CN110992879B - 一种基于OLED电气特性评估的DeMURA数据采集寻优方法 - Google Patents

一种基于OLED电气特性评估的DeMURA数据采集寻优方法 Download PDF

Info

Publication number
CN110992879B
CN110992879B CN201911270204.6A CN201911270204A CN110992879B CN 110992879 B CN110992879 B CN 110992879B CN 201911270204 A CN201911270204 A CN 201911270204A CN 110992879 B CN110992879 B CN 110992879B
Authority
CN
China
Prior art keywords
sample
sampl
samph
gray scale
kmaxh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911270204.6A
Other languages
English (en)
Other versions
CN110992879A (zh
Inventor
廖志梁
王道宁
陶亮
王凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yicheng Gaoke Dalian Technology Co ltd
Original Assignee
Yicheng Gaoke Dalian Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yicheng Gaoke Dalian Technology Co ltd filed Critical Yicheng Gaoke Dalian Technology Co ltd
Priority to CN201911270204.6A priority Critical patent/CN110992879B/zh
Publication of CN110992879A publication Critical patent/CN110992879A/zh
Application granted granted Critical
Publication of CN110992879B publication Critical patent/CN110992879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于OLED电气特性评估的DeMURA数据采集寻优方法,包括以下步骤:一、DeMURA数据采集合理性判断;二、DeMURA数据采集寻优方法。本方法用高阶拟合的方式拟合当前样本,判断DeMURA数据采集是否合理,提高了DeMURA精度;基于OLED电气特性,提供了DeMURA数据采集寻优方法,使样本分布、数量更加符合要求。

Description

一种基于OLED电气特性评估的DeMURA数据采集寻优方法
技术领域
本发明涉及图像处理技术领域。
背景技术
OLED屏每个发光单元与输入灰度呈现出的关系模型而造成局部不均匀性,这种不均匀性又叫MURA,来自于日语音译,代表粗糙的、不光滑的意思。在DeMURA前需要采集OLED屏不同灰阶的数据,针对要采集的数据本专利提出一种基于OLED电气特性评估的DeMURA数据采集寻优方法。
本领域现阶段采用的DeMURA方法包括以下几个步骤:
1)利用高分辨率相机采集不同灰阶下OLED屏的亮度(专利申请号201810608731.2),并去除摩尔纹;
2)利用灰阶与实际灰度之间的关系构建DeMURA表(专利申请号201811563176.2);
3)对DeMURA表做压缩,并烧录到IC存储中(专利申请号201810272063.0);
4)在IC端通过解压对每个发光单元做实时调整。
该方法存在的问题:不同灰阶阶段采用不同的建模方式,所以采集的数据样本分布会影响后期DeMURA的效果。该方法未曾考虑采集到的OLED样本数据的数量与分布是否符合DeMURA模型,若是不符合该如何调整等问题。
发明内容
为了解决现有OLED屏的DeMURA方法存在的上述问题,本发明提供了一种基于OLED电气特性评估的DeMURA数据采集寻优方法。
本发明为实现上述目的所采用的技术方案是:一种基于OLED电气特性评估的DeMURA数据采集寻优方法,包括以下步骤:
一、DeMURA数据采集合理性判断:
1)利用高阶拟合的方式,拟合出当前采集数据的IN与fi的曲线,找到曲线的低阶灰度拐点fL与高阶灰度拐点fH,IN(x,y)为点(x,y)测得的实际灰度,拍摄的灰度阶是v={fi|fi∈Z+I fi∈(0,255)},i∈[1,G],G为拍摄的灰度阶数量;
a)构建高阶拟合模型
Figure BDA0002312404440000021
n≥3,拟合出当前采集数据的IN与fi的曲线,α为关系模型参数;
b)对于fi小于阈值的,认为属于低灰阶采样区间;对于fi大于阈值的,认为属于高灰阶采样区间;对于不属于低、高灰阶区间的,认为属于中灰阶采样区间;
c)低阶灰度拐点fL与高阶灰度拐点fH是拟合的高阶曲线在相应灰阶范围内斜率k为零的点;
2)根据低阶灰度拐点fL与高阶灰度拐点fH判断当前采集的G个灰度阶的分布是否合理:a)采样的最低灰度阶fsampL与最高灰度阶fsampH,fsampL、fsampL∈[0,255],fL≤fsampL,fH≥fsampH时,则IN与fi在低、中、高灰阶都成线性关系,G≥2,认为当前采样数据合理,则进行步骤一-3)操作,否则继续进行步骤二-1)-a)的操作;b)fL>fsampL,fH<fsampH,且fL<fH时,找到拟合曲线上距fL最近的斜率最大的灰度阶fkmaxL,fL<fkmaxL,拟合曲线上距fH最近的斜率最大的灰度阶fkmaxH,fH>fkmaxH,fkminL≤fkmaxH,当前的样本为低灰阶区间有G1个fi∈[fsampL,fL),G1≥1,G2个fi∈[fL,fkmaxL),G2≥2,高灰阶区间有G3个fi∈(fkmaxH,fH],G3≥2,G4个fi∈(fH,fsampH],G4≥1,中间灰阶区间有G5个fi∈[fkminL,fkmaxH],G5≥2,G1+G2+G3+G4+G5=G,则当前采样合理,则进行步骤一-3)操作,否则继续进行步骤二-1)-b)的操作;
c)fL≤fsampL,fH<fsampH时,则在低、中灰度区间内IN与fi成线性关系,若当前样本在低、中灰度区间有G1个fi∈[fsampL,fkmaxH],G1≥2,高灰阶区间有G2个fi∈(fkmaxH,fH)],G2≥2,G3个fi∈(fH,fsampH],G3≥1,G1+G2+G3=G,则认为当前采样合理,进行1中3)操作,否则继续进行步骤二-1)-c)的操作;
d)fL>fsampL,fH≥fsampH时,则认为在中、高灰度区间内IN与fi成线性关系,若当前样本在低灰阶有G1个fi∈[fsampL,fL),G1≥1,G2个fi∈[fL,fkmaxL),G2≥2,在中、高灰度区间有G3个fi∈[fkmaxL,fsampH],G3≥2,G1+G2+G3=G,则认为当前采样合理,进行步骤一-3)操作,否则继续进行步骤二-1)-d)的操作;
3)若是采集数据合理,则进行DeMURA;
二、DeMURA数据采集寻优方法:
1)若是当前采集的DeMURA数据不符合要求,那么根据低阶灰度拐点fL、高阶灰度拐点重新调整数据采集的灰阶:
a)fL≤fsampL,fH≥fsampH时,则调整样本为[fsampL,fsampH]范围内取G个,G≥2;
b)fL>fsampL,fH<fsampH,且fL<fH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,在[fL,fkmaxL)内取G2个样本;高灰度阶区间在(fkmaxH,fH]范围内取G3个样本,在(fH,fsampH]范围内取G4个样本;中间灰度阶区在[fkminL,fkmaxH]取G5个样本;G1+G2+G3+G4+G5=G;
c)fL≤fsampL,fH<fsampH时,调整样本采集为低、中灰度区间在[fsampL,fkmaxH]范围内取G1个样本,G1≥2;高灰阶区间在(fkmaxH,fH]范围内取G2个样本,G2≥2,在(fH,fsampH]范围内取G3个样本;G1+G2+G3=G;
d)fL>fsampL,fH≥fsampH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,在[fL,fkmaxL)范围内取G2个样本,G2≥2;中、高灰阶区间在[fkmaxL,fsampH]范围内取G3个样本,G3≥2;G1+G2+G3=G。
2)对重新采集的DeMURA数据再进行DeMURA。
所述步骤一-1)-b)中,对于fi小于阈值的,该阈值取值范围是0-255,最优取值32;对于fi大于某阈值的,该阈值取值范围是0~255,最优取值224。
所述步骤二-1)-a)中,若G=2,样本为fsampL、fsampH;若G>2,样本为fsampL、fsampH,剩余的在[fsampL,fsampH]内均匀分布;
所述步骤二-1)-b)中,fL>fsampL,fH<fsampH,且fL<fH时,低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,若G1=1,样本为fsampL,若G1>1,样本为fsampL,剩余的在[fsampL,fL)内均匀分布,在[fL,fkmaxL)内取G2个样本,G2≥2,样本为fL,剩余的在[fL,fkmaxL)内均匀分布;高灰度阶区间在(fkmaxH,fH]范围内取G3个样本,G3≥2,样本为fH,剩余的在(fkmaxH,fH]内均匀分布,在(fH,fsampH]范围内取G4个样本,G4≥1,若G4=1,样本为fsampH’若G4>1建议样本为fsampH,剩余的在(fH,fsampH]内均匀分布;中间灰度阶区在[fkminL,fkmaxH]取G5个样本,G5≥2,若G5=2,样本为fkminL,fkmaxH,若G5>2,样本为fkminL,fkmaxH,剩余的在[fkminL,fkmaxH]内均匀分布。
所述步骤二-1)-c)中,fL≤fsampL,fH<fsampH时,调整样本采集为低、中灰度区间在[fsampL,fkmaxH]范围内取G1个样本,G1≥2,若G1=2,样本为fsampL、fkmaxH,若G1>2,样本为fsampL、fkmaxH,剩余的在[fsampL,fkmaxH]内均匀分布;高灰阶区间在(fkmaxH,fH]范围内取G2个样本,G2≥2,样本为fH,剩下的在(fkmaxH,fH]均匀分布,在(fH,fsampH]范围内取G3个样本,G3≥1,若G3=1,样本为fsampH,若G3>1,样本为fsampH,剩下的在(fkmaxH,fH]内均匀分布;G1+G2+G3=G;
所述步骤二-1)-d)中,fL>fsampL,fH≥fsampH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,若G1=1,样本为fsampL,若G1>1,样本为fsampL,剩余的在[fsampL,fL)范围内均匀分布,在[fL,fkmaxL)范围内取G2个样本,G2≥2,样本为fL,剩余在[fL,fkmaxL)范围内均匀分布;中、高灰阶区间在[fkmaxL,fsampH]范围内取G3个样本,G3≥2,若G3=2,样本为fkmaxL、fsampH,若G3>2,样本为fkmaxL、fsampH,剩余的在[fkmaxL,fsampH]范围内均匀分布;G1+G2+G3=G。
本发明的基于OLED电气特性评估的DeMURA数据采集寻优方法,用高阶拟合的方式拟合当前样本,判断DeMURA数据采集是否合理,提高了DeMURA精度;基于OLED电气特性,提供了DeMURA数据采集寻优方法,使样本分布、数量更加符合要求。
附图说明
图1是本发明基于OLED电气特性评估的DeMURA数据采集寻优方法的流程图。
具体实施方式
根据申请号为201910670213.8的一种针对OLED屏的高鲁棒性DeMURA方法的专利,若拍摄的灰度阶假定有G个,G∈[2,256],一般地,G>5,拍摄的灰度阶是v={fi|fi∈Z+I fi∈(0,255)},i∈[1,G],设对点(x,y)测得的实际灰度为IN(x,y)。方法包括以下步骤:如图1所示:
一、DeMURA数据采集合理性判断:
1)利用高阶拟合的方式,拟合出当前采集数据的IN与fi的曲线,找到曲线的低阶灰度拐点fL与高阶灰度拐点fH
a)构建高阶拟合模型
Figure BDA0002312404440000051
n≥3,拟合出当前采集数据的IN与fi的曲线;
b)对于fi小于某阈值的,认为属于低灰阶采样区间,该阈值取值范围是0-255,建议取值32;对于fi大于某阈值的,认为属于高灰阶采样区间,该阈值取值范围是0-255,建议取值224;对于不属于低、高灰阶区间的,认为属于中灰阶采样区间;
c)低阶灰度拐点fL与高阶灰度拐点fH是拟合的高阶曲线在相应灰阶范围内斜率k为零的点。
2)根据fL与fH判断当前采集的G个灰度阶的分布是否合理:
a)采样的最低灰度阶fsampL与最高灰度阶fsampH,fsampL、fsampL∈[0,255]。
fL≤fsampL,fH≥fsampH时,则IN与fi在低、中、高灰阶都成线性关系,G≥2,认为当前采样数据合理,则进行1中3)操作,否则继续进行步骤二-1)-a)的操作;
b)fL>fsampL,fH<fsampH,且fL<fH时,找到拟合曲线上距fL最近的斜率最大的灰度阶fkmaxL,fL<fkmaxL,拟合曲线上距fH最近的斜率最大的灰度阶fkmaxH,fH>fkmaxH,fkminL≤fkmaxH,若当前的样本为低灰阶区间有G1个fi∈[fsampL,fL),G1≥1,G2个fi∈[fL,fkmaxL),G2≥2,高灰阶区间有G3个fi∈(fkmaxH,fH],G3≥2,G4个fi∈(fH,fsampH],G4≥1,中间灰阶区间有G5个fi∈[fkminL,fkmaxH],G5≥2,G1+G2+G3+G4+G5=G,则认为当前采样合理,则进行步骤一-3)操作,否则继续进行步骤二-1)-b)的操作;
c)fL≤fsampL,fH<fsampH时,则认为在低、中灰度区间内IN与fi成线性关系,若当前样本在低、中灰度区间有G1个fi∈[fsampL,fkmaxH],G1≥2,高灰阶区间有G2个fi∈(fkmaxH,fH)],G2≥2,G3个fi∈(fH,fsampH],G3≥1,G1+G2+G3=G,则认为当前采样合理,进行1中3)操作,否则继续进行步骤二-1)-c)的操作;
d)fL>fsampL,fH≥fsampH时,则认为在中、高灰度区间内IN与fi成线性关系,若当前样本在低灰阶有G1个fi∈[fsampL,fL),G1≥1,G2个fi∈[fL,fkmaxL),G2≥2,在中、高灰度区间有G3个fi∈[fkmaxL,fsampH],G3≥2,G1+G2+G3=G,则认为当前采样合理,进行步骤一-3)操作,否则继续进行步骤二-1)-d)的操作;
3)若是采集数据合理则根据一种针对OLED屏的高鲁棒性DeMURA方法专利记载内容进行DeMURA。
二、DeMURA数据采集寻优方法:
1)若是当前采集的DeMURA数据不符合要求,那么根据低阶灰度拐点fL、高阶灰度拐点重新调整数据采集的灰阶:
a)fL≤fsampL,fH≥fsampH时,则调整样本为[fsampL,fsampH]范围内取G个,G≥2;若G=2,建议样本为fsampL、fsampH;若G>2,建议样本为fsampL、fsampH,剩余的在[fsampL,fsampH]内均匀分布;
b)fL>fsampL,fH<fsampH,且fL<fH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,若G1=1,建议样本为fsampL,若G1>1,建议样本为fsampL,剩余的在[fsampL,fL)内均匀分布,在[fL,fkmaxL)内取G2个样本,G2≥2,建议样本为fL,剩余的在[fL,fkmaxL)内均匀分布;高灰度阶区间在(fkmaxH,fH]范围内取G3个样本,G3≥2,建议样本为fH,剩余的在(fkmaxH,fH]内均匀分布,在(fH,fsampH]范围内取G4个样本,G4≥1,若G4=1建议样本为fsampH,若G4>1建议样本为fsampH,剩余的在(fH,fsampH]内均匀分布;中间灰度阶区在[fkminL,fkmaxH]取G5个样本,G5≥2,若G5=2,建议样本为fkminL,fkmaxH,若G5>2,建议样本为fkminL,fkmaxH,剩余的在[fkminL,fkmaxH]内均匀分布;G1+G2+G3+G4+G5=G;
c)fL≤fsampL,fH<fsampH时,调整样本采集为低、中灰度区间在[fsampL,fkmaxH]范围内取G1个样本,G1≥2,若G1=2,建议样本为fsampL、fkmaxH,若G1>2,建议样本为fsampL、fkmaxH,剩余的在[fsampL,fkmaxH]内均匀分布;高灰阶区间在(fkmaxH,fH]范围内取G2个样本,G2≥2,建议样本为fH,剩下的在(fkmaxH,fH]均匀分布,在(fH,fsampH]范围内取G3个样本,G3≥1,若G3=1,建议样本为fsampH,若G3>1,建议样本为fsampH,剩下的在(fkmaxH,fH]内均匀分布;G1+G2+G3=G;
d)fL>fsampL,fH≥fsampH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,若G1=1,建议样本为fsampL,若G1>1,建议样本为fsampL,剩余的在[fsampL,fL)范围内均匀分布,在[fL,fkmaxL)范围内取G2个样本,G2≥2,建议样本为fL,剩余在[fL,fkmaxL)范围内均匀分布;中、高灰阶区间在[fkmaxL,fsampH]范围内取G3个样本,G3≥2,若G3=2,建议样本为fkmaxL、fsampH,若G3>2,建议样本为fkmaxL、fsampH,剩余的在[fkmaxL,fsampH]范围内均匀分布;G1+G2+G3=G。
2)对重新采集的DeMURA数据再进行DeMURA。
本发明是通过实施例进行描述的,本领域技术人员知悉,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明的保护范围。

Claims (5)

1.一种基于OLED电气特性评估的DeMURA数据采集寻优方法,其特征在于:包括以下步骤:
一、DeMURA数据采集合理性判断:
1)利用高阶拟合的方式,拟合出当前采集数据的IN与fi的曲线,找到曲线的低阶灰度拐点fL与高阶灰度拐点fH,IN(x,y)为点(x,y)测得的实际灰度,拍摄的灰度阶是v={fi|fi∈Z+∩fi∈(0,255) },i∈[1,G],G为拍摄的灰度阶数量;
a)构建高阶拟合模型
Figure FDA0003663558310000011
拟合出当前采集数据的IN与fi的曲线,α为关系模型参数;
b)对于fi小于阈值32的,认为属于低灰阶采样区间;对于fi大于阈值224的,认为属于高灰阶采样区间;对于不属于低、高灰阶区间的,认为属于中灰阶采样区间;
c)低阶灰度拐点fL与高阶灰度拐点fH是拟合的高阶曲线在相应灰阶范围内斜率k为零的点;
2)根据低阶灰度拐点fL与高阶灰度拐点fH判断当前采集的G个灰度阶的分布是否合理:
a)采样的最低灰度阶fsampL与最高灰度阶fsampH,fsampL、fsampH∈[0.255],
fL≤fsampL,fH≥fsampH时,则IN与fi在低、中、高灰阶都成线性关系,G≥2,认为当前采样数据合理,则进行步骤一-3)操作,否则继续进行步骤二-1)-a)的操作;
b)fL>fsampL,fH<fsampH,且fL<fH时,找到拟合曲线上距fL最近的斜率最大的灰度阶fkmaxL,fL<fkmaxL,拟合曲线上距fH最近的斜率最大的灰度阶fkmaxH,fH>fkmaxH,fkmaxL≤fkmaxH,当前的样本为低灰阶区间有G1个fi∈[fsampL,fL),G1≥1,G2个fi∈[fL,fkmaxL),G2≥2,高灰阶区间有G3个fi∈(fkmaxH,fH],G3≥2,G4个fi∈(fH,fsampH],G4≥1,中间灰阶区间有G5个fi∈[fkmaxL,fkmaxH],G5≥2,G1+G2+G3+G4+G5=G,则当前采样合理,则进行步骤一-3)操作,否则继续进行步骤二-1)-b)的操作;
c)fL≤fsampL,fH<fsampH时,则在低、中灰度区间内IN与fi成线性关系,若当前样本在低、中灰度区间有G1个fi∈[fsampL,fkmaxH],G1≥2,高灰阶区间有G2个fi∈(fkmaxH,fH)],G2≥2,G3个fi∈(fH,fsampH],G3≥1,G1+G2+G3=G,则认为当前采样合理,进行步骤一中3)操作,否则继续进行步骤二-1)-c)的操作;
d)fL>fsampL,fH≥fsampH时,则认为在中、高灰度区间内IN与fi成线性关系,若当前样本在低灰阶有G1个fi∈[fsampL,fL),G1≥1,G2个fi∈[fL,fkmaxL),G2≥2,在中、高灰度区间有G3个fi∈[fkmaxL,fsampH],G3≥2,G1+G2+G3=G,则认为当前采样合理,进行步骤一-3)操作,否则继续进行步骤二-1)-d)的操作;
3)若是采集数据合理,则进行DeMURA;
二、DeMURA数据采集寻优方法:
1)若是当前采集的DeMURA数据不符合要求,那么根据低阶灰度拐点fL、高阶灰度拐点重新调整数据采集的灰阶:
a)fL≤fsampL,fH≥fsampH时,则调整样本为[fsampL,fsampH]范围内取G个,G≥2;
b)fL>fsampL,fH<fsampH,且fL<fH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,在[fL,fkmaxL)内取G2个样本;高灰度阶区间在(fkmaxH,fH]范围内取G3个样本,在(fH,fsampH]范围内取G4个样本;中间灰度阶区在[fkmaxL,fkmaxH]取G5个样本;G1+G2+G3+G4+G5=G;
c)fL≤fsampL,fH<fsampH时,调整样本采集为低、中灰度区间在[fsampL,fkmaxH]范围内取G1个样本,G1≥2;高灰阶区间在(fkmaxH,fH]范围内取G2个样本,G2≥2,在(fH,fsampH]范围内取G3个样本;G1+G2+G3=G;
d)fL>fsampL,fH≥fsampH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,在[fL,fkmaxL)范围内取G2个样本,G2≥2;中、高灰阶区间在[fkmaxL,fsampH]范围内取G3个样本,G3≥2;G1+G2+G3=G;
2)对重新采集的DeMURA数据再进行DeMURA。
2.根据权利要求1所述的一种基于OLED电气特性评估的DeMURA数据采集寻优方法,其特征在于:所述步骤二-1)-a)中,若G=2,样本为fsampL、fsampH;若G>2,样本为fsampL、fsampH,剩余的在[fsampL,fsampH]内均匀分布。
3.根据权利要求1所述的一种基于OLED电气特性评估的DeMURA数据采集寻优方法,其特征在于:步骤二-1)-b)中,fL>fsampL,fH<fsampH,且fL<fH时,低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,若G1=1,样本为fsampL,若G1>1,样本为fsampL,剩余的在[fsampL,fL)内均匀分布,在[fL,fkmaxL)内取G2个样本,G2≥2,样本为fL,剩余的在[fL,fkmaxL)内均匀分布;高灰度阶区间在(fkmaxH,fH]范围内取G3个样本,G3≥2,样本为fH,剩余的在(fkmaxH,fH]内均匀分布,在(fH,fsampH]范围内取G4个样本,G4≥1,若G4=1,样本为fsampH,若G4>1样本为fsampH,剩余的在(fH,fsampH]内均匀分布;中间灰度阶区在[fkmaxL,fkmaxH]取G5个样本,G5≥2,若G5=2,样本为fkmaxL,fkmaxH,若G5>2,样本为fkmaxL,fkmaxH,剩余的在[fkmaxL,fkmaxH]内均匀分布。
4.根据权利要求1所述的一种基于OLED电气特性评估的DeMURA数据采集寻优方法,其特征在于:步骤二-1)-c)中,fL≤fsampL,fH<fsampH时,调整样本采集为低、中灰度区间在[fsampL,fkmaxH]范围内取G1个样本,G1≥2,若G1=2,样本为fsampL、fkmaxH,若G1>2,样本为fsampL、fkmaxH,剩余的在[fsampL,fkmaxH]内均匀分布;高灰阶区间在(fkmaxH,fH]范围内取G2个样本,G2≥2,样本为fH,剩下的在(fkmaxH,fH]均匀分布,在(fH,fsampH]范围内取G3个样本,G3≥1,若G3=1,样本为fsampH,若G3>1,样本为fsampH,剩下的在(fkmaxH,fH]内均匀分布;G1+G2+G3=G。
5.根据权利要求1所述的一种基于OLED电气特性评估的DeMURA数据采集寻优方法,其特征在于:步骤二-1)-d)中,fL>fsampL,fH≥fsampH时,调整样本采集为低灰阶区间在[fsampL,fL)范围内取G1个样本,G1≥1,若G1=1,样本为fsampL,若G1>1,样本为fsampL,剩余的在[fsampL,fL)范围内均匀分布,在[fL,fkmaxL)范围内取G2个样本,G2≥2,样本为fL,剩余在[fL,fkmaxL)范围内均匀分布;中、高灰阶区间在[fkmaxL,fsampH]范围内取G3个样本,G3≥2,若G3=2,样本为fkmaxL、fsampH,若G3>2,样本为fkmaxL、fsampH,剩余的在[fkmaxL,fsampH]范围内均匀分布;G1+G2+G3=G。
CN201911270204.6A 2019-12-11 2019-12-11 一种基于OLED电气特性评估的DeMURA数据采集寻优方法 Active CN110992879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911270204.6A CN110992879B (zh) 2019-12-11 2019-12-11 一种基于OLED电气特性评估的DeMURA数据采集寻优方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911270204.6A CN110992879B (zh) 2019-12-11 2019-12-11 一种基于OLED电气特性评估的DeMURA数据采集寻优方法

Publications (2)

Publication Number Publication Date
CN110992879A CN110992879A (zh) 2020-04-10
CN110992879B true CN110992879B (zh) 2022-07-15

Family

ID=70092524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911270204.6A Active CN110992879B (zh) 2019-12-11 2019-12-11 一种基于OLED电气特性评估的DeMURA数据采集寻优方法

Country Status (1)

Country Link
CN (1) CN110992879B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211521B2 (ja) * 2007-03-26 2013-06-12 株式会社ニコン 画像処理装置、画像処理方法、画像処理プログラム、およびカメラ
US9307213B2 (en) * 2012-11-05 2016-04-05 Nvidia Corporation Robust selection and weighting for gray patch automatic white balancing
CN106200047B (zh) * 2016-08-29 2019-03-22 武汉精测电子集团股份有限公司 一种基于GPU的TFT-LCD Mura缺陷检测的方法
CN110473502A (zh) * 2018-05-09 2019-11-19 华为技术有限公司 屏幕亮度的控制方法、装置及终端设备
CN110086961A (zh) * 2019-05-28 2019-08-02 易诚高科(大连)科技有限公司 一种针对OLED屏的DeMURA算法
CN110175994B (zh) * 2019-05-28 2023-01-17 易诚高科(大连)科技有限公司 一种针对OLED屏的DeMURA调整算法
CN110148098B (zh) * 2019-05-28 2023-01-17 易诚高科(大连)科技有限公司 一种针对OLED屏DeMURA的奇异点处理方法

Also Published As

Publication number Publication date
CN110992879A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
AU2012227169B2 (en) Use of noise-optimized selection criteria to calculate scene white points
CN109671035B (zh) 一种基于直方图的红外图像增强方法
WO2016000605A1 (zh) 一种自动曝光方法及装置
JP2009524959A (ja) 画像コントラストの調整方法及び装置
CN110390653B (zh) 一种针对OLED屏的高鲁棒性DeMURA方法
CN105657282A (zh) 一种图像亮度主动优化的视觉识别方法
EP1215620A3 (en) Image capturing method and apparatus and fingerprint collation method and apparatus
CN111161163B (zh) 一种直方图双重伽马校正的红外图像对比度增强方法
CN107918928B (zh) 一种色彩还原方法
TW201824068A (zh) 影像感測之曝光時間決定方法
CN112070682B (zh) 图像亮度补偿的方法和装置
CN111131723A (zh) 一种瓷砖图像采集方法及系统
CN115442575A (zh) 一种基于视频质量评估的视频自适应传输方法及系统
CN101409850A (zh) 用于处理像素的多个颜色分量的装置及其方法
CN110418070B (zh) 一种数字切片扫描仪中相机图像曝光量的调整方法
CN110992879B (zh) 一种基于OLED电气特性评估的DeMURA数据采集寻优方法
KR101847459B1 (ko) 이미지 변환장치 및 방법
CN109242809B (zh) 一种基于rgb-d信息的点云滤波系统及滤波方法
CN113362253A (zh) 一种图像阴影校正方法、系统及其装置
CN202721740U (zh) 视频成像系统中背光式场景的自动曝光补偿装置
CN112241737A (zh) 文字图像校正方法和装置
CN109003241B (zh) 一种具有双控功能的线性图像增强方法
CN106341626B (zh) 一种微光线阵基于电子倍增的动态范围自动调整方法
CN111832565B (zh) 一种基于决策树的数码管识别方法
CN112233082B (zh) 细胞图像自动曝光方法及其装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A DeMURA data acquisition optimization method based on OLED electrical characteristic evaluation

Effective date of registration: 20230726

Granted publication date: 20220715

Pledgee: Dalian Branch of Shanghai Pudong Development Bank Co.,Ltd.

Pledgor: YICHENG GAOKE (DALIAN) TECHNOLOGY Co.,Ltd.

Registration number: Y2023980049989

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20220715

Pledgee: Dalian Branch of Shanghai Pudong Development Bank Co.,Ltd.

Pledgor: YICHENG GAOKE (DALIAN) TECHNOLOGY Co.,Ltd.

Registration number: Y2023980049989

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A DeMURA data acquisition optimization method based on OLED electrical characteristic evaluation

Granted publication date: 20220715

Pledgee: Dalian Branch of Shanghai Pudong Development Bank Co.,Ltd.

Pledgor: YICHENG GAOKE (DALIAN) TECHNOLOGY Co.,Ltd.

Registration number: Y2024980038970

PE01 Entry into force of the registration of the contract for pledge of patent right