism and applications
CN111019361B (zh) 一种多分子层可食性生物膜的制备方法
Shi et al. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: A review
Moeini et al. Edible polymers and secondary bioactive compounds for food packaging applications: Antimicrobial, mechanical, and gas barrier properties
Wilk et al. Advances in fabricating the electrospun biopolymer-based biomaterials
Wang et al. Electrospinning of natural biopolymers for innovative food applications: A review
Romão et al. Novel features of cellulose-based films as sustainable alternatives for food packaging
Meng et al. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients
Song et al. Edible films on meat and meat products
Liyanapathiranage et al. Recent developments in edible films and coatings for fruits and vegetables
Rodríguez-Sánchez et al. Electrospinning of ultra-thin membranes with incorporation of antimicrobial agents for applications in active packaging: a review
Castro-Muñoz et al. Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review
Zhang et al. Starch-gelatin blend films: A promising approach for high-performance degradable food packaging
Aghababaei et al. Electrospun plant protein-based nanofibers in food packaging
Lim Electrospinning and electrospraying technologies for food and packaging applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant