CN108845318B - Satellite-borne high-resolution wide-range imaging method based on Relax algorithm - Google Patents
Satellite-borne high-resolution wide-range imaging method based on Relax algorithm Download PDFInfo
- Publication number
- CN108845318B CN108845318B CN201810553217.3A CN201810553217A CN108845318B CN 108845318 B CN108845318 B CN 108845318B CN 201810553217 A CN201810553217 A CN 201810553217A CN 108845318 B CN108845318 B CN 108845318B
- Authority
- CN
- China
- Prior art keywords
- azimuth
- range
- satellite
- blur
- doppler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
- G01S13/9011—SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于Relax算法的星载高分宽幅HRWS成像方法,属于雷达目标探测技术领域。本发明根据星载多通道雷达回波的特点,在进行距离向压缩,方位向FFT,将数据转换到距离‑多普勒域后,结合Relax算法,设计了可以实现方位向模糊抑制的迭代方法。最后将方位向模糊抑制后的信号进行方位向压缩,就可以得到无模糊的成像结果。仿真结果验证了该方法的可行性和有效性。
The invention discloses a satellite-borne high-resolution wide-width HRWS imaging method based on the Relax algorithm, and belongs to the technical field of radar target detection. According to the characteristics of spaceborne multi-channel radar echoes, the present invention designs an iterative method that can realize azimuth blur suppression after performing range compression, azimuth FFT, and converting the data to the range-Doppler domain, combined with the Relax algorithm . Finally, azimuth compression is performed on the signal after the azimuth blur suppression, and the blur-free imaging result can be obtained. The simulation results verify the feasibility and effectiveness of the method.
Description
技术领域technical field
本发明属于雷达目标探测技术领域,涉及一种多通道雷达的信号处理算法,具体是涉及一种基于Relax算法的星载高分宽幅成像方法。The invention belongs to the technical field of radar target detection, and relates to a signal processing algorithm of a multi-channel radar, in particular to a spaceborne high-resolution wide-width imaging method based on the Relax algorithm.
背景技术Background technique
分辨率和测绘带宽是星载合成孔径雷达(SAR)的两个重要成像指标。一方面,高分辨率能够更为精确的反映目标特征信息,便于目标识别和特征提取,这在军事侦察、城市绘图及灾害评估等方面有着重要的意义。另一方面,宽测绘带可提供更为广阔的场景信息,以获取全局判读能力,这有利于对土地、森林、海洋等大面积区域的观测。然而,对于传统星载SAR系统,由于受最小天线面积的限制,高分辨率与宽测绘带是一对不可调和的矛盾量,两个性能指标不能同时提高。Resolution and mapping bandwidth are two important imaging metrics for spaceborne synthetic aperture radar (SAR). On the one hand, high resolution can reflect the target feature information more accurately, which is convenient for target recognition and feature extraction, which is of great significance in military reconnaissance, urban mapping and disaster assessment. On the other hand, wide swaths can provide broader scene information to obtain global interpretation capabilities, which is beneficial to the observation of large areas such as land, forests, and oceans. However, for the traditional spaceborne SAR system, due to the limitation of the minimum antenna area, high resolution and wide swath are a pair of irreconcilable contradictory quantities, and the two performance indicators cannot be improved at the same time.
在意识到传统单发单收体制的星载SAR无法同时实现高分辨和宽测绘带的情况下,科研工作者开始转而寻求新的方法。人们发现,采用多个通道接收的工作模式可以使问题得到有效解决。在对广域区域进行成像时,需要采用低的脉冲重复频率(PRF)以避免距离向模糊,如果所采用的PRF对于方位向天线来说过低,将会在方位向上产生模糊。因此,星载高分宽幅成像方法的关键在于模糊抑制方法的设计。Realizing that the traditional single-transmit and single-receive system of spaceborne SAR cannot achieve high resolution and wide swath at the same time, researchers began to seek new methods. It has been found that the problem can be effectively solved by adopting the working mode of multiple channel reception. When imaging a wide area, a low pulse repetition frequency (PRF) needs to be used to avoid range ambiguity, which will result in azimuth ambiguity if the PRF is too low for the azimuth antenna. Therefore, the key to the spaceborne high-resolution wide-format imaging method lies in the design of the blur suppression method.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是:The technical problem to be solved by the present invention is:
对于星载SAR雷达高分宽幅成像中模糊抑制方法的不足,提供一种具有较优的方位向模糊抑制效果的方位向模糊抑制方法。Aiming at the shortcomings of the blur suppression method in high-resolution wide-field imaging of spaceborne SAR radar, an azimuth blur suppression method with better azimuth blur suppression effect is provided.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the above-mentioned technical problems:
一种基于Relax算法的星载高分宽幅成像方法,其包括如下步骤:A spaceborne high-resolution wide-format imaging method based on the Relax algorithm, comprising the following steps:
步骤1,将星载多通道雷达接收到的回波信号进行距离向压缩、方位向FFT,得到距离-多普勒域的数据,然后将星载多通道雷达的多个通道中相同距离-多普勒单元的数据进行组合,得到原始信号:Step 1: Perform range compression and azimuth FFT on the echo signals received by the spaceborne multi-channel radar to obtain data in the range-Doppler domain, and then quantify the same distance-multiple channels in the spaceborne multi-channel radar. The data from the Puller cells are combined to obtain the original signal:
Z(r,fd)=(Z1(r,fd),Z2(r,fd),…,ZM(r,fd))T Z(r,f d )=(Z 1 (r,f d ),Z 2 (r,f d ),…,Z M (r,f d )) T
其中,M为奇数,表示通道个数,r表示距离单元,fd表示多普勒频率,T表示转置矩阵;Among them, M is an odd number, indicating the number of channels, r is the distance unit, f d is the Doppler frequency, and T is the transposed matrix;
步骤2,基于Relax算法对步骤1得到的原始信号的每个距离-多普勒单元进行方位向模糊抑制;
步骤3,将方位向模糊抑制后得到的结果进行方位向压缩,得到成像结果。In step 3, the result obtained after the azimuth blurring is suppressed is compressed in the azimuth direction to obtain an imaging result.
优选地,所述步骤2中的方位向模糊抑制包括以下步骤:Preferably, the azimuthal blur suppression in the
步骤2-1,初始化,得到初步估计的信号幅度,即完成下面的运算:Step 2-1, initialization, to obtain the preliminary estimated signal amplitude, that is, to complete the following operations:
其中,p表示模糊数,fp表示脉冲重复频率,H表示共轭转置矩阵,Zrec(r,fd+pfp)表示初步估计的不同模糊数下的信号幅度,where p represents the fuzzy number, f p represents the pulse repetition frequency, H represents the conjugate transpose matrix, Z rec (r,f d +pf p ) represents the preliminary estimated signal amplitude under different fuzzy numbers,
表示不同模糊数对应的导向矢量,其中表示各通道的等效相位中心,va表示雷达平台的运动速度; represents the steering vectors corresponding to different fuzzy numbers, where represents the equivalent phase center of each channel, and v a represents the moving speed of the radar platform;
步骤2-2,根据步骤1中得到的原始信号以及步骤2-1中初步估计的不同模糊数下的信号幅度,得到与不同模糊数相对应的信号分量Zp(r,fd);然后用不同模糊数下的导向矢量分别与相应的信号分量进行匹配,得到估计的信号幅度即依次完成下述运算:Step 2-2, according to the original signal obtained in
步骤2-3,对步骤2-2进行反复迭代,直至符合收敛条件。Step 2-3: Repeat step 2-2 until the convergence condition is met.
优选地,所述步骤2-3中的所述收敛条件为公式Preferably, the convergence condition in the steps 2-3 is a formula
的值小于或等于10-3。 is less than or equal to 10 -3 .
优选地,在所述步骤2中,针对每个距离-多普勒单元进行的方位向模糊抑制采用两个嵌套的for循环完成遍历,其中一个for循环遍历所有多普勒单元,另一个for循环遍历所有距离单元,该两个for循环的嵌套顺序为任意选择的。Preferably, in the
优选地,在所述步骤3中,将方位向模糊抑制后的信号按照模糊倍数的顺序进行排列之后,进行方位向压缩。Preferably, in the step 3, the azimuth compression is performed after arranging the azimuthal blur suppressed signals in the order of the blur multiples.
本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme, and has the following technical effects:
与传统的模糊抑制算法相比,该算法不需要构建重构滤波向量,可以直接利用已知的导向矢量并通过迭代的方法对模糊进行抑制,更加简单易行,因此在实际系统中可以得到有效的应用。Compared with the traditional fuzzy suppression algorithm, the algorithm does not need to construct a reconstruction filter vector, and can directly use the known steering vector to suppress the blur through an iterative method, which is simpler and easier to implement, so it can be effectively used in the actual system. Applications.
附图说明Description of drawings
图1为星载多通道雷达的空间几何关系图。Fig. 1 is the spatial geometric relationship diagram of the spaceborne multi-channel radar.
图2为基于Relax算法的方位向模糊抑制流程图。Figure 2 is a flow chart of azimuth blur suppression based on Relax algorithm.
图3a至图3c分别为空时采样关系、相位分布以及信号加噪声协方差矩阵的特征值分布结果。Figures 3a to 3c show the space-time sampling relationship, the phase distribution, and the eigenvalue distribution results of the signal-plus-noise covariance matrix, respectively.
图4a至图4e分别为仿真得到的各通道的原始回波信号、各通道的距离压缩结果、距离-多普勒域结果、距离-多普勒域的放大结果、原始回波的方位向频谱。Figures 4a to 4e show the simulated original echo signals of each channel, the range compression results of each channel, the range-Doppler domain results, the range-Doppler domain amplification results, and the azimuth spectrum of the original echoes. .
图5a至图5d分别为基于Relax算法进行方位向模糊抑制之后的距离-多普勒域结果、距离-多普勒域的放大结果、距离徙动校正结果、方位向模糊抑制后的方位向频谱。Figures 5a to 5d are the range-Doppler domain results after azimuth blur suppression based on the Relax algorithm, the range-Doppler domain amplification results, the range migration correction results, and the azimuth spectrum after azimuth blur suppression. .
图6a至图6f为方位向压缩后的成像结果,其中图6a为方位向模糊抑制前的成像结果,图6b为Relax算法方位向模糊抑制后的成像结果,图6c为方位向模糊抑制前成像结果的3D显示,图6d为Relax算法方位向模糊抑制后成像结果的3D显示,图6e为方位向模糊抑制前的方位向切片,图6f为Relax算法方位向模糊抑制后的方位向切片。Figures 6a to 6f are the imaging results after azimuth compression, in which Figure 6a is the imaging result before azimuth blur suppression, Figure 6b is the imaging result after Relax algorithm azimuth blur suppression, and Figure 6c is the image before azimuth blur suppression The 3D display of the results, Figure 6d is the 3D display of the imaging result after the azimuthal blurring of the Relax algorithm is suppressed, Figure 6e is the azimuthal slice before the azimuthal blurring is suppressed, and Figure 6f is the azimuthal slice after the Relaxation algorithm is suppressed.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细描述,所述实施方式的示例在附图中示出,下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments, examples of the embodiments are shown in the accompanying drawings, and the embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present invention, and It should not be construed as a limitation of the present invention.
图1为星载多通道雷达的空间几何关系图。Fig. 1 is the spatial geometric relationship diagram of the spaceborne multi-channel radar.
本发明为实现发明目的采用如下技术方案:The present invention adopts the following technical solutions for realizing the purpose of the invention:
步骤1,数据预处理。将星载多通道雷达接收到的回波分别进行距离向压缩、方位向FFT,即将数据变换到距离-多普勒域,然后将M个通道中相同距离-多普勒单元的数据进行组合,得到原始信号,等待进一步处理。
Z(r,fd)=(Z1(r,fd),Z2(r,fd),…,ZM(r,fd))T Z(r,f d )=(Z 1 (r,f d ),Z 2 (r,f d ),…,Z M (r,f d )) T
其中,M为奇数,表示通道个数,r表示距离单元,fd表示多普勒频率,T表示转置矩阵。Among them, M is an odd number, indicating the number of channels, r is the distance unit, f d is the Doppler frequency, and T is the transposed matrix.
步骤2,基于Relax算法的方位向模糊抑制。设计的方位向模糊抑制算法针对距离-多普勒域的每个距离-多普勒单元,采用两个嵌套的for循环完成遍历(一个for循环遍历所有多普勒单元,一个for循环遍历所有距离单元,两个for循环的嵌套顺序可以任意选择)。具体步骤如下所示:
步骤2-1,初始化。初始化过程中,通过将不同模糊数下的导向矢量分别与步骤1中得到的原始信号进行匹配,进而初步将模糊信号与不模糊信号区分开来,得到不同模糊数下信号幅度的初步估计。即完成下面的运算:Step 2-1, initialization. In the initialization process, by matching the steering vectors under different fuzzy numbers with the original signals obtained in
其中,p表示模糊数,fp表示脉冲重复频率,H表示共轭转置矩阵。Zrec(r,fd+pfp)表示初步估计的信号幅度。where p is the fuzzy number, f p is the pulse repetition frequency, and H is the conjugate transpose matrix. Z rec (r,f d +pf p ) represents the preliminary estimated signal amplitude.
表示不同模糊数对应的导向矢量,其中表示各通道的等效相位中心,va表示雷达平台的运动速度。 represents the steering vectors corresponding to different fuzzy numbers, where represents the equivalent phase center of each channel, and va represents the moving speed of the radar platform.
步骤2-2,用Relax算法进行方位向模糊抑制。首先根据步骤1中得到的原始信号以及步骤2-1中初步估计的不同模糊数下的信号幅度,可以得到与不同模糊数相对应的信号分量Zp(r,fd);然后用不同模糊数下的导向矢量分别与相应的信号分量进行匹配,即依次完成下述运算:Step 2-2, use the Relax algorithm to suppress azimuth blurring. Firstly, according to the original signal obtained in
其中,Zp(r,fd)表示不同模糊倍数对应的信号,表示估计的信号幅度。Among them, Z p (r,f d ) represents the signal corresponding to different blur multiples, represents the estimated signal amplitude.
步骤2-3,对步骤2-2进行反复迭代,直至达到收敛。其中收敛的标准为,公式的值小于或等于10-3。然后进入步骤3。Step 2-3, repeat step 2-2 until convergence is achieved. The criterion for convergence is, the formula is less than or equal to 10 -3 . Then go to step 3.
步骤3,方位向压缩。即将方位向模糊抑制后的信号按照模糊倍数的顺序进行排列之后,进行方位向压缩,得到方位向模糊抑制后的成像结果。Step 3, azimuth compression. That is, after arranging the signals after azimuth blur suppression in the order of blur multiples, azimuth compression is performed to obtain the imaging result after azimuth blur suppression.
整个处理流程图如图2所示。The entire processing flow chart is shown in Figure 2.
以上介绍了一种全新的星载高分宽幅成像方法,这里利用仿真的星载多通道回波数据进行验证和分析。仿真的系统参数如下:载频9.45GHz,脉冲重复频率1187Hz,平台飞行速度7480m/s,通道个数为7个。为了简化问题,这里仿真波束指向为90°(正侧视)情况下场景的回波(假设地面后向散射系数服从高斯分布)。设置1个点目标,同时,在回波中加入高斯分布的噪声分量。A new spaceborne high-resolution wide-format imaging method has been introduced above. The simulated spaceborne multi-channel echo data is used for verification and analysis. The simulated system parameters are as follows: the carrier frequency is 9.45GHz, the pulse repetition frequency is 1187Hz, the platform flight speed is 7480m/s, and the number of channels is 7. In order to simplify the problem, the echo of the scene in the case where the beam pointing is 90° (front side view) is simulated here (assuming that the ground backscatter coefficient obeys a Gaussian distribution). Set a point target, and at the same time, add the noise component of Gaussian distribution to the echo.
基于Relax算法的星载高分宽幅成像实验:Spaceborne high-resolution wide-format imaging experiment based on Relax algorithm:
在进行实验之前,需要对所选用PRF下的空时采样关系、相位分布以及信号加噪声协方差矩阵的特征值分布进行分析。图3a为空时采样关系,可以看出在空间和时间上的采样完美交错,由PRF的值过小所造成的时间采样的缺失可以用空间采样来进行补偿。图3b中不同通道间的相位差在2π上是均匀分布的。在图3c中可以观察到,信号加噪声协方差矩阵的特征值在无卷绕的频率域上的分布是连续的,这种连续性意味着可以对信号进行完美重建,这时以fp进行采样的M个通道的雷达系统可以等价于以Mfp进行采样的单通道雷达系统。在无卷绕的频率域中,特征值的分布越平滑,重建之后得到的信号就越接近于高PRF下单通道系统得到的信号。Before the experiment, it is necessary to analyze the space-time sampling relationship, phase distribution and eigenvalue distribution of the signal-plus-noise covariance matrix under the selected PRF. Figure 3a shows the space-time sampling relationship. It can be seen that the sampling in space and time is perfectly interleaved. The lack of time sampling caused by the too small value of PRF can be compensated by spatial sampling. The phase difference between different channels in Fig. 3b is uniformly distributed over 2π. It can be observed in Fig. 3c that the distribution of the eigenvalues of the signal-plus-noise covariance matrix in the unwrapped frequency domain is continuous. This continuity means that a perfect reconstruction of the signal is possible, at this time with f p A sampled M-channel radar system can be equivalent to a single-channel radar system sampled with Mfp . In the unwrapped frequency domain, the smoother the distribution of eigenvalues, the closer the signal obtained after reconstruction is to the signal obtained by a single-channel system at high PRF.
然后进行步骤1,即数据预处理。将仿真回波分别进行距离向压缩、方位向FFT,即将数据变换到距离-多普勒域等待进一步处理。图4a为加了噪声后的原始回波信号;图4b为各通道进行距离压缩之后的结果;图4c为将数据变换到距离-多普勒域之后的结果,图4d为距离-多普勒域的放大结果,可以明显地看到,方位向是模糊的;图4e为原始信号的方位向频谱,可以看出频谱是混叠的。Then proceed to step 1, that is, data preprocessing. The simulated echoes are respectively subjected to range compression and azimuth FFT, that is, the data is transformed into the range-Doppler domain for further processing. Fig. 4a is the original echo signal after adding noise; Fig. 4b is the result after distance compression of each channel; Fig. 4c is the result after transforming the data to the range-Doppler domain, Fig. 4d is the range-Doppler domain It can be clearly seen that the azimuth direction is ambiguous; Figure 4e shows the azimuth direction spectrum of the original signal, and it can be seen that the spectrum is aliased.
接着进行步骤2,即采用Relax算法进行方位向模糊抑制。图5a为用Relax算法进行方位向模糊抑制之后的距离-多普勒域结果,图5b为方位向模糊抑制后距离-多普勒域的放大结果,可以看出方位向的模糊明显被抑制了;图5c为在距离向上进行距离徙动校正后的结果;图5d为方位向模糊抑制后的方位向频谱,可以看出用Relax算法进行处理之后,方位向的频谱不再混叠。Then proceed to step 2, that is, use the Relax algorithm to suppress azimuth blurring. Figure 5a shows the range-Doppler domain result after azimuth blur suppression using the Relax algorithm, and Figure 5b is the zoomed-in result of the range-Doppler domain after azimuth blur suppression. It can be seen that the azimuth blur is significantly suppressed ; Figure 5c is the result of distance migration correction in the distance direction; Figure 5d is the azimuth spectrum after azimuth blur suppression, it can be seen that after processing with the Relax algorithm, the azimuth spectrum is no longer aliased.
步骤3进行方位向压缩处理。对Relax算法方位向模糊抑制后得到的结果进行方位向压缩,图6a为方位向模糊抑制前的成像结果,可以看出在方位向上有多个模糊的点目标;图6b为方位向模糊抑制后的成像结果,只有一个真实的点目标,模糊点都被抑制掉了;图6c和图6d分别为方位向模糊抑制前后成像结果的3D显示,可以更加直观地看出Relax算法方位向模糊抑制的效果;图6e和图6f为方位向模糊抑制前后成像结果的方位向切片图,从图中可以看出,用Relax算法进行方位向模糊抑制之后,所有方位向模糊的归一化幅度都在-42dB以下。Step 3 performs azimuth compression processing. The results obtained after the azimuth blur suppression of the Relax algorithm are compressed in the azimuth direction. Figure 6a shows the imaging results before the azimuth blur suppression. It can be seen that there are many blurred point targets in the azimuth direction; Figure 6b shows the azimuth blur after suppression. There is only one real point target, and all the blurred points are suppressed; Figure 6c and Figure 6d are the 3D display of the imaging results before and after the azimuth blur suppression, which can be seen more intuitively. Effect; Figure 6e and Figure 6f are the azimuth slice images of the imaging results before and after the azimuth blur suppression. It can be seen from the figures that after the azimuth blur suppression using the Relax algorithm, the normalized amplitudes of all azimuth blurs are - 42dB or less.
上述仿真结果证明了基于Relax算法进行星载高分宽幅成像的有效性。The above simulation results demonstrate the effectiveness of spaceborne high-resolution wide-format imaging based on the Relax algorithm.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。It will be understood by those skilled in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It should also be understood that terms such as those defined in general dictionaries should be understood to have meanings consistent with their meanings in the context of the prior art and, unless defined as herein, are not to be taken in an idealized or overly formal sense. explain.
本技术领域技术人员可以理解的是,本发明可以涉及用于执行本申请中所述操作中的一项或多项操作的设备。所述设备可以为所需的目的而专门设计和制造,或者也可以包括通用计算机中的已知设备,所述通用计算机有存储在其内的程序选择性地激活或重构。这样的计算机程序可以被存储在设备(例如,计算机)可读介质中或者存储在适于存储电子指令并分别耦联到总线的任何类型的介质中,所述计算机可读介质包括但不限于任何类型的盘(包括软盘、硬盘、光盘、CD-ROM、和磁光盘)、随机存储器(RAM)、只读存储器(ROM)、电可编程ROM、电可擦ROM(EPROM)、电可擦除可编程ROM(EEPROM)、闪存、磁性卡片或光线卡片。可读介质包括用于以由设备(例如,计算机)可读的形式存储或传输信息的任何机构。例如,可读介质包括随机存储器(RAM)、只读存储器(ROM)、磁盘存储介质、光学存储介质、闪存装置、以电的、光的、声的或其他的形式传播的信号(例如载波、红外信号、数字信号)等。As will be appreciated by those skilled in the art, the present invention may relate to apparatus for performing one or more of the operations described in this application. The apparatus may be specially designed and manufactured for the required purposes, or it may comprise known apparatuses in a general-purpose computer selectively activated or reconfigured with a program stored therein. Such a computer program may be stored in a device (eg, computer) readable medium including, but not limited to, any type of medium suitable for storing electronic instructions and coupled to a bus, respectively Types of disks (including floppy disks, hard disks, optical disks, CD-ROMs, and magneto-optical disks), random access memory (RAM), read only memory (ROM), electrically programmable ROM, electrically erasable ROM (EPROM), electrically erasable Programmable ROM (EEPROM), flash memory, magnetic card or optical card. A readable medium includes any mechanism for storing or transmitting information in a form readable by a device (eg, a computer). For example, readable media include random access memory (RAM), read only memory (ROM), magnetic disk storage media, optical storage media, flash memory devices, signals (such as carrier waves, infrared signal, digital signal), etc.
本技术领域技术人员可以理解的是,可以用计算机程序指令来实现这些结构图和/或框图和/或流图中的每个框以及这些结构图和/或框图和/或流图中的框的组合。可以将这些计算机程序指令提供给通用计算机、专业计算机或其他可编程数据处理方法的处理器来生成机器,从而通过计算机或其他可编程数据处理方法的处理器来执行的指令创建了用于实现结构图和/或框图和/或流图的框或多个框中指定的方法。It will be understood by those skilled in the art that each block in these structural diagrams and/or block diagrams and/or flow diagrams, and blocks in these structural diagrams and/or block diagrams and/or flow diagrams, can be implemented by computer program instructions The combination. These computer program instructions may be provided to a processor of a general purpose computer, specialized computer or other programmable data processing method to create a machine whereby the instructions executed by the processor of the computer or other programmable data processing method create a structure for implementing A method specified in a block or blocks of a diagram and/or block diagram and/or flow diagram.
本技术领域技术人员可以理解的是,本发明中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本发明中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本发明中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。It can be understood by those skilled in the art that the various operations, methods, steps, measures, and solutions discussed in the present invention may be alternated, modified, combined or deleted. Further, other steps, measures, and solutions in the various operations, methods, and processes that have been discussed in the present invention may also be alternated, modified, rearranged, decomposed, combined, or deleted. Further, steps, measures and solutions in the prior art with various operations, methods, and processes disclosed in the present invention may also be alternated, modified, rearranged, decomposed, combined or deleted.
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。The above embodiments are only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention. Any modification made on the basis of the technical solution according to the technical idea proposed by the present invention falls within the protection scope of the present invention. Inside.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810553217.3A CN108845318B (en) | 2018-05-31 | 2018-05-31 | Satellite-borne high-resolution wide-range imaging method based on Relax algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810553217.3A CN108845318B (en) | 2018-05-31 | 2018-05-31 | Satellite-borne high-resolution wide-range imaging method based on Relax algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108845318A CN108845318A (en) | 2018-11-20 |
CN108845318B true CN108845318B (en) | 2022-04-15 |
Family
ID=64211196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810553217.3A Active CN108845318B (en) | 2018-05-31 | 2018-05-31 | Satellite-borne high-resolution wide-range imaging method based on Relax algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108845318B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109975804B (en) * | 2019-03-04 | 2023-04-07 | 广东工业大学 | Multi-platform constellation SAR fusion coherent imaging method |
CN110501708B (en) * | 2019-08-29 | 2021-03-30 | 北京航空航天大学 | Multi-channel spaceborne TOPSAR azimuth ambiguity analysis method |
CN116718995B (en) * | 2023-08-09 | 2023-10-10 | 中国科学院空天信息创新研究院 | Azimuth multichannel SAR phase error correction method based on minimum spectrum difference |
CN118731864B (en) * | 2024-08-13 | 2025-02-14 | 中国科学院空天信息创新研究院 | A method for azimuth ambiguity suppression of spaceborne SAR with spatial non-uniform sampling |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008084482A2 (en) * | 2007-01-10 | 2008-07-17 | Gurevich, Shamgar | Finite harmonic oscillator |
CN106291547A (en) * | 2016-06-14 | 2017-01-04 | 河海大学 | Doppler ambiguity component Adaptive Suppression method based on antenna radiation pattern auxiliary |
CN106896350A (en) * | 2017-03-13 | 2017-06-27 | 南京航空航天大学 | Clutter recognition and method for parameter estimation based on Relax algorithms under a kind of WAS GMTI patterns |
-
2018
- 2018-05-31 CN CN201810553217.3A patent/CN108845318B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008084482A2 (en) * | 2007-01-10 | 2008-07-17 | Gurevich, Shamgar | Finite harmonic oscillator |
CN106291547A (en) * | 2016-06-14 | 2017-01-04 | 河海大学 | Doppler ambiguity component Adaptive Suppression method based on antenna radiation pattern auxiliary |
CN106896350A (en) * | 2017-03-13 | 2017-06-27 | 南京航空航天大学 | Clutter recognition and method for parameter estimation based on Relax algorithms under a kind of WAS GMTI patterns |
Non-Patent Citations (3)
Title |
---|
Beam-Switch Wide Swath Mode for Interferometrically Compatible Products of the Post-Sentinel HRWS SAR System;Federica Bordoni;《The 18th International Radar Symposium IRS 2017》;20170630;正文全文 * |
WAS-GMTI模式下基于Relax算法的杂波抑制和参数估计方法;闫贺等;《电子与信息学报》;20161215(第12期);正文全文 * |
一种星载多通道高分辨率宽测绘带SAR系统通道相位偏差估计新方法;刘艳阳等;《电子与信息学报》;20130815(第08期);正文全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108845318A (en) | 2018-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107462887B (en) | Imaging method of wide-field spaceborne synthetic aperture radar based on compressed sensing | |
CN109100718B (en) | Bayesian Learning-Based Self-Focus and Lateral Calibration for Sparse Aperture ISAR | |
US8193967B2 (en) | Method and system for forming very low noise imagery using pixel classification | |
CN110244303B (en) | SBL-ADMM-based sparse aperture ISAR imaging method | |
CN101609151B (en) | Moving target detection method based on eigenvalue decomposition of single-channel synthetic aperture radar (SAR) image sequence | |
CN105929371B (en) | A kind of airborne radar clutter suppression method based on covariance matrix | |
CN108845318B (en) | Satellite-borne high-resolution wide-range imaging method based on Relax algorithm | |
CN104977582B (en) | A kind of deconvolution method for realizing the imaging of scanning radar Azimuth super-resolution | |
CN102645651B (en) | SAR (synthetic aperture radar) tomography super-resolution imaging method | |
US20100141508A1 (en) | Method and system for forming an image with enhanced contrast and/or reduced noise | |
CN105445704B (en) | A kind of radar moving targets suppressing method in SAR image | |
CN105699969B (en) | MAP estimation angle super-resolution imaging method based on Generalized Gaussian constraint | |
CN102879783B (en) | Sparse detection frequency signal-based inverse synthetic aperture radar (ISAR) imaging method | |
CN104698431B (en) | Based on the multichannel SAR orientation ambiguity solution method that obscuring component DOA estimates | |
CN103605116B (en) | Based on the imaging radar channel parameters online compensation method of sparse analysis | |
CN109597075B (en) | Imaging method and imaging device based on sparse array | |
CN106772273A (en) | A kind of SAR false targets disturbance restraining method and system based on dynamic aperture | |
Yang et al. | High-resolution and wide-swath SAR imaging via Poisson disk sampling and iterative shrinkage thresholding | |
CN108919263B (en) | ISAR high-resolution imaging method based on maximum mutual information criterion | |
CN110133656B (en) | Three-dimensional SAR sparse imaging method based on decomposition and fusion of co-prime array | |
CN108562901B (en) | ISAR high-resolution imaging method based on maximum signal-to-noise ratio criterion | |
CN105759264B (en) | Fine motion target defect echo high-resolution imaging method based on time-frequency dictionary | |
CN109471087B (en) | Direction-of-arrival estimation method based on co-prime MIMO radar difference set and signal collection fast Fourier transform | |
CN113885026B (en) | SAR sparse imaging method, device, electronic device and storage medium for moving targets | |
CN112180368B (en) | Data processing method, device, system and medium for multi-channel sliding spotlight SAR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |