CN110988877B - A Spaceborne High-Resolution SAR Large Squint Doppler Dewinding Method - Google Patents
A Spaceborne High-Resolution SAR Large Squint Doppler Dewinding Method Download PDFInfo
- Publication number
- CN110988877B CN110988877B CN201911168456.8A CN201911168456A CN110988877B CN 110988877 B CN110988877 B CN 110988877B CN 201911168456 A CN201911168456 A CN 201911168456A CN 110988877 B CN110988877 B CN 110988877B
- Authority
- CN
- China
- Prior art keywords
- data
- doppler
- frequency
- cyclic shift
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 208000004350 Strabismus Diseases 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000001228 spectrum Methods 0.000 claims abstract description 58
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 44
- 238000011084 recovery Methods 0.000 claims abstract description 17
- 230000003595 spectral effect Effects 0.000 claims description 24
- 238000005070 sampling Methods 0.000 claims description 8
- 238000002592 echocardiography Methods 0.000 claims description 6
- 238000004804 winding Methods 0.000 abstract description 5
- 238000003384 imaging method Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 238000007781 pre-processing Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9041—Squint mode
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于信号处理领域,涉及一种星载高分辨率SAR大斜视多普勒去卷绕方法。The invention belongs to the field of signal processing, and relates to a spaceborne high-resolution SAR large squint Doppler dewinding method.
背景技术Background technique
为了满足高分辨率SAR载荷的灵活观测需求,实现目标多角度信息融合和多区域快速观测的应用效能,高分辨率星载SAR需要具备在大斜视角度下的工作能力。现有星载SAR均工作在正侧视条件下,灵活性有限。在应用需求的推动下,高分辨率大斜视工作模式将是下一代星载SAR的发展方向。然而,在宽带大斜视观测模式下,不同于传统正侧视观测,目标信号将表现出一些新的特点,其中最显著的信号特性变化即是信号频谱将在多普勒域出现卷绕现象。现有的星载SAR信号处理算法主要基于正侧视观测模式设计,由于星载SAR正侧视模式下的信号不会出现频谱多普勒域卷绕现象,因此现有星载SAR算法并未考虑多普勒卷绕问题,不具备处理大斜视观测模式的能力,缺乏有效的去除多普勒卷绕现象的手段。如果不进行频谱多普勒卷绕去除处理,其将导致在大斜视观测模式下出现严重的能量泄露和大量虚假目标,严重影响图像质量和目标判读。In order to meet the flexible observation requirements of high-resolution SAR payloads and realize the application efficiency of target multi-angle information fusion and multi-regional rapid observation, high-resolution spaceborne SAR needs to have the ability to work under large oblique angles. Existing spaceborne SARs all work under the side-looking condition, with limited flexibility. Driven by application requirements, the high-resolution large squint working mode will be the development direction of the next-generation spaceborne SAR. However, in the wide-band wide-squinting observation mode, different from the traditional side-looking observation, the target signal will show some new characteristics. The most significant signal characteristic change is that the signal spectrum will appear wrapping in the Doppler domain. The existing spaceborne SAR signal processing algorithms are mainly designed based on the side-view observation mode. Since the signal in the side-looking mode of the spaceborne SAR does not appear the phenomenon of spectral Doppler domain wrapping, the existing spaceborne SAR algorithms do not Considering the Doppler wrapping problem, it does not have the ability to deal with the large squint observation mode, and lacks an effective means to remove the Doppler wrapping phenomenon. If the spectral Doppler warping removal process is not performed, it will lead to serious energy leakage and a large number of false targets in the large squint observation mode, which will seriously affect the image quality and target interpretation.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是:克服现有技术的不足,提供一种星载高分辨率SAR大斜视多普勒去卷绕方法,实现了二维频谱多普勒域卷绕现象的去除,解决了由于多普勒域频谱卷绕出现的能量泄露和大量虚假目标的情况,同时该方法避免了对回波数据进行计算,具有非常高的处理效率和应用效能。The technical problem solved by the present invention is: to overcome the deficiencies of the prior art, to provide a spaceborne high-resolution SAR large squint Doppler dewinding method, which realizes the removal of the two-dimensional spectral Doppler domain winding phenomenon, and solves the problem of The situation of energy leakage and a large number of false targets caused by spectral wrapping in the Doppler domain is avoided, and the method avoids the calculation of echo data, and has very high processing efficiency and application efficiency.
本发明的技术方案是:The technical scheme of the present invention is:
一种星载高分辨率SAR大斜视多普勒去卷绕方法,包括如下步骤:A spaceborne high-resolution SAR large squint Doppler dewinding method, comprising the following steps:
(1)对星载高分辨率SAR大斜视模式二维频谱数据进行变形处理;(1) Transform the two-dimensional spectrum data of spaceborne high-resolution SAR large squint mode;
(2)对变形后的数据进行支撑域扩展处理;(2) Perform support domain expansion processing on the deformed data;
(3)对支撑域扩展后的数据进行二维频谱恢复处理。(3) Two-dimensional spectrum recovery processing is performed on the data after support domain expansion.
对星载高分辨率SAR大斜视模式二维频谱数据进行变形处理,包含计算各个距离向频率点位置的数据列所对应的变形循环移位点数和对各个距离向频率点位置的数据列沿多普勒维进行循环移位处理两个步骤。The deformation processing is performed on the two-dimensional spectrum data of the spaceborne high-resolution SAR large squint mode, including the calculation of the deformation cyclic shift points corresponding to the data columns of the frequency point positions in each range and the edge count of the data columns of the position of the frequency points in each range. Plewit performs cyclic shift processing in two steps.
变形循环移位点数的计算方法为:The calculation method of the deformation cyclic shift points is:
其中,Ls表示变形循环移位点数,F_dat_s表示移位后数据,c表示光速,floor[]表示向下取整操作,V表示卫星有效速度,θ表示斜视角,PRF表示系统脉冲重复频率,M为一景数据对应的接收脉冲回波个数,fc为SAR系统载波频率,F_dat(fr,fa)表示一景SAR回波对应的二维频谱数据,fr表示距离向频率,fa表示多普勒频率,表示距离向频率点为fr_n的一列二维频谱数据。Among them, Ls represents the number of deformed cyclic shift points, F_dat_s represents the shifted data, c represents the speed of light, floor[] represents the round-down operation, V represents the effective satellite velocity, θ represents the oblique angle of view, PRF represents the system pulse repetition frequency, M is the number of received pulse echoes corresponding to a scene data, fc is the carrier frequency of the SAR system, F_dat(f r , f a ) indicates the two-dimensional spectrum data corresponding to a scene SAR echo, fr indicates the range frequency, and fa indicates the multiple Puller frequency, Represents a column of two-dimensional spectral data with fr_n range frequency points.
对各个距离向频率点位置的数据列沿多普勒维进行循环移位的处理方式为:The processing method of cyclic shift along the Doppler dimension for the data column of each range-to-frequency point position is as follows:
对于距离向频率点为fr_n的一列二维频谱数据沿多普勒维进行循环移位处理,For a column of two-dimensional spectral data with fr_n distance frequency points Cyclic shift processing along the Doppler dimension,
其中,F_dat_s表示移位后数据,shft()表示循环移位操作,Ls表示变形循环移位点数,其为正数时shft()进行正向移位,为负数时进行负向移位。Among them, F_dat_s represents the shifted data, shft() represents the cyclic shift operation, and Ls represents the number of deformed cyclic shift points. When it is a positive number, shft() performs a positive shift, and when it is a negative number, it performs a negative shift.
所述的,对变形后的数据进行支撑域扩展处理包括计算数据一端最小扩充点数和在变形后的二维频谱数据首尾两端分别进行不小于最小扩充点数的补零扩展两个步骤。Said, performing support domain expansion processing on the deformed data includes two steps of calculating the minimum number of expansion points at one end of the data and performing zero-fill expansion at the first and last ends of the deformed two-dimensional spectrum data not less than the minimum number of expansion points.
数据一端的最小扩充点数的计算方法为:The calculation method of the minimum number of expansion points at one end of the data is:
其中,K表示数据一端最小扩充点数,Fs为AD采样频率。Among them, K represents the minimum number of expansion points at one end of the data, and Fs is the AD sampling frequency.
支撑域扩展通过在变形后的二维频谱数据首尾两端分别进行不小于最小扩充点数K个个数的0值的补零扩展来实现。假设M为一景数据对应的接收脉冲回波个数,一端补零个数为K_m,则补零后的多普勒维的数据点个数将由M变为M+2*K_m。The expansion of the support domain is realized by performing zero-padded expansion with a number of 0s not less than the minimum number of expansion points K at the beginning and end of the deformed two-dimensional spectrum data. Assuming that M is the number of received pulse echoes corresponding to a scene data, and the number of zero-padding at one end is K_m, the number of data points in the Doppler dimension after zero-padding will change from M to M+2*K_m.
所述的,对支撑域扩展后的数据进行二维频谱恢复处理包括计算各个距离向频率点位置的数据列所对应的恢复循环移位点数和对各个距离向频率点位置的数据列沿多普勒维进行循环移位处理两个步骤。Said, performing a two-dimensional spectrum recovery process on the data after the support domain expansion includes calculating the number of recovered cyclic shift points corresponding to the data columns of each distance-to-frequency point position and the Doppler along the lines of the data columns of each distance-to-frequency point position. Levy performs cyclic shift processing in two steps.
恢复循环移位点数的计算方法为:The calculation method of the number of recovered cyclic shift points is:
其中,P表示二维频谱恢复处理中的循环移位点数。Here, P represents the number of cyclic shift points in the two-dimensional spectrum recovery process.
令F_dat_e表示支撑域扩展后的数据。对于距离向频率点为fr_n的一列拓展后二维频谱数据沿多普勒维进行循环移位处理,实现二维频谱恢复。其循环移位处理方式如下:Let F_dat_e denote the data after support domain expansion. For a column of expanded two-dimensional spectral data whose distance to frequency point is fr_n Cyclic shift processing is performed along the Doppler dimension to achieve two-dimensional spectral recovery. The cyclic shift processing method is as follows:
其中,F_dat_r表示二维频谱恢复后数据。Among them, F_dat_r represents the data after the restoration of the two-dimensional spectrum.
本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:
(1)本发明与现有技术相比,通过对二维频谱进行循环移位变形、支撑域扩展和二维频谱循环移位恢复,去除了高分辨率大斜视SAR信号频谱多普勒卷绕现象,从而解决了大斜视信号多普勒卷绕带来的能量泄露和虚假目标问题;(1) Compared with the prior art, the present invention removes the spectral Doppler wrapping of the high-resolution large squint SAR signal by performing cyclic shift deformation, support domain expansion and 2-dimensional spectrum cyclic shift recovery on the two-dimensional spectrum. phenomenon, thus solving the problems of energy leakage and false targets caused by Doppler wrapping of large squint signals;
(2)本发明去卷绕处理方法针对信号频谱给出了信号去卷绕处理步骤流程。该流程为通用性信号处理流程,可作为预处理步骤与多种正侧视成像算法相匹配,可以方便的在DSP、FPGA、ARM等多种处理器中实现,通用性好。(2) The unwrapping processing method of the present invention provides a signal unwrapping processing step flow for the signal spectrum. This process is a general signal processing process, which can be used as a preprocessing step to match with a variety of front and side imaging algorithms, and can be easily implemented in DSP, FPGA, ARM and other processors, with good versatility.
(3)本发明方法能够简单快速实现宽带高分辨率SAR斜视下的去卷绕处理,其中不涉及插值和信号滤波计算等处理,避免了对回波数据进行计算,仅仅通过信号数值平移和数据扩充即可实现,处理方案简单易行,具有非常高的处理效率和应用效能。(3) The method of the present invention can simply and quickly realize the unwrapping processing under the wide-band high-resolution SAR squint, which does not involve interpolation and signal filtering calculation and other processing, avoids the calculation of echo data, and only uses signal numerical translation and data. The expansion can be realized, the processing scheme is simple and easy to implement, and has very high processing efficiency and application performance.
附图说明Description of drawings
图1是本发明的数据处理流程图;Fig. 1 is the data processing flow chart of the present invention;
图2是循环移位示意图;Fig. 2 is a schematic diagram of cyclic shift;
图3是大斜视下去卷绕前二维频谱图;Fig. 3 is a two-dimensional spectrogram before winding under a large squint;
图4是频谱变形处理后二维频谱图;Fig. 4 is a two-dimensional spectrogram after spectrum deformation processing;
图5是支撑域拓展处理后二维频谱图;Figure 5 is a two-dimensional spectrogram after support domain expansion processing;
图6是频谱恢复变形处理后二维频谱图;Fig. 6 is a two-dimensional spectrogram after spectrum restoration and deformation processing;
图7是大斜视未去除卷绕时成像结果图;Fig. 7 is the imaging result picture when the large strabismus does not remove the winding;
图8是大斜视去除卷绕后成像结果图。Fig. 8 is a graph of the imaging result after the large squint is removed from the wrapping.
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明提出一种星载高分辨率SAR大斜视观测模式下去除信号多普勒卷绕现象的方法,解决了星载宽带大斜视观测模式下信号出现的多普勒频谱卷绕现象所带来的影响。如图1所示,本发明主要包括了二维频谱变形、支撑域扩展和二维频谱恢复三个部分,具体步骤如下:The invention proposes a method for removing the Doppler wrapping phenomenon of the signal in the spaceborne high-resolution SAR large squint observation mode, and solves the problem caused by the Doppler spectrum wrapping phenomenon of the signal in the spaceborne broadband large squint observation mode. Impact. As shown in Figure 1, the present invention mainly includes three parts: two-dimensional spectrum deformation, support domain expansion and two-dimensional spectrum restoration. The specific steps are as follows:
步骤一、对星载高分辨率SAR大斜视模式二维频谱数据进行变形处理
对于宽带SAR系统,当处在大斜视观测模式下时,由于频谱的二维支撑域发生宽带形变扭曲,频带边缘在多普勒维中超出了多普勒采样带宽覆盖,因此产生了二维频谱多普勒卷绕现象,导致图像质量下降。For the broadband SAR system, when in the large-squint observation mode, due to the broadband deformation and distortion of the two-dimensional support domain of the spectrum, the band edge exceeds the Doppler sampling bandwidth coverage in the Doppler dimension, so a two-dimensional spectrum is generated. Doppler warping phenomenon, resulting in degraded image quality.
宽带星载SAR斜视下的支撑域二维频谱图如图3所示。从图中可看到在频谱发生宽带形变扭曲的情况下,二维频谱超出了采样频带,左上角的频谱被卷绕到了右上角位置,右下角频谱被卷绕到了左下角位置,频谱出现了严重的断裂。The two-dimensional spectrum of the support domain under the strabismus view of the broadband spaceborne SAR is shown in Figure 3. It can be seen from the figure that in the case of broadband deformation and distortion of the spectrum, the two-dimensional spectrum exceeds the sampling frequency band, the spectrum in the upper left corner is wrapped to the upper right corner, the spectrum in the lower right corner is wrapped to the lower left corner, and the spectrum appears. severe fracture.
针对该现象,首先进行二维频谱数据变形处理,使其变形后的频谱多普勒支撑域在多普勒采样带宽之内。Aiming at this phenomenon, the two-dimensional spectral data is deformed first, so that the spectral Doppler support domain after the deformation is within the Doppler sampling bandwidth.
对于数字信号采样SAR系统来说,令V表示卫星有效速度,θ表示斜视角,PRF表示系统脉冲重复频率,M为一景数据对应的接收回波脉冲个数,Fs为AD采样频率,N为一个回波脉冲对应的AD采样点数,fc为SAR系统载波频率,F_dat(fr,fa)为一景SAR回波对应的二维频谱数据,fr表示距离向频率,fa表示多普勒频率。For the digital signal sampling SAR system, let V represent the effective speed of the satellite, θ represents the oblique angle of view, PRF represents the system pulse repetition frequency, M represents the number of received echo pulses corresponding to a scene data, Fs represents the AD sampling frequency, and N represents the The number of AD sampling points corresponding to an echo pulse, f c is the carrier frequency of the SAR system, F_dat(f r , f a ) is the two-dimensional spectrum data corresponding to a scene SAR echo, f r represents the range frequency, and f a represents the multiple Puller frequency.
对星载高分辨率SAR大斜视模式二维频谱数据进行变形处理,包含计算各个距离向频率点位置的数据列所对应的变形循环移位点数和对各个距离向频率点位置的数据列沿多普勒维进行循环移位处理两个步骤。The deformation processing is performed on the two-dimensional spectrum data of the spaceborne high-resolution SAR large squint mode, including the calculation of the deformation cyclic shift points corresponding to the data columns of the frequency point positions in each range and the edge count of the data columns of the position of the frequency points in each range. Plewit performs cyclic shift processing in two steps.
具体二维频谱数据的变形方法如下:The specific deformation method of two-dimensional spectral data is as follows:
对于距离向频率点为fr_n的一列二维频谱数据沿多普勒维进行循环移位处理,利用如下公式计算变形循环移位点数Ls:For a column of two-dimensional spectral data with fr_n distance frequency points Perform cyclic shift processing along the Doppler dimension, and use the following formula to calculate the number of deformed cyclic shift points Ls:
利用变形循环移位点数对该数据列进行变形处理的方式如下:The way to deform the data column using the deformed cyclic shift points is as follows:
其中,F_dat_s表示移位后数据,c表示光速,shft()表示循环移位操作,floor[]表示向下取整操作,Ls表示循环移位点数,其为正数时shft()进行正向移位,为负数时进行负向移位。Among them, F_dat_s represents the shifted data, c represents the speed of light, shft() represents the cyclic shift operation, floor[] represents the round-down operation, and Ls represents the number of cyclic shift points. When it is a positive number, shft() performs forward direction Shift, negative shift if negative.
图2展示了频谱数据一个数据列的变形过程。图2(a)中二维频谱中的阴影部分表示了沿多普勒维分布的一个数据列。以Ls=2、M=7为例,图2(b)给出了数据列移动前后的示意图。Figure 2 shows the transformation process of a data column of spectral data. The shaded part of the two-dimensional spectrum in Figure 2(a) represents a data column distributed along the Doppler dimension. Taking Ls=2 and M=7 as an example, Fig. 2(b) shows a schematic diagram before and after the data column is moved.
对二维数据的所有数据列进行循环移位处理实现频谱变形后的频谱形态如图4所示。Figure 4 shows the spectral shape after performing cyclic shift processing on all data columns of the two-dimensional data to achieve spectral deformation.
步骤二、对变形后的数据进行支撑域扩展处理
针对二维频谱变形后的数据进行两端补零处理,实现支撑域扩展。其中,一端补零个数应不低于以下数量:The two ends of the data after the two-dimensional spectrum deformation are filled with zeros to realize the expansion of the support domain. Among them, the number of zero-padding at one end should not be less than the following number:
其中,K表示一端补零个数的下限。处理时,在数据的多普勒维的首尾两端分别添加不低于K个个数的0值,实现数据扩展。假设前端补零个数为K_m1,后端补零个数为K_m2,则补零后的多普勒维的数据点个数将由M变为M+K_m1+K_m2。Among them, K represents the lower limit of the number of zeros at one end. During processing, no less than K number of 0s are added at the beginning and end of the Doppler dimension of the data to realize data expansion. Assuming that the number of front-end zeros is K_m1 and the number of back-end zeros is K_m2, the number of data points in the Doppler dimension after zero-filling will change from M to M+K_m1+K_m2.
经过支撑域扩展后的二维频谱图如图5所示。The 2D spectrogram after support domain expansion is shown in Figure 5.
步骤三、对支撑域扩展后的数据进行二维频谱恢复处理,实现二维频谱数据多普勒域去卷绕Step 3: Perform two-dimensional spectrum recovery processing on the expanded data of the support domain to realize the Doppler domain unwrapping of the two-dimensional spectral data
对支撑域扩展后的数据进行二维频谱恢复处理包括计算各个距离向频率点位置的数据列所对应的恢复循环移位点数和对各个距离向频率点位置的数据列沿多普勒维进行循环移位处理两个步骤。Performing two-dimensional spectrum recovery processing on the data after the expansion of the support domain includes calculating the number of recovered cyclic shift points corresponding to the data columns of each range-to-frequency point position and circulating the data columns of each range-to-frequency point position along the Doppler dimension. The shift process is two steps.
具体地,令F_dat_e表示支撑域扩展后的数据。同样,对于距离向频率点为fr_n的一列支撑域扩展后的二维频谱数据沿多普勒维进行循环移位处理,实现二维频谱恢复。其恢复循环移位点数Lr如下:Specifically, let F_dat_e denote the data after support domain expansion. Similarly, for the two-dimensional spectral data after the expansion of a column of support domains whose distance to the frequency point is fr_n Cyclic shift processing is performed along the Doppler dimension to achieve two-dimensional spectral recovery. The recovery cyclic shift point Lr is as follows:
利用恢复循环移位点数对该数据列进行变形处理的方式如下:The way to deform the data column by recovering the cyclic shift points is as follows:
其中,表示距离向频率点为fr_n的一列支撑域扩展后的二维频谱数据恢复后的数据,shft()表示循环移位操作。in, Represents the restored data from the two-dimensional spectral data extended to a column of support domains whose distance to the frequency point is fr_n, and shft() represents a cyclic shift operation.
进行二维频谱恢复处理后,实现二维频谱去卷绕的宽带大斜视二维频谱图如图6所示。从图中可以看出,经过处理后频谱的形状得到了有效的恢复,对比图3中发生卷绕的频谱可发现,去卷绕后的频谱分布连续,卷绕和断裂现象得到了有效的去除。After the two-dimensional spectrum recovery process, the broadband large squint two-dimensional spectrogram of the two-dimensional spectrum unwrapping is shown in Figure 6. It can be seen from the figure that the shape of the spectrum has been effectively restored after processing. Comparing the coiled spectrum in Figure 3, it can be found that the spectrum distribution after de-wrapping is continuous, and the coiling and fracture phenomena have been effectively removed. .
该去卷绕方法可以作为预处理通用性算法,不需修改成像算法的前提下可与现有成像算法集成。对于未进行二维频谱去卷绕处理的大斜视观测数据,成像处理结果如图7所示,从图中可以看出目标两侧具有能量泄露和模糊散焦目标出现。经过本方法进行去卷绕预处理后,再利用现有成像算法对去卷绕后数据进行成像聚焦处理,得到的成像结果如图8所示。对比图7可以看出,目标两侧的能量泄露干扰消失,说明利用该方法有效实现了频谱卷绕去除,大幅改善了成像结果。The dewinding method can be used as a general preprocessing algorithm, and can be integrated with existing imaging algorithms without modifying the imaging algorithm. For the large strabismus observation data without 2D spectral unwrapping processing, the imaging processing result is shown in Figure 7. It can be seen from the figure that there are energy leakage and blurred and defocused targets on both sides of the target. After dewinding preprocessing by this method, the existing imaging algorithm is used to perform imaging focusing processing on the dewinding data, and the obtained imaging result is shown in FIG. 8 . Comparing Fig. 7, it can be seen that the energy leakage interference on both sides of the target disappears, indicating that this method effectively realizes the removal of spectrum wrapping and greatly improves the imaging results.
本发明方法针对SAR卫星高分辨率大斜视观测模式,通过二维频谱快速变形、支撑域扩展和二维频谱快速恢复等处理,实现了二维频谱多普勒域卷绕现象的去除,解决了由于多普勒域频谱卷绕所出现的能量泄露和大量虚假目标情况。本发明去卷绕方法利用循环移位操作实现了频谱处理,避免了对回波数据进行计算,具有非常高的处理效率和应用效能。The method of the invention is aimed at the high-resolution large-squint observation mode of the SAR satellite, and realizes the removal of the two-dimensional spectral Doppler domain wrapping phenomenon by processing such as rapid deformation of the two-dimensional spectrum, expansion of the support domain, and rapid restoration of the two-dimensional spectrum. Energy leakage and a large number of false targets due to spectral wrapping in the Doppler domain. The dewinding method of the present invention realizes spectrum processing by utilizing the cyclic shift operation, avoids the calculation of echo data, and has very high processing efficiency and application efficiency.
本发明未详细说明部分属本领域技术人员公知常识。The parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911168456.8A CN110988877B (en) | 2019-11-25 | 2019-11-25 | A Spaceborne High-Resolution SAR Large Squint Doppler Dewinding Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911168456.8A CN110988877B (en) | 2019-11-25 | 2019-11-25 | A Spaceborne High-Resolution SAR Large Squint Doppler Dewinding Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110988877A CN110988877A (en) | 2020-04-10 |
CN110988877B true CN110988877B (en) | 2022-03-04 |
Family
ID=70086716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911168456.8A Active CN110988877B (en) | 2019-11-25 | 2019-11-25 | A Spaceborne High-Resolution SAR Large Squint Doppler Dewinding Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110988877B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5440309A (en) * | 1993-04-08 | 1995-08-08 | Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. | Method of extracting motion errors of a carrier bearing a coherent imaging radar system from radar raw data and apparatus for carrying out the method |
CN101685159A (en) * | 2009-08-17 | 2010-03-31 | 北京航空航天大学 | Method for constructing spaceborne SAR signal high precision phase-keeping imaging processing platform |
CN106961836B (en) * | 2004-04-16 | 2010-04-14 | 中国科学院电子学研究所 | Single Phase Center Multiple Beams Synthetic Aperture Radar bearing signal preprocess method |
CN102176016A (en) * | 2011-01-25 | 2011-09-07 | 北京航空航天大学 | Large squint sliding spotlight SAR (synthetic aperture radar) imaging processing method |
CN102608576A (en) * | 2012-03-20 | 2012-07-25 | 北京理工大学 | Geometric correction method for large rake forward synthetic aperture radar return image |
CN103630900A (en) * | 2013-03-29 | 2014-03-12 | 中国科学院电子学研究所 | Method for 3-D SAR wavenumber domain fast imaging |
CN104142495A (en) * | 2014-07-23 | 2014-11-12 | 西安空间无线电技术研究所 | Squint SAR point target interpolation and section interception method based on frequency spectrum |
CN105629231A (en) * | 2014-11-06 | 2016-06-01 | 航天恒星科技有限公司 | Method and system for splicing SAR sub-aperture |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007041373B3 (en) * | 2007-08-30 | 2009-01-15 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Synthetic aperture radar method |
-
2019
- 2019-11-25 CN CN201911168456.8A patent/CN110988877B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5440309A (en) * | 1993-04-08 | 1995-08-08 | Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. | Method of extracting motion errors of a carrier bearing a coherent imaging radar system from radar raw data and apparatus for carrying out the method |
CN106961836B (en) * | 2004-04-16 | 2010-04-14 | 中国科学院电子学研究所 | Single Phase Center Multiple Beams Synthetic Aperture Radar bearing signal preprocess method |
CN101685159A (en) * | 2009-08-17 | 2010-03-31 | 北京航空航天大学 | Method for constructing spaceborne SAR signal high precision phase-keeping imaging processing platform |
CN102176016A (en) * | 2011-01-25 | 2011-09-07 | 北京航空航天大学 | Large squint sliding spotlight SAR (synthetic aperture radar) imaging processing method |
CN102608576A (en) * | 2012-03-20 | 2012-07-25 | 北京理工大学 | Geometric correction method for large rake forward synthetic aperture radar return image |
CN103630900A (en) * | 2013-03-29 | 2014-03-12 | 中国科学院电子学研究所 | Method for 3-D SAR wavenumber domain fast imaging |
CN104142495A (en) * | 2014-07-23 | 2014-11-12 | 西安空间无线电技术研究所 | Squint SAR point target interpolation and section interception method based on frequency spectrum |
CN105629231A (en) * | 2014-11-06 | 2016-06-01 | 航天恒星科技有限公司 | Method and system for splicing SAR sub-aperture |
Non-Patent Citations (7)
Title |
---|
《Extended Two-Step Focusing Approach for Squinted Spotlight SAR Imaging》;Daoxiang An,et al.;《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,》;20120731;第50卷(第7期);全文 * |
《Inverse Omega-K Algorithm for the Electromagnetic Deception of Synthetic Aperture Radar》;Yongcai Liu,et al.;《IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING》;20160731;第9卷(第7期);全文 * |
《一种改进斜视宽带合成孔径声呐ωk成像算法》;王金波,等;《华中科技大学学报(自然科学版)》;20171231;第45卷(第12期);全文 * |
《合成孔径雷达图像中的动目标速度联合估计》;吕高焕,等;《数据采集与处理》;20130731;第28卷(第4期);全文 * |
《基于感兴趣区域搜寻的机载下视阵列3D SAR波数域快速成像方法》;彭学明,等;《电子与信息学报》;20130731;第35卷(第7期);全文 * |
《多通道合成孔径雷达成像关键技术研究》;黎剑兵;《中国博士学位论文全文数据库 信息科技辑》;20160315(第3期);全文 * |
《机/星载宽幅SAR成像算法研究》;杨军;《中国博士学位论文全文数据库 信息科技辑》;20160315(第3期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110988877A (en) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111175750B (en) | Imaging method and device, device and storage medium for synthetic aperture radar | |
CN104188687B (en) | Doppler blood flow velocity estimation method based on ultrasonic echo radiofrequency signal and system | |
CN110058232B (en) | A method and system for azimuth preprocessing of echo signals of spaceborne SAR large squint sliding beamforming mode | |
CN110095775B (en) | Hybrid coordinate system-based bump platform SAR (synthetic Aperture Radar) rapid time domain imaging method | |
CN103293520B (en) | Equivalent range equation based SAR (synthetic aperture radar) ground motion target imaging method | |
CN110208799B (en) | Legendre orthogonal decomposition-based curvilinear motion trajectory SAR wave number domain imaging method | |
CN110208798B (en) | High-resolution wide-width spaceborne mosaic SAR imaging processing method and system | |
CN103869316A (en) | Method for super-resolution imaging of foresight array SAR based on sparse representation | |
CN104698431B (en) | Based on the multichannel SAR orientation ambiguity solution method that obscuring component DOA estimates | |
CN102520405B (en) | Through-wall imaging method based on image domain wall influence compensation | |
CN111999734A (en) | Broadband strabismus bunching SAR two-step imaging method and system | |
CN108196253B (en) | An Azimuth Ambiguity Suppression Method for Synthetic Aperture Radar | |
CN115015920B (en) | A fast backprojection imaging method based on range-varying spectrum correction | |
CN113156435A (en) | Missile-borne SAR front-side view time domain imaging method based on embedded GPU | |
CN103293528B (en) | Super-resolution imaging method of scanning radar | |
CN110146891A (en) | Single-channel Staggered Synthetic Aperture Radar Imaging Method Based on Blind Spot Data Recovery | |
CN113267756B (en) | Space-based radar space moving target detection and parameter estimation method and system | |
CN106842196B (en) | azimuth fuzzy suppression method for SAR sub-aperture imaging | |
CN110988877B (en) | A Spaceborne High-Resolution SAR Large Squint Doppler Dewinding Method | |
CN108845318B (en) | Satellite-borne high-resolution wide-range imaging method based on Relax algorithm | |
CN106959448A (en) | A kind of ULTRA-WIDEBAND RADAR image side lobe suppression method | |
CN110782447A (en) | Multi-moving ship target detection method in geostationary orbit satellite optical remote sensing images | |
CN110095774B (en) | A Circular Video SAR Moving Target Detection Method | |
CN114780911A (en) | Ocean wide swath distance ambiguity solving method based on deep learning | |
CN115356729A (en) | Direct sparse imaging method for near-field non-uniform sampling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |