CN111018526A - 一种氧化钕基的高温质子导体及其制备方法 - Google Patents

一种氧化钕基的高温质子导体及其制备方法 Download PDF

Info

Publication number
CN111018526A
CN111018526A CN201911346234.0A CN201911346234A CN111018526A CN 111018526 A CN111018526 A CN 111018526A CN 201911346234 A CN201911346234 A CN 201911346234A CN 111018526 A CN111018526 A CN 111018526A
Authority
CN
China
Prior art keywords
pressing
proton conductor
neodymium oxide
based high
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911346234.0A
Other languages
English (en)
Other versions
CN111018526B (zh
Inventor
丁玉石
厉英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201911346234.0A priority Critical patent/CN111018526B/zh
Publication of CN111018526A publication Critical patent/CN111018526A/zh
Application granted granted Critical
Publication of CN111018526B publication Critical patent/CN111018526B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种氧化钕基的高温质子导体及其制备方法,分子式为Nd1‑xA′xYO3‑α、Nd1‑xA′xDyO3‑α、Nd1‑xA′xErO3‑α、Nd1‑xA′xLuO3‑α、Nd1‑xA′xTmO3‑α、Nd‑xA′xYbO3‑α、Nd1‑xA′xInO3‑α或Nd1‑ xA′xScO3‑α,A′=Na和/或Ca;制备方法为:(1)准备Nd、A′和B元素的氧化物、碳酸盐或硝酸盐为原料;(2)球磨混合获得混合粉体I;(3)压制成块后在800~1200℃煅烧,随炉冷却;(4)将煅烧物料球磨磨细获得混合粉体II;(5)压制成块后在1200~1600℃烧结,随炉冷却。本发明的材料满足质子导体在传感器等领域的应用需求,材料化学性质稳定,材料使用寿命长,适合工业应用。

Description

一种氧化钕基的高温质子导体及其制备方法
技术领域
本发明属于高温质子导体材料技术领域,具体涉及一种氧化钕基的高温质子导体及其制备方法。
背景技术
在固体电解质材料中,高温质子导体是在高温下可以产生质子选择性迁移的材料,由于其离子导电的选择性,高温质子导体在燃料电池、电化学合成、电解水制氢、氢分离、传感器等领域,具有良好的应用前景
ABO3基体钙钛矿型质子导体为应用较为广泛的高温质子导体材料;钙钛矿结构ABO3为立方、四方或者正交晶系,其中A位通常为+2价阳离子(如Ba、Ca、Sr),B位为+4价阳离子(如Zr、Ce、Ti),通常以低价元素对A位或B位元素进行掺杂后,使原材料产生氧空位;氧空位捕获气氛中的水蒸气或者氢气可引入质子,产生质子导电,同时材料中的氧空位也可产生导电。
在ABO3基体钙钛矿型质子导体中具有立方相晶体结构的材料质子及氧离子空位电导率均较高,其质子选择性导电较低,质子迁移数也较低。质子迁移数为质子电导率在总电导率中的占率;由于立方相材料的质子迁移数较低,采用此类材料制作的传感器,既对氢元素产生响应,也对氧元素产生响应,导致传感器的选择性较差,限制了质子导体在传感器领域中的应用。
正交结构的ABO3基质子导体可以限制氧空位在材料中的迁移,因此,此类材料的质子迁移数较高;但是现有的质子导体,A位为+2价阳离子,B位为+4价阳离子,可以选择的元素较少,产生质子导电的材料中A位元素只有Ba、Ca、Sr,B位元素只有Zr、Ce、Th;因此正交结构的基体材料也较少,无放射性的材料在高温下只有SrCeO3、CaZrO3,但是二者对氧空位迁移的限制仍不能满足应用的需求,但是现有的材料种类的限制,难以通过基体的调整进一步提高材料的质子迁移数,限制了材料在传感器领域的应用。
发明内容
本发明的目的是提供一种氧化钕基的高温质子导体及其制备方法,采用Nd3+作为ABO3的A位离子,采用其他+3价离子作为B位元素,制备出高质子迁移数的材料。
本发明的氧化钕基的高温质子导体为钙钛矿材料,分子式为Nd1-xA′xYO3-α、Nd1-xA′xDyO3-α、Nd1-xA′xErO3-α、Nd1-xA′xLuO3-α、Nd1-xA′xTmO3-α、Nd-xA′xYbO3-α、Nd1-xA′xInO3-α或Nd1-xA′xScO3-α,A′=Na和/或Ca,x=0~0.5,3-α取值随总价态配平。
本发明的氧化钕基的高温质子导体的制备方法按以下步骤进行:
1、准备Nd、A′和B元素的氧化物、碳酸盐或硝酸盐为原料;其中B元素为Y、Dy、Er、Lu、Tm、Yb、In或Sc;
2、将全部原料置于球磨罐中球磨混合,至平均粒径≤5μm,获得混合粉体I;
3、将混合粉体I压制成块,然后在800~1200℃煅烧5~20小时,随炉冷却至室温,获得煅烧物料;
4、将煅烧物料置于球磨罐中球磨磨细,至平均粒径≤5μm,获得混合粉体II;
5、将混合粉体II压制成块,然后在1200~1600℃烧结5~20小时,随炉冷却至室温,制成氧化钕基的高温质子导体。
上述的步骤1中,全部原料中Nd、A′和B元素的摩尔比为(1-x):x:1。
上述的步骤3中,压制成块的压制压力5~10MPa。
上述的步骤5中,压制成块的压制压力50~300MPa。
本发明采用+3价的Nd3+作为ABO3型钙钛矿结构材料的A位离子,因此可以采用+3价的离子作为B位元素,构成NdBO3型材料;+3价离子种类多,与Nd3+组合可以构成正交相的ABO3型材料也较多,可以通过离子半径筛选,制备出高质子迁移数的材料,满足质子导体在传感器等领域的应用需求,材料化学性质稳定,材料使用寿命长,适合工业应用,具有良好的应用前景
附图说明
图1为本发明实施例1中的氧化钕基的高温质子导体的电导率及质子迁移数曲线图。
具体实施方式
本申请材料输力强1260A运用交流阻抗法测试材料的电导率;采用吉时利2450运用浓差电池法测试材料的质子迁移数。
本发明实施例中采用的原料为市购分析纯试剂。
本发明实施例中采用的研磨罐为玛瑙材质。
本发明实施例中的混合固体电解质质子导体材料在500~900℃时电导率≤1.25×10-3S/cm。
本发明实施例中的混合固体电解质质子导体材料在500~800℃时质子迁移数>0.90。
本发明实施例中进行步骤5时采用等静压设备进行压制。
本发明实施例中的原料为元素Nd、A′和B的碳酸盐、氧化物或硝酸盐。
实施例1
氧化钕基的高温质子导体的分子式为Nd1-xA′xYbO3-α(Nd0.9Ca0.1YbO3-α),A′=Ca,x=0.1,3-α取值随总价态配平;
制备方法为:
准备Nd2O3、Yb2O3和CaCO3为原料;全部原料中Nd、A′(Ca)和B元素(Yb)的摩尔比为0.9:0.1:1;
将全部原料置于球磨罐中球磨混合,至平均粒径≤5μm,获得混合粉体I;
将混合粉体I压制成块,然后用高温炉在1200℃煅烧10小时,随炉冷却至室温,获得煅烧物料;压制采用压片机,压制压力5MPa
将煅烧物料置于球磨罐中球磨磨细,至平均粒径≤5μm,获得混合粉体II;
将混合粉体II压制成块,压制压力50MPa;然后用高温炉在1600℃烧结10小时,随炉冷却至室温,制成氧化钕基的高温质子导体,其电导率及质子迁移数曲线如图1所示。
实施例2
氧化钕基的高温质子导体为钙钛矿型晶体结构,分子式为Nd1-xA′xDyO3-α,A′=Na,x=0.2;
方法同实施例1,不同点在于:、
(1)全部原料中Nd、A′(Na)和B元素(Dy)的摩尔比为0.8:0.2:1;
(2)混合粉体I压制成块的压力6MPa;在1100℃煅烧12小时;
(3)混合粉体II压制成块的压力80MPa;在1500℃烧结12小时。
实施例3
氧化钕基的高温质子导体为钙钛矿型晶体结构,分子式为Nd1-xA′xErO3-α,x=0.3;
方法同实施例1,不同点在于:、
(1)全部原料中Nd、A′(Ca)和B元素(Er)的摩尔比为0.7:0.3:1;
(2)混合粉体I压制成块的压力7MPa;在1100℃煅烧12小时;
(3)混合粉体II压制成块的压力100MPa;在1400℃烧结14小时。
实施例4
氧化钕基的高温质子导体为钙钛矿型晶体结构,分子式为Nd1-xA′xLuO3-α,A′=Na,x=0.4;
方法同实施例1,不同点在于:、
(1)全部原料中Nd、A′(Na)和B元素(Lu)的摩尔比为0.6:0.4:1;
(2)混合粉体I压制成块的压力8MPa;在1000℃煅烧15小时;
(3)混合粉体II压制成块的压力150MPa;在1400℃烧结15小时。
实施例5
氧化钕基的高温质子导体为钙钛矿型晶体结构,分子式为Nd1-xA′xTmO3-α,x=0.5;
方法同实施例1,不同点在于:、
(1)全部原料中Nd、A′(Ca)和B元素(Tm)的摩尔比为0.5:0.5:1;
(2)混合粉体I压制成块的压力9MPa;在1000℃煅烧15小时;
(3)混合粉体II压制成块的压力200MPa;在1300℃烧结16小时。
实施例6
氧化钕基的高温质子导体为钙钛矿型晶体结构,分子式为Nd-xA′xYO3-,A′=Na,x=0.05;
方法同实施例1,不同点在于:、
(1)全部原料中Nd、A′(Na)和B元素(Y)的摩尔比为0.95:0.05:1;
(2)混合粉体I压制成块的压力10MPa;在900℃煅烧16小时;
(3)混合粉体II压制成块的压力250MPa;在1300℃烧结16小时。
实施例7
氧化钕基的高温质子导体为钙钛矿型晶体结构,分子式为Nd1-xA′xInO3-α,x=0.15;
方法同实施例1,不同点在于:、
(1)全部原料中Nd、A′(Ca)和B元素(In)的摩尔比为0.85:0.15:1;
(2)混合粉体I压制成块的压力10MPa;在900℃煅烧18小时;
(3)混合粉体II压制成块的压力300MPa;在1200℃烧结20小时。
实施例8
氧化钕基的高温质子导体为钙钛矿型晶体结构,分子式为NdScO3-α,x=0(没有元素A′);
方法同实施例1,不同点在于:、
(1)全部原料中Nd和B元素(Sc)的摩尔比为1:1;
(2)混合粉体I压制成块的压力10MPa;在800℃煅烧20小时;
(3)混合粉体II压制成块的压力300MPa;在1200℃烧结20小时。

Claims (5)

1.一种氧化钕基的高温质子导体,其特征在于为钙钛矿材料,分子式为Nd1-xA′xYO3-α、Nd1-xA′xDyO3-α、Nd1-xA′xErO3-α、Nd1-xA′xLuO3-α、Nd1-xA′xTmO3-α、Nd-xA′xYbO3-α、Nd1-xA′xInO3-α或Nd1-xA′xScO3-α,A′=Na和/或Ca,x=0~0.5,3-α取值随总价态配平。
2.一种权利要求1所述的氧化钕基的高温质子导体的制备方法,其特征在于按以下步骤进行:
(1)准备Nd、A′和B元素的氧化物、碳酸盐或硝酸盐为原料;其中B元素为Y、Dy、Er、Lu、Tm、Yb、In或Sc;
(2)将全部原料置于球磨罐中球磨混合,至平均粒径≤5μm,获得混合粉体I;
(3)将混合粉体I压制成块,然后在800~1200℃煅烧5~20小时,随炉冷却至室温,获得煅烧物料;
(4)将煅烧物料置于球磨罐中球磨磨细,至平均粒径≤5μm,获得混合粉体II;
(5)将混合粉体II压制成块,然后在1200~1600℃烧结5~20小时,随炉冷却至室温,制成氧化钕基的高温质子导体。
3.根据权利要求2所述的氧化钕基的高温质子导体的制备方法,其特征在于步骤(1)中,全部原料中Nd、A′和B元素的摩尔比为(1-x):x:1。
4.根据权利要求2所述的氧化钕基的高温质子导体的制备方法,其特征在于步骤(3)中,压制成块的压制压力5~10MPa。
5.根据权利要求2所述的氧化钕基的高温质子导体的制备方法,其特征在于步骤(5)中,压制成块的压制压力50~300MPa。
CN201911346234.0A 2019-12-24 2019-12-24 一种氧化钕基的高温质子导体及其制备方法 Active CN111018526B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911346234.0A CN111018526B (zh) 2019-12-24 2019-12-24 一种氧化钕基的高温质子导体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911346234.0A CN111018526B (zh) 2019-12-24 2019-12-24 一种氧化钕基的高温质子导体及其制备方法

Publications (2)

Publication Number Publication Date
CN111018526A true CN111018526A (zh) 2020-04-17
CN111018526B CN111018526B (zh) 2022-02-01

Family

ID=70211976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911346234.0A Active CN111018526B (zh) 2019-12-24 2019-12-24 一种氧化钕基的高温质子导体及其制备方法

Country Status (1)

Country Link
CN (1) CN111018526B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067558A (ja) * 1996-08-28 1998-03-10 Santoku Kinzoku Kogyo Kk プロトン伝導性セラミックス
CN101543732A (zh) * 2009-02-25 2009-09-30 中国科学技术大学 一种金属氧化物质子传导材料及其制备方法
CN101792304A (zh) * 2010-03-02 2010-08-04 中国科学院上海硅酸盐研究所 一种钙钛矿结构材料及其制备方法
CN104710845A (zh) * 2013-12-13 2015-06-17 通用电气公司 组合物及其相应的装置、方法
CN105837213A (zh) * 2016-03-29 2016-08-10 电子科技大学 添加ReAlO3的微波介质陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067558A (ja) * 1996-08-28 1998-03-10 Santoku Kinzoku Kogyo Kk プロトン伝導性セラミックス
CN101543732A (zh) * 2009-02-25 2009-09-30 中国科学技术大学 一种金属氧化物质子传导材料及其制备方法
CN101792304A (zh) * 2010-03-02 2010-08-04 中国科学院上海硅酸盐研究所 一种钙钛矿结构材料及其制备方法
CN104710845A (zh) * 2013-12-13 2015-06-17 通用电气公司 组合物及其相应的装置、方法
CN105837213A (zh) * 2016-03-29 2016-08-10 电子科技大学 添加ReAlO3的微波介质陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏天 等: "《固体氧化物燃料电池电解质材料》", 31 July 2013, 黑龙江大学出版社 *
师瑞娟: "《质子导体固体电解质》", 31 January 2019, 中国书籍出版社 *

Also Published As

Publication number Publication date
CN111018526B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
Zhao et al. Synthesis, characterization and evaluation of PrBaCo2− xFexO5+ δ as cathodes for intermediate-temperature solid oxide fuel cells
Liu et al. Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0. 6M0. 2Y0. 2O3− δ electrolyte membranes: the effect of the M dopant
Yang et al. Synthesis, sintering behavior and electrical properties of Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ and Ba (Zr0. 1Ce0. 7Y0. 1Yb0. 1) O3− δ proton conductors
Song et al. Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Ln n+ 1 Ni n O 3n+ 1 (Ln= La, Pr and Nd; n= 1, 2 and 3)
Guo et al. Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0. 4Zr0. 4Y0. 2O3− δ (0≤ x≤ 0.20) proton conductors
Zhang et al. Materials design for ceramic oxygen permeation membranes: Single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite
Chen et al. Electrical conductivity and oxygen permeability of Ce0. 8Sm0. 2O2− δ–PrBaCo2O5+ δ dual-phase composites
Kim et al. Crystal chemistry and electrochemical properties of Ln (Sr, Ca) 3 (Fe, Co) 3 O 10 intergrowth oxide cathodes for solid oxide fuel cells
Khan et al. Wet chemical synthesis and characterisation of Ba0. 5Sr0. 5Ce0. 6Zr0. 2Gd0. 1Y0. 1O3− δ proton conductor
EP3309797B1 (en) Solid electrolyte
CA2968634A1 (en) Solid oxide fuel cell material
Medvedev et al. Investigation of the structural and electrical properties of Co-doped BaCe0. 9Gd0. 1O3− δ
KR101808387B1 (ko) 저온 소결용 세리아 전해질 및 이를 이용한 고체산화물연료전지
CN110970148B (zh) 一种复合氧化物质子导体材料及其制备方法
Pikalova et al. Influence of the substitution with rare earth elements on the properties of layered lanthanum nickelate–Part 1: Structure, oxygen transport and electrochemistry evaluation
Pikalova et al. Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+ δ as air electrodes for solid-oxide electrochemical cells
Wang et al. Improving intermediate-temperature stability of BSCF by constructing high entropy perovskites
CN110937897B (zh) 一种混合固体电解质质子导体材料及其制备方法
Bucevac et al. Effect of preparation route on the microstructure and electrical conductivity of co-doped ceria
JP6625855B2 (ja) 水蒸気電解用セルおよびその製造方法
CN111018526B (zh) 一种氧化钕基的高温质子导体及其制备方法
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
Swierczek et al. Structural and electrical properties of selected La1-x Sr x Co0. 2Fe0. 8O3 and La0. 6Sr0. 4Co0. 2Fe0. 6Ni0. 2O3 perovskite type oxides
Liu et al. Electrolyte materials for solid oxide fuel cells (SOFCs)
CN110950646B (zh) 一种氧化钐基的固体电解质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant