CN110989314B - A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave - Google Patents
A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave Download PDFInfo
- Publication number
- CN110989314B CN110989314B CN201911366969.XA CN201911366969A CN110989314B CN 110989314 B CN110989314 B CN 110989314B CN 201911366969 A CN201911366969 A CN 201911366969A CN 110989314 B CN110989314 B CN 110989314B
- Authority
- CN
- China
- Prior art keywords
- gold
- light wave
- terahertz
- plated
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000005070 sampling Methods 0.000 claims abstract description 5
- 238000001228 spectrum Methods 0.000 claims description 33
- 238000005286 illumination Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims 2
- 102100029469 WD repeat and HMG-box DNA-binding protein 1 Human genes 0.000 claims 1
- 101710097421 WD repeat and HMG-box DNA-binding protein 1 Proteins 0.000 claims 1
- 230000021615 conjugation Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 238000001093 holography Methods 0.000 abstract description 10
- 238000002474 experimental method Methods 0.000 abstract description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 30
- 239000010931 gold Substances 0.000 description 30
- 229910052737 gold Inorganic materials 0.000 description 30
- 230000002123 temporal effect Effects 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 241000931705 Cicada Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0866—Digital holographic imaging, i.e. synthesizing holobjects from holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/10—Processes or apparatus for producing holograms using modulated reference beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/0033—Adaptation of holography to specific applications in hologrammetry for measuring or analysing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/0445—Off-axis recording arrangement
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Holo Graphy (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于菲涅尔双面镜连续太赫兹波自参考数字全息成像方法,该方法仅使用较少的光学元件就可以实现高时间稳定性的共光路离轴干涉全息。该方法的优点是所需光学元件少,光路结构较紧凑,还可以灵活调整干涉条纹周期,更有助于满足探测器的采样条件。由于物光和参考光在记录平面上的强度几乎相等,从而可以获得对比度较一致的干涉条纹,更加有利于再现振幅像和相位像提高精度。在记录相同时长和实验条件不变的情况下,所发明的记录装置经过实验验证了本发明具有比传统基于马赫曾德干涉仪结构与的光路系统更高的时间稳定性。
The invention discloses a continuous terahertz wave self-reference digital holographic imaging method based on a Fresnel double-sided mirror, which can realize a common optical path off-axis interference holography with high time stability only by using fewer optical elements. The advantages of this method are that fewer optical components are required, the optical path structure is relatively compact, and the period of the interference fringes can be flexibly adjusted, which is more helpful to meet the sampling conditions of the detector. Since the intensities of the object light and the reference light on the recording plane are almost equal, interference fringes with more consistent contrast can be obtained, which is more conducive to reproducing the amplitude image and the phase image and improving the accuracy. Under the condition that the recording time is the same and the experimental conditions are unchanged, the invented recording device has been verified by experiments that the present invention has higher time stability than the traditional optical path system based on the Mach-Zehnder interferometer structure and structure.
Description
技术领域technical field
本发明涉及一种自参考数字全息提高系统时间稳定性的方法,特别是涉及一种基于菲涅尔双面镜连续太赫兹波自参考数字全息成像方法,是一种基于共光路结构的连续太赫兹波自参考数字全息成像方法。The invention relates to a self-reference digital holography method for improving system time stability, in particular to a self-reference digital holography imaging method based on Fresnel double-sided mirror continuous terahertz waves, which is a continuous terahertz wave based on a common optical path structure. Hertzian Wave Self-Reference Digital Holographic Imaging Method.
背景技术Background technique
太赫兹数字全息术可用于实时重建物体波前。这种全场无透镜太赫兹相衬成像方法的有效性已在离轴干涉仪结构中广泛应用。太赫兹数字全息方法中常用的实验记录光路是基于马赫曾德干涉仪的使物、参双光束有夹角的太赫兹离轴干涉结构,但是由于物光束和参考光束传播路径不同,两光束对环境干扰和震动通常比较敏感,并且两光束的分光强度比不可避免存在差异。为了获得更好的时间稳定性,可以在离轴全息方法中使用共光路干涉仪结构,即物光束和参考光束都沿着几乎相同的路径传播。Terahertz digital holography can be used to reconstruct object wavefronts in real time. The effectiveness of this full-field lensless terahertz phase-contrast imaging approach has been widely used in off-axis interferometer configurations. The commonly used experimental recording optical path in the terahertz digital holography method is a terahertz off-axis interference structure based on the Mach-Zehnder interferometer, where the object and reference beams have an included angle. However, due to the different propagation paths of the object beam and the reference beam, the two beams Environmental disturbances and vibrations are usually sensitive, and there is an inevitable difference in the split intensity ratio of the two beams. For better temporal stability, a common optical path interferometer structure can be used in off-axis holographic methods, i.e. both the object and reference beams travel along almost the same path.
本发明旨在提出一种基于菲涅尔双面镜的连续太赫兹波自参考数字全息方法,该方法仅使用较少的光学元件就可以实现高时间稳定性的共光路离轴干涉全息。该方法的优点是光路结构较紧凑,还可以灵活调整干涉条纹周期,更有助于满足探测器的采样条件。由于物光和参考光在记录平面上的强度几乎相等,从而可以获得对比度较一致的干涉条纹。The present invention aims to propose a continuous terahertz wave self-reference digital holography method based on a Fresnel double-sided mirror, which can realize a common optical path off-axis interference holography with high temporal stability only by using fewer optical elements. The advantage of this method is that the optical path structure is relatively compact, and the period of the interference fringe can be flexibly adjusted, which is more helpful to meet the sampling conditions of the detector. Since the intensities of the object light and the reference light on the recording plane are almost equal, interference fringes with more consistent contrast can be obtained.
发明内容SUMMARY OF THE INVENTION
一种自参考连续太赫兹波照明数字全息成像系统,该成像系统的光路装置包括CO2泵浦太赫兹激光器1、第一镀金离轴抛面镜2、第二镀金离轴抛面镜3、被测样品4、第一镀金反射镜5、第二镀金反射镜6、和热释电探测器7。CO2泵浦太赫兹激光器1用于输出连续太赫兹波,CO2泵浦太赫兹激光器1与第一镀金离轴抛面镜2相对应,第一镀金离轴抛面镜2和第二镀金离轴抛面镜3相对应布置组成一个扩束单元,可将CO2泵浦太赫兹激光器1输出的太赫兹波光斑直径扩大三倍,其传播方向平行;被测样品4设置在第二镀金离轴抛面镜3反射光路上。经过被测样品4产生散射的物光波前4a照射到第一镀金反射镜5和第二镀金反射镜6,第一镀金反射镜5的作用是将物光波4a中的携带物信息的部分光束反射产生物光波5a传播到热释电探测器7,第二镀金反射镜6的作用是将物光波4a中另一部分(不携带物信息部分)光束从另一个角度反射产生参考光波6a也传播到热释电探测器7,最终与物光波5a发生干涉,通过热释电探测器7记录离轴数字全息图。A self-referential continuous terahertz wave illumination digital holographic imaging system, the optical path device of the imaging system comprises a CO2 pumped
利用上述系统进行的一种基于菲涅尔双面镜连续太赫兹波自参考数字全息成像方法包括数字全息图的拍摄,利用傅里叶变换得到全息图的频谱,频谱滤波将“+1级”频谱滤出并移至谱域中央,然后进行傅里叶逆变换得到全息图,再利用角谱算法进行物光场再现,得到物光波的复振幅分布,对复振幅取平方得到在现像的振幅分布,对复振幅进行反正切运算提取包裹相位,然后进行解包裹操作得到再现像的连续相位分布。A self-reference digital holographic imaging method based on the Fresnel double-sided mirror continuous terahertz wave carried out by the above system includes the shooting of a digital hologram, and the spectrum of the hologram is obtained by Fourier transform, and the spectrum filtering will "+1 level" The spectrum is filtered out and moved to the center of the spectral domain, and then the inverse Fourier transform is performed to obtain the hologram, and then the angular spectrum algorithm is used to reconstruct the object light field to obtain the complex amplitude distribution of the object light wave. Amplitude distribution, perform the arctangent operation on the complex amplitude to extract the wrapped phase, and then perform the unwrapping operation to obtain the continuous phase distribution of the reconstructed image.
一种基于菲涅尔双面镜的连续太赫兹波自参考数字全息成像方法的过程分为三个步骤:The process of a continuous terahertz wave self-reference digital holographic imaging method based on Fresnel double-sided mirror is divided into three steps:
1)太赫兹波3a通过被测样品4散射成为太赫兹物波前4a,被测样品4中包含物体信息的部分只占用太赫兹光束3a光斑面积的一半,如果被测样品4中的物信息是稀疏分布,则包含物体信息的部分传播到第一镀金反射镜5,经过反射产生物光波5a;太赫兹物波前4a的另一部分即不携带物信息的部分经过第二镀金反射镜6产生参考光波6a。第一镀金反射镜5和第二镀金反射镜6之间的角度的变化与物光波5a和参考光波6a之间夹角的变化是线性关系,所以第一镀金反射镜5和第二镀金反射镜6之间的角度越大,物光波5a和参考光波6a之间的夹角也相应增大。物光波5a和参考光波6a两束光发生干涉并产生干涉条纹周期可灵活调整且强度比较一致的离轴数字全息图H(x,y),利用热释电探测器7记录数字全息图H(x,y)。1) The terahertz wave 3a is scattered by the tested
2)调整全息图H(x,y)上干涉条纹周期,对进行傅里叶变换后的频谱图中使“+1级”、“-1级”与频域中心的“0级”之间的距离相应增加,这更有利于进行频谱滤波。随后通过傅里叶逆变换得到全息图,再利用角谱算法得到物光波的复振幅分布,对其复振幅取平方得到全息图在现象的振幅分布,对其复振幅进行反正切运算提取包裹相位,然后进行解包裹操作得到连续的相位分布。2) Adjust the period of the interference fringes on the hologram H(x, y), and make the spectrum between "+1 level", "-1 level" and "0 level" in the center of the frequency domain in the spectrum after Fourier transform. The distance increases accordingly, which is more conducive to spectral filtering. Then, the hologram is obtained by inverse Fourier transform, and then the complex amplitude distribution of the object light wave is obtained by using the angular spectrum algorithm. The square of the complex amplitude is used to obtain the amplitude distribution of the hologram in the phenomenon, and the arc tangent operation is performed on the complex amplitude to extract the wrapped phase. , and then perform the unwrapping operation to obtain a continuous phase distribution.
3)相位的变化导致光程长度的变化揭示了系统的时间稳定性。连续记录多幅没有样本的干涉图,选取中心的(100×100像素)区域,将它们处理为相对应的相位分布图,通过相位与光程的关系式计算出这些相位分布图中每个像素点的光程长度变化的标准差,这个值可以代表系统的时间稳定性。通过比较同等记录与再现情况下本发明方法的光程长度标准差值与传统使用基于马赫曾德干涉仪结构的太赫兹离轴数字全息方法在记录相同时长和相同幅干涉图计算后得出的光程长度标准差进行比较,本系统的光程长度波动的标准差更低,代表本方法具有较高的时间稳定性。3) The change of the phase leads to the change of the optical path length, revealing the temporal stability of the system. Continuously record multiple interferograms without samples, select the central (100×100 pixel) area, process them into corresponding phase distribution maps, and calculate each pixel in these phase distribution maps through the relationship between phase and optical path. The standard deviation of the optical path length variation of the point, this value can represent the time stability of the system. By comparing the standard deviation of the optical path length of the method of the present invention under the same recording and reproducing conditions with the traditional terahertz off-axis digital holography method based on the Mach-Zehnder interferometer structure after recording the same duration and the same interferogram calculated. Compared with the standard deviation of the optical path length, the standard deviation of the optical path length fluctuation of this system is lower, which means that the method has higher time stability.
本发明的典型实施例的试验结果表明,通过基于菲涅尔双面镜的自参考太赫兹数字全息成像方法能够通过仅使用两反射镜这一紧凑的光路结构有效地提高太赫兹数字全息成像装置的时间稳定性。The experimental results of the typical embodiments of the present invention show that the self-referential terahertz digital holographic imaging method based on Fresnel double mirrors can effectively improve the terahertz digital holographic imaging device by using only two mirrors, a compact optical path structure time stability.
有益效果beneficial effect
一种基于菲涅尔双面镜的太赫兹波自参考数字全息相衬成像方法,通过镀金反射镜5和镀金反射镜6对物光波前4a的不同部分进行反射,从而使得物光波5a和参考光波6a形成一个适合的离轴角,最终在热释电探测器7所在得记录面产生具有物、参光波强度分光比较一致的数字全息干涉图。在相同记录时长和实验情况下,所提出的记录装置仅需少量光学元件就可以具有比传统基于马赫曾德干涉仪结构与的光路系统更高的时间稳定性。A method for self-reference digital holographic phase contrast imaging of terahertz waves based on Fresnel double-sided mirrors. The gold-coated
附图说明Description of drawings
图1是一种基于菲涅尔双面镜太赫兹波自参考数字全息成像的系统光路。Figure 1 is a system optical path based on Fresnel double mirror terahertz wave self-reference digital holographic imaging.
图2是一种基于菲涅尔双面镜太赫兹波自参考数字全息成像系统的原理。Figure 2 shows the principle of a self-reference digital holographic imaging system based on Fresnel double-sided mirror terahertz waves.
图中:1、CO2泵浦太赫兹激光器,2、第一镀金离轴抛面镜,3、第二镀金离轴抛面镜,4、被测样品,5、第一镀金反射镜,6、第二镀金反射镜,7、热释电探测器。In the picture: 1. CO 2 pumped terahertz laser, 2. The first gold-coated off-axis parabolic mirror, 3. The second gold-coated off-axis parabolic mirror, 4. The sample to be tested, 5. The first gold-coated mirror, 6 , The second gold-plated mirror, 7, the pyroelectric detector.
具体实施方式Detailed ways
下面参照附图样式详细说明本发明的典型实施例及其特征。Exemplary embodiments of the present invention and their features will be described in detail below with reference to the accompanying drawings.
一种基于菲涅尔双面镜连续太赫兹波自参考数字全息成像系统,该系统的光路包括CO2泵浦太赫兹激光器1、第一镀金离轴抛面镜2(焦距为25.4mm)、第二镀金离轴抛面镜3(焦距为76.2mm)、被测样品4、第一镀金反射镜5、第二镀金反射镜6和热释电探测器7,如图1所示。实验中的太赫兹激光器是CO2泵浦太赫兹激光器1,频率为2.52THz(对应中心波长为118.83μm),其产生最高功率为500mW的连续太赫兹波,热释电探测器7的像素个数为320×320像素,像素尺寸为80μm×80μm,采样频率为50Hz。成像试验的被测样品4为蝉的前翅,热释电探测器7测得到的全息图尺寸为320×320像素,采集一幅全息图。A continuous terahertz wave self-reference digital holographic imaging system based on Fresnel double-sided mirror, the optical path of the system includes a CO2 pumped
首先参照发明的内容,完成全息图的拍摄:First, referring to the content of the invention, complete the shooting of the hologram:
一种基于菲涅尔双面镜连续太赫兹波自参考数字全息成像方法,该方法提高分辨率的过程分为三个步骤:A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave, the process of improving the resolution of the method is divided into three steps:
1)太赫兹波3a透过被测样品4产生散射的物光波前4a,物光波前4a中一部分通过第一镀金反射镜5成为携带物信息的物光波5a,物光波前4a中另一部分没携带物信息的物光波前被第二镀金反射镜6从不同角度反射成为参考光波6a。如图2中,第一镀金反射镜5与第二镀金反射镜6之间的夹角是α,物光波5a与参考光波6a之间的夹角是2α。调整物光波5a与参考光波6a之间的夹角是系统进行实验的关键,这直接决定了干涉条纹的周期,使其满足探测器的采样条件0≤2α≤sin-1(λ/2Δx),式中的△x是热释电探测器7的像素尺寸,本系统中2α最大为47.9°。1) The terahertz wave 3a generates a scattered
2)物光波5a与参考光波6a最终在热释电探测器7所在记录面发生干涉并产生离轴全息图H(x,y)表示为:2) The
H(x,y)=|O(x,y)|2+|R(x,y)|2+R*(x,y)O(x,y)+R(x,y)O*(x,y)H(x,y)=|O(x,y)| 2 +|R(x,y)| 2 +R * (x,y)O(x,y)+R(x,y)O * ( x,y)
其中,*代表复共轭,O(x,y)和R(x,y)分别为物光波和参考光波。对上述数字全息图H(x,y)经过傅里叶变换后得到频谱图。频域中各级项与夹角2α之间的关系是:sin2α=λp/MΔx,其中M为热释电探测器7的像素个数,p为频域中“+1级”频谱与频域中央“0级”频谱之间的间隔,单位是像素。式子表明夹角2α越大,在频域中“+1级”与中央“0级”频谱之间的间隔越大,这样更有利于对“+1级”频谱进行滤波。本系统中的夹角2α=27.7°,对应的傅里叶频谱图中“+1级”频谱与“0级”频谱之间约98个像素的距离。将滤出的“+1级”频谱经过补零后得到像素尺寸相同且频谱中心位置一致的新频谱,随后对其进行逆傅里叶变换,再利用角谱算法获得再现像的复振幅U0(x0,y0)分布:Among them, * represents the complex conjugate, and O(x, y) and R(x, y) are the object light wave and the reference light wave, respectively. A spectrogram is obtained after Fourier transform of the above digital hologram H(x, y). The relationship between the terms of each level and the angle 2α in the frequency domain is: sin2α=λp/MΔx, where M is the number of pixels of the
其中,表示傅里叶变换,表示傅里叶逆变换,h(xo,yo,x,y)代表系统的传递函数,其具体表达式为:in, represents the Fourier transform, Represents the inverse Fourier transform, h(xo,yo,x,y) represents the transfer function of the system, and its specific expression is:
其中,λ为太赫兹波的波长,fx,fy表示全息图在x,y方向对应的频域坐标,d为被测样品4到热释电探测器7之间的距离,本系统中d=50.5mm。Among them, λ is the wavelength of the terahertz wave, f x , f y represent the frequency domain coordinates corresponding to the hologram in the x and y directions, d is the distance between the
通过对再现像的复振幅取反正切计算直接得出物体的相位信息:The phase information of the object is directly obtained by calculating the arctangent of the complex amplitude of the reproduced image:
其中,代表物体相位,物体相位的值分布于[-π,π]之间,称为包裹相位。若物体相位起伏大于2π时,还需要对相位分布计算的结果进行解包裹运算,本系统采用最小二乘解包裹算法。in, Represents the phase of the object, the phase of the object The value of is distributed between [-π,π], which is called the wrapping phase. If the phase fluctuation of the object is greater than 2π, the result of the phase distribution calculation needs to be unwrapped. This system uses the least squares unwrapping algorithm.
3)连续记录49幅本系统在没有被测物体4的情况下的干涉图,在相同条件(太赫兹激光器1、热释电探测器7、第一镀金离轴抛面镜2、第二镀金离轴抛面镜3不变的情况)连续记录49幅基于马赫曾德干涉仪结构的太赫兹离轴数字全息方法采集的干涉图。分别对两组干涉图进行上述计算得到相位图,截取中心区域(100×100像素)。根据相位与光程的关系式:其中L为光程长度,△n为被测样品4的折射率与周围介质折射率之差。计算出两组相位分布图中选取区域的每个像素点的光程长度变化的标准差,这个数据可以代表系统的时间稳定性。经过计算得出本方法的光程标准差值是0.36μm,传统使用基于马赫曾德干涉仪结构在相同计算情况下得出的光程标准差值1.0μm,通过比较得出本系统的光程长度波动的标准差更低,表示本方法具有较高的时间稳定性。3) Continuously record 49 interferograms of the system without the measured
本发明的典型实施例的试验结果表明,通过基于菲涅尔双面镜的连续太赫兹波自参考数字全息系统可以产生具有物、参光波强度分光比一致且可灵活调整条纹周期的数字全息干涉图。在相同记录时长和实验情况下,所发明的记录装置仅需少量光学元件就可以具有比传统使用的基于马赫曾德干涉仪装置更高的时间稳定性。The experimental results of the typical embodiment of the present invention show that the digital holographic interference with the same intensity splitting ratio of the object and the parametric wave and the fringe period can be flexibly adjusted can be generated by the continuous terahertz wave self-reference digital holography system based on the Fresnel double mirror. picture. Under the same recording duration and experimental conditions, the invented recording device requires only a few optical elements and can have higher temporal stability than conventionally used Mach-Zehnder interferometer-based devices.
尽管参考特定实施例详细描述了本发明,在此描述的本发明实施例没有打算是详尽的或者局限于所公开的具体形式。相反,所选的用于说明问题的实施例是为了使本技术领域内的技术人员实施本发明而选择的。在不脱离下面的权利要求所描述和限定的本发明的实质范围的情况下,存在变型例和修改例。Although the present invention has been described in detail with reference to specific embodiments, the embodiments of the invention described herein are not intended to be exhaustive or limited to the specific form disclosed. Rather, the embodiment chosen for illustration was chosen to enable those skilled in the art to practice the invention. Variations and modifications exist without departing from the essential scope of the invention as described and defined in the claims below.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911366969.XA CN110989314B (en) | 2019-12-26 | 2019-12-26 | A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911366969.XA CN110989314B (en) | 2019-12-26 | 2019-12-26 | A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110989314A CN110989314A (en) | 2020-04-10 |
CN110989314B true CN110989314B (en) | 2021-10-15 |
Family
ID=70077338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911366969.XA Active CN110989314B (en) | 2019-12-26 | 2019-12-26 | A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110989314B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111829453A (en) * | 2020-06-28 | 2020-10-27 | 西安工业大学 | A common optical path digital holographic microscope measuring device and its measuring method |
CN112666815B (en) * | 2020-12-26 | 2022-05-24 | 北京工业大学 | Continuous terahertz wave lens-free Fourier transform digital holographic imaging method |
CN113866129A (en) * | 2021-08-26 | 2021-12-31 | 北京工业大学 | Common-path digital holographic refractive index full-field dynamic measurement method based on coherent light source |
CN116718126A (en) * | 2023-08-11 | 2023-09-08 | 之江实验室 | A quality inspection system and method for gene chip assembly |
CN117705001B (en) * | 2024-02-05 | 2024-05-17 | 山西科技学院 | Digital holographic object morphology measuring device and method based on concave mirror |
CN118794961A (en) * | 2024-06-12 | 2024-10-18 | 合肥图迅电子科技有限公司 | Chip stain detection method, device, computer equipment and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1624461A (en) * | 2004-12-15 | 2005-06-08 | 中国科学院上海光学精密机械研究所 | Amplitude-splitting off-axis X-ray holographic device |
CN1837763A (en) * | 2005-03-21 | 2006-09-27 | 北京理工大学 | Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror |
CN103528689A (en) * | 2013-10-24 | 2014-01-22 | 安徽工业大学 | Portable wide-spectrum fourier transformation spectrograph |
CN105549371A (en) * | 2016-03-04 | 2016-05-04 | 北京工业大学 | Multi-angle continuous THz wave illumination digital holographic imaging method |
WO2016105284A1 (en) * | 2014-12-26 | 2016-06-30 | Koc University | Apparatus for generating a coherent beam illumination |
CN107741690A (en) * | 2017-11-14 | 2018-02-27 | 清华大学 | Compact quasi-common optical path phase shift digital holographic imaging system and method |
CN108007379A (en) * | 2017-11-20 | 2018-05-08 | 西北工业大学 | A kind of dual wavelength is total to railway digital holographic interferometry method and system |
CN109374580A (en) * | 2018-09-30 | 2019-02-22 | 北京工业大学 | A terahertz stack imaging probe position error correction method |
-
2019
- 2019-12-26 CN CN201911366969.XA patent/CN110989314B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1624461A (en) * | 2004-12-15 | 2005-06-08 | 中国科学院上海光学精密机械研究所 | Amplitude-splitting off-axis X-ray holographic device |
CN1837763A (en) * | 2005-03-21 | 2006-09-27 | 北京理工大学 | Total Reflection Fourier Transform Imaging Spectrometer Using Fresnel Double Mirror |
CN103528689A (en) * | 2013-10-24 | 2014-01-22 | 安徽工业大学 | Portable wide-spectrum fourier transformation spectrograph |
WO2016105284A1 (en) * | 2014-12-26 | 2016-06-30 | Koc University | Apparatus for generating a coherent beam illumination |
CN105549371A (en) * | 2016-03-04 | 2016-05-04 | 北京工业大学 | Multi-angle continuous THz wave illumination digital holographic imaging method |
CN107741690A (en) * | 2017-11-14 | 2018-02-27 | 清华大学 | Compact quasi-common optical path phase shift digital holographic imaging system and method |
CN108007379A (en) * | 2017-11-20 | 2018-05-08 | 西北工业大学 | A kind of dual wavelength is total to railway digital holographic interferometry method and system |
CN109374580A (en) * | 2018-09-30 | 2019-02-22 | 北京工业大学 | A terahertz stack imaging probe position error correction method |
Non-Patent Citations (2)
Title |
---|
Quantitative and Dynamic Phase Imaging;Jianglei Di等;《IEEE Photonics Journal》;20180831;第10卷(第4期) * |
Quantitative phase imaging unit;KyeoReh Lee等;《OPTICS LETTERS》;20140615;第39卷(第12期);第3630-3633页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110989314A (en) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110989314B (en) | A self-reference digital holographic imaging method based on Fresnel double-sided mirror continuous terahertz wave | |
Allaria et al. | Digital holography at 10.6 μm | |
US7609388B2 (en) | Spatial wavefront analysis and 3D measurement | |
US7542144B2 (en) | Spatial and spectral wavefront analysis and measurement | |
CN102944312B (en) | Method for measuring partially coherent vortex light beam topological charge number | |
CN103149827B (en) | Method for eliminating single-beam coaxial digital holography direct current terms and conjugate images | |
CN105116705B (en) | Multi-wave length adaptive digital holographic imaging systems and method | |
CN101819022B (en) | Interferometer with adjustable dynamic range | |
CN105549371B (en) | A kind of continuous THz wave illumination digital holographic imaging method of multi-angle | |
CN102230827B (en) | Mach-Zehnder point diffraction interferometer and method for reconstructing laser complex amplitudes | |
CN101285702A (en) | Visible measurement method and measurement system of ultrasonic suspension field | |
CN108957999B (en) | Phase shift holographic device based on phase type vortex lens and imaging method | |
Zhong et al. | High-stable in-line-and-off-axis hybrid digital holography using high-resolution reconstruction under spatial and frequency constraints | |
Liu et al. | A robust phase extraction method for overcoming spectrum overlapping in shearography | |
Xia et al. | Dual-wavelength high-speed digital holographic tomography system for asymmetric air-fluid three-dimensional visualization | |
Cai et al. | Sensitivity adjustable contouring by digital holography and a virtual reference wavefront | |
CN111562089B (en) | Detection method for transmission phase of micro-optical element | |
Zhang et al. | Rapid quantitative measurement of internal ultrasonic field in acousto-optic modulator via off-axis digital holography | |
CN210270049U (en) | A Novel Partial Discharge Optical Signal Online Detection Device | |
Soontaranon et al. | Direct analysis of in-line particle holograms by using wavelet transform and envelope reconstruction method | |
KR101868882B1 (en) | Device for obtaining hologram image using reflected light and apparatus for restructuring shape of object with the device | |
CN204115876U (en) | A kind of dynamic phasing measurement mechanism | |
CN117705001B (en) | Digital holographic object morphology measuring device and method based on concave mirror | |
JP2001515227A (en) | Systems and methods for three-dimensional imaging | |
Li et al. | Pulsed TV holography and tomography for the study of transient waves in air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |