CN110988432A - 全光纤电流互感器开环解调及半波电压跟踪方法 - Google Patents

全光纤电流互感器开环解调及半波电压跟踪方法 Download PDF

Info

Publication number
CN110988432A
CN110988432A CN201911281442.7A CN201911281442A CN110988432A CN 110988432 A CN110988432 A CN 110988432A CN 201911281442 A CN201911281442 A CN 201911281442A CN 110988432 A CN110988432 A CN 110988432A
Authority
CN
China
Prior art keywords
wave voltage
modulator
current transformer
fiber current
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911281442.7A
Other languages
English (en)
Other versions
CN110988432B (zh
Inventor
赵俊
姜琦
孙小菡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201911281442.7A priority Critical patent/CN110988432B/zh
Publication of CN110988432A publication Critical patent/CN110988432A/zh
Application granted granted Critical
Publication of CN110988432B publication Critical patent/CN110988432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明公开了全光纤电流互感器开环解调及半波电压跟踪方法。采用特定调制信号对全光纤电流互感器进行调制;对探测器的输出信号进行离散化采样处理,并对探测器输出信号的各段采样值进行分段累加处理;对累加结果进行解调运算,获取携带电流信息的调制相位,进而获得待测电流;同时,对调制器的工作半波电压进行实时跟踪,并进行动态反馈调节,以保证调制器的工作半波电压始终保持在调制器标准半波电压附近。本发明不仅能够解调测量电流大小,还能对调制器半波电压进行实时跟踪,并通过反馈调节半波电压大小,减小调制信号波动带来的误差,提高测量准确性。

Description

全光纤电流互感器开环解调及半波电压跟踪方法
技术领域
本发明属于电流传感技术领域,特别涉及了一种全光纤电流互感器的解调方法。
背景技术
长期以来,电磁式互感器一直扮演着电力系统运行监视的重要角色。变电站中测量监视和保护控制依靠它来获得测量、计量、保护所需的电流、电压等信息。随着电网电压的提高及智能化一次、二次设备的发展,传统的电磁式互感器已逐渐暴露出其自身的缺点,如电气绝缘薄弱、体积笨重、动态范围小、存在铁芯饱和、铁磁谐振过电压等。
随着变电站自动化技术的深入发展,出现了一次、二次设备相互渗透、融合的新型智能化一次设备。光学电流传感器是将光学技术和组件引入电流传感领域,利用光作为传感手段和信息载体的一种新型电流传感器。其优势主要表现在:信号在传输过程中受外界电磁干扰影响小,同时带宽广、容量大、传输距离受限少;传感器以光器件为元件具有绝缘性好、体积小、重量轻、安全性高的优点。因此光学电流传感器从问世开始就被业界给予极大的重视,成为了替代传统电磁式电流传感器的一个热门选择。
全光纤型电流传感器使用的光纤既是通信载体又作为传感器件,传感光纤绕制在被测导体周围,通电测量导线周围产生的磁场对光纤中信号光影响,达到测量电流的目的。全光纤型电流传感器方案具有装配简单、灵活性好、可以根据需求增减绕制的匝数等优点,同时随着光纤制作成本的大幅下降,制作成本日趋低廉,因此得到广泛的研究。但是,由于制作传感头部分光纤承受温度、振动、压力等外界影响,使其在温度、振动敏感性比光学玻璃型电流传感器要求更高,这也成为阻碍全光纤型电流传感器实用化的一大障碍。
全光纤型电流传感器目前主要有单光路电流互感器、双光路电流互感器、干涉光学电流互感器和反射式电流互感器。反射式电流互感器更具有抗干扰优势,更适合作为电流互感器现场使用。两束相干光束在传播过程中走过的管路完全一致,且在同一介质中传播,外接的干扰和元件制造偏差将会同时影响两束光,误差绝大分被抵消了;光行进的方向始终相同,不会引入相位差;光纤经反射镜反射,同样长度的传感光纤,光传输路程加倍,灵敏度提高。
全光纤电流互感器的解调算法很大程度上决定了设备测量的准确度。现阶段全光纤电流互感器的解调方案有开环解调和闭环解调两个方向。现有开环解调方案采用的大多是占空比1:1的方波调制信号,只能解调出调制相位、计算被测电流,无法对调制器的半波电压进行实时跟踪。调制器的标准半波电压与实际半波电压是有误差的,这导致解调得到的调制相移存在误差,测得的电流大小不准确,因此寻找能够实时跟踪调制器半波电压的开环解调算法,成为提高测量准确度的重要思路。
发明内容
为了解决上述背景技术提到的技术问题,本发明提出了全光纤电流互感器开环解调及半波电压跟踪方法。
为了实现上述技术目的,本发明的技术方案为:
全光纤电流互感器开环解调及半波电压跟踪方法,采用特定调制信号对全光纤电流互感器进行调制;对探测器的输出信号进行离散化采样处理,并对探测器输出信号的各段采样值进行分段累加处理;对累加结果进行解调运算,获取携带电流信息的调制相位,进而获得待测电流;同时,对调制器的工作半波电压进行实时跟踪,并进行动态反馈调节,以保证调制器的工作半波电压始终保持在调制器标准半波电压附近;
所述特定调制信号的周期为2T,在一个周期2T内,0~3T/8之间的幅值为5π/4、T/2~7T/8之间的幅值为-3π/4、T~11T/8之间的幅值为3π/4、3T/2~15T/8之间的幅值为-5π/4的,其余时间幅值为0,其中T为调制周期。
进一步地,探测器的输出信号的周期为2T,占空比为1:3,根据幅值将其波形在一个周期内分为U1~U8八段,各段的表达式如下:
Figure BDA0002316859910000031
Figure BDA0002316859910000032
Figure BDA0002316859910000033
Figure BDA0002316859910000034
Figure BDA0002316859910000035
Figure BDA0002316859910000036
Figure BDA0002316859910000037
Figure BDA0002316859910000038
上式中,P0为输入全光纤电流互感器的光强,Φs为调制相位。
进一步地,每个调制周期T内对探测器的输出信号进行8N次均匀采样,将U1~U8八段中各段的采样值进行累加,得到八段的累加值:
Figure BDA0002316859910000039
Figure BDA00023168599100000310
Figure BDA00023168599100000311
Figure BDA0002316859910000041
Figure BDA0002316859910000042
Figure BDA0002316859910000043
Figure BDA0002316859910000044
Figure BDA0002316859910000045
上式中,U1,3N、U2,N、U3,3N、U4,N、U5,3N、U6,N、U7,3N和U8,N依次为U1~U8对应的累加值,U1(n)~U8(n)依次为U1~U8中第n个采样点的值,N为正整数。
进一步地,根据下式求解调制相位Φs
Figure BDA0002316859910000046
进一步地,调制器的工作半波电压与调制器保准半波电压存在偏差,导致探测器输出信号的第1、3、5、7段的实际幅值与理想情况下存在偏差,第1、3、5、7段的实际幅值如下:
Figure BDA0002316859910000047
Figure BDA0002316859910000048
Figure BDA0002316859910000049
Figure BDA00023168599100000410
上式中,ε为误差系数,Vπ'=(1+ε)Vπ,Vπ'和Vπ分别为调制器的工作半波电压和标准半波电压;
令:
ΔU=(U1'+U7')-(U3'+U5')=2P0cosΦssin[(1+ε)π]sin[(1+ε)π/4])]
检测ΔU的大小,当检测到ΔU>0时,增加调制器的工作半波电压;当检测到ΔU<0时,减小调制器的工作半波电压;当检测到ΔU=0时,保持调制器的工作半波电压不变。
采用上述技术方案带来的有益效果:
本发明采用特定方波信号,不仅能够解调测量电流大小,还能对调制器半波电压进行实时跟踪,并通过反馈调节半波电压大小,减小调制信号波动带来的误差,提高测量准确性。
附图说明
图1是一种开环解调全光纤电流互感器结构示意图;
图中的标号说明:
1:光源;2:耦合器;3:起偏器;4:相位调制器;5:保偏光纤线圈;6:1/4波片;7:反射镜;8:传感光纤;9:探测器;10:A/D转换器;11:信号处理单元;12:被测电流信号;13:D/A转换器;14:方波信号S(t);15:方波信号S(t+τ);
图2为本发明中涉及到的信号波形图;其中,(a)为方波信号S(t)波形波形图;(b)为方波信号S(t+τ)波形波形图;(c)为调制信号波形图;(d)为探测器输出波形图;
图3为本发明全光纤电流互感器开环解调及半波电压跟踪方法的流程图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图1所示,全光纤电流互感器包括光源1、耦合器2、起偏器3、相位调制器4、保偏光纤5、1/4波片6、反射镜7、传感光纤8和探测器9。全光纤电流互感器的开环解调装置包括A/D转换器10、信号处理单元11和D/A转换器13,图1中的12为信号处理单元输出的被测电流信号,14和15分别为用于叠加出特定调制信号的方波信号。
在全光纤电流互感器中,光源1发出的光经过耦合器2及起偏器3后,形成线偏振光,线偏振光以45°注入保偏光5后,分成两束正交的线偏光分别沿保偏光纤的快、慢轴传输。两束线偏光经过1/4波片6后,分别变为左旋和右旋的圆偏振光,进入围绕在被测电流周围的传感光纤8。传感光纤作为Faraday材料,缠绕在一次导体外感应被测电流产生的磁场。Faraday磁光效应使两束圆偏光产生与被测电流大小成正比的相位差。两束圆偏振光经反射镜7反射后,偏振模式互换,并再次穿过传感光纤8,使产生的非互易相移加倍。两束圆偏振光再次通过1/4波片后,恢复为线偏振光,并在起偏器3处发生干涉,最后经由耦合器2输出携带相位信息的光。携带相位信息的光进入探测器9和A/D转换器10,转换为电信号,然后送往信号处理单元11解调出被测电流信息。
(1)特定调制信号的输入
理想情况下,开环OCT探测器PD的输出信号为
Figure BDA0002316859910000061
上式中,P0为输入光强,Фm为调制信,调制相位ФS=4VMI,M为传感光纤匝数,V为传感光纤的费尔德(Verdet)常数,值为1.12×10-6rad/A,I为被测电流。
如图2中的(a)和(b)所示,信号处理单元发出两束特殊的方波信号S(t)和S(t+τ),两束方波信号周期均为2T,时间差τ=T/2,S(t)周期内T/2~7T/8之间幅值为3π/4、3T/2~15T/8之间幅值为5π/4,其余时间幅值为0,S(t+τ)周期内T~11T/8之间幅值为3π/4、0~3T/4和15T/8~2T之间幅值为5π/4,其余时间幅值为0。两束方波信号混合后得到特定的调制信号Фm=S(t+τ)-S(t),其波形如图2中的(c)所示。调制信号的周期为2T、周期内0~3T/8之间幅值为5π/4、T/2~7T/8之间幅值为-3π/4、T~11T/8之间幅值为3π/4、3T/2~15T/8之间幅值为-5π/4,其余时间幅值为0。探测器输出的信号如图2中的(d)所示,输出信号周期为2T,占空比为1:3,根据幅值大小可将波形一周期内分为U1~U8八段,各段表达式分别为:
Figure BDA0002316859910000071
Figure BDA0002316859910000072
Figure BDA0002316859910000073
Figure BDA0002316859910000074
Figure BDA0002316859910000075
Figure BDA0002316859910000076
Figure BDA0002316859910000077
Figure BDA0002316859910000078
(2)信号离散化采样
对探测器输出信号进行离散化采样处理,每个调制周期T内对输出信号进行8N次均匀采样。PD输出信号的周期为2T,根据幅值可以分成U1~U8八段,将各段的采样值进行累加,得到:
Figure BDA0002316859910000079
Figure BDA00023168599100000710
Figure BDA00023168599100000711
Figure BDA00023168599100000712
Figure BDA0002316859910000081
Figure BDA0002316859910000082
Figure BDA0002316859910000083
Figure BDA0002316859910000084
其中,U1(n)~U8(n)依次为U1~U8中第n个采样点的值,N为正整数。
(3)解调得到调制相位ФS
根据获得的不同时间段采样值累加的结果,进行解调运算,获取携带电流大小信息的调制相位ФS。解调算法如下:
由(1)式+(3)式-(5)式-(7)式,得
Figure BDA0002316859910000085
由(1)式-3×(2)式+(3)式-3×(4)式+(5)式-3×(6)式+(7)式-3×(8)式,得
Figure BDA0002316859910000086
由(9)式/(10)式,得:
Figure BDA0002316859910000087
(4)跟踪调制器半波电压
调制器标准半波电压Vπ与调制器工作半波电压Vπ'的关系为:
Vπ'=(1+ε)Vπ
上式中,ε为误差系数。
半波电压的偏差造成探测器输出信号在2T的周期中,1、3、5、7段的幅值与理想情况下有偏差,实际幅值为:
Figure BDA0002316859910000091
Figure BDA0002316859910000092
Figure BDA0002316859910000093
Figure BDA0002316859910000094
那么:
ΔU=(U1'+U7')-(U3'+U5')=2P0cosΦssin[(1+ε)π]sin[(1+ε)π/4])]
当ΔU>0时,-1<ε<0,此时Vπ'<Vπ;当ΔU<0时,0<ε<1,此时Vπ'>Vπ;当ΔU=0时,ε=0,此时Vπ'=Vπ
根据此特性对调制器半波电压进行实时跟踪,并进行动态反馈调节:根据采样值检测ΔU的大小,当检测到ΔU>0时,增加调制器工作半波电压Vπ'=Vπ'+ΔV;当检测到ΔU<0时,减小调制器工作半波电压Vπ'=Vπ'-ΔV;当检测到ΔU=0时,保持调制器工作电压Vπ'不变。ΔV可以根据装置具体情况调整大小,ΔV越小,调整的准确度越高。动态的反馈调节可以保证调制器工作半波电压Vπ'始终保持在调制器标准工作半波电压Vπ附近。
上述全光纤电流互感器开环解调及半波电压跟踪方法的流程如图3所示。
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

1.全光纤电流互感器开环解调及半波电压跟踪方法,其特征在于:采用特定调制信号对全光纤电流互感器进行调制;对探测器的输出信号进行离散化采样处理,并对探测器输出信号的各段采样值进行分段累加处理;对累加结果进行解调运算,获取携带电流信息的调制相位,进而获得待测电流;同时,对调制器的工作半波电压进行实时跟踪,并进行动态反馈调节,以保证调制器的工作半波电压始终保持在调制器标准半波电压附近;
所述特定调制信号的周期为2T,在一个周期2T内,0~3T/8之间的幅值为5π/4、T/2~7T/8之间的幅值为-3π/4、T~11T/8之间的幅值为3π/4、3T/2~15T/8之间的幅值为-5π/4的,其余时间幅值为0,其中T为调制周期。
2.根据权利要求1所述全光纤电流互感器开环解调及半波电压跟踪方法,其特征在于:探测器的输出信号的周期为2T,占空比为1:3,根据幅值将其波形在一个周期内分为U1~U8八段,各段的表达式如下:
Figure FDA0002316859900000011
Figure FDA0002316859900000012
Figure FDA0002316859900000013
Figure FDA0002316859900000014
Figure FDA0002316859900000015
Figure FDA0002316859900000016
Figure FDA0002316859900000017
Figure FDA0002316859900000018
上式中,P0为输入全光纤电流互感器的光强,Φs为调制相位。
3.根据权利要求1所述全光纤电流互感器开环解调及半波电压跟踪方法,其特征在于:每个调制周期T内对探测器的输出信号进行8N次均匀采样,将U1~U8八段中各段的采样值进行累加,得到八段的累加值:
Figure FDA0002316859900000021
Figure FDA0002316859900000022
Figure FDA0002316859900000023
Figure FDA0002316859900000024
Figure FDA0002316859900000025
Figure FDA0002316859900000026
Figure FDA0002316859900000027
Figure FDA0002316859900000028
上式中,U1,3N、U2,N、U3,3N、U4,N、U5,3N、U6,N、U7,3N和U8,N依次为U1~U8对应的累加值,U1(n)~U8(n)依次为U1~U8中第n个采样点的值,N为正整数。
4.根据权利要求3所述全光纤电流互感器开环解调及半波电压跟踪方法,其特征在于:根据下式求解调制相位Φs
Figure FDA0002316859900000029
5.根据权利要求2所述全光纤电流互感器开环解调及半波电压跟踪方法,其特征在于:调制器的工作半波电压与调制器保准半波电压存在偏差,导致探测器输出信号的第1、3、5、7段的实际幅值与理想情况下存在偏差,第1、3、5、7段的实际幅值如下:
Figure FDA0002316859900000031
Figure FDA0002316859900000032
Figure FDA0002316859900000033
Figure FDA0002316859900000034
上式中,ε为误差系数,Vπ'=(1+ε)Vπ,Vπ'和Vπ分别为调制器的工作半波电压和标准半波电压;
令:
ΔU=(U1'+U7')-(U3'+U5')=2P0cosΦssin[(1+ε)π]sin[(1+ε)π/4])]
检测ΔU的大小,当检测到ΔU>0时,增加调制器的工作半波电压;当检测到ΔU<0时,减小调制器的工作半波电压;当检测到ΔU=0时,保持调制器的工作半波电压不变。
CN201911281442.7A 2019-12-13 2019-12-13 全光纤电流互感器开环解调及半波电压跟踪方法 Active CN110988432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911281442.7A CN110988432B (zh) 2019-12-13 2019-12-13 全光纤电流互感器开环解调及半波电压跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911281442.7A CN110988432B (zh) 2019-12-13 2019-12-13 全光纤电流互感器开环解调及半波电压跟踪方法

Publications (2)

Publication Number Publication Date
CN110988432A true CN110988432A (zh) 2020-04-10
CN110988432B CN110988432B (zh) 2021-09-28

Family

ID=70093225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911281442.7A Active CN110988432B (zh) 2019-12-13 2019-12-13 全光纤电流互感器开环解调及半波电压跟踪方法

Country Status (1)

Country Link
CN (1) CN110988432B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325030A (zh) * 2021-09-30 2022-04-12 南京曦光信息科技研究院有限公司 一种基于光学电流互感器的双方波调制开环解调方法
CN116125120A (zh) * 2023-04-04 2023-05-16 国网江西省电力有限公司电力科学研究院 一种cmb并联补偿电容整定方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695494A (en) * 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
CN101881669A (zh) * 2010-06-22 2010-11-10 浙江大学 集成电光相位调制器半波电压的实时闭环测量和追踪方法
CN102279300A (zh) * 2011-05-06 2011-12-14 北京航空航天大学 一种全光纤电流互感器的开环信号检测方法及装置
CN102981136A (zh) * 2012-11-26 2013-03-20 东南大学 基于电压调制的光纤电流互感器动态性能标定方法
CN103777062A (zh) * 2013-12-13 2014-05-07 国家电网公司 一种干涉环式全光纤电流互感器
CN103926457A (zh) * 2014-04-25 2014-07-16 国家电网公司 一种提高光纤电流互感器闭环反馈系数稳定性的方法
CN106199125A (zh) * 2016-07-11 2016-12-07 国网北京经济技术研究院 一种新型全光纤电流互感器及其调制解调方法
CN106645911A (zh) * 2016-12-28 2017-05-10 易能乾元(北京)电力科技有限公司 基于单一光路的开环独立双采样回路的全光纤电流互感器
CN107422166A (zh) * 2017-08-07 2017-12-01 北京航天时代光电科技有限公司 一种光纤电流互感器用抑制光功率波动调制解调方法
WO2018176968A1 (zh) * 2017-04-01 2018-10-04 唯捷创芯(天津)电子技术股份有限公司 一种具有串并联结构的包络线跟踪电源、芯片及通信终端

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695494A (en) * 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
CN101881669A (zh) * 2010-06-22 2010-11-10 浙江大学 集成电光相位调制器半波电压的实时闭环测量和追踪方法
CN102279300A (zh) * 2011-05-06 2011-12-14 北京航空航天大学 一种全光纤电流互感器的开环信号检测方法及装置
CN102981136A (zh) * 2012-11-26 2013-03-20 东南大学 基于电压调制的光纤电流互感器动态性能标定方法
CN103777062A (zh) * 2013-12-13 2014-05-07 国家电网公司 一种干涉环式全光纤电流互感器
CN103926457A (zh) * 2014-04-25 2014-07-16 国家电网公司 一种提高光纤电流互感器闭环反馈系数稳定性的方法
CN106199125A (zh) * 2016-07-11 2016-12-07 国网北京经济技术研究院 一种新型全光纤电流互感器及其调制解调方法
CN106645911A (zh) * 2016-12-28 2017-05-10 易能乾元(北京)电力科技有限公司 基于单一光路的开环独立双采样回路的全光纤电流互感器
WO2018176968A1 (zh) * 2017-04-01 2018-10-04 唯捷创芯(天津)电子技术股份有限公司 一种具有串并联结构的包络线跟踪电源、芯片及通信终端
CN107422166A (zh) * 2017-08-07 2017-12-01 北京航天时代光电科技有限公司 一种光纤电流互感器用抑制光功率波动调制解调方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
欧阳康 等: "全光纤电流互感器的新型调制解调方案研究", 《中国激光》 *
陈旭宇 等: "闭环全光纤电流互感器温度补偿方法研究", 《传感技术学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325030A (zh) * 2021-09-30 2022-04-12 南京曦光信息科技研究院有限公司 一种基于光学电流互感器的双方波调制开环解调方法
CN114325030B (zh) * 2021-09-30 2024-05-03 南京曦光信息科技研究院有限公司 一种基于光学电流互感器的双方波调制开环解调方法
CN116125120A (zh) * 2023-04-04 2023-05-16 国网江西省电力有限公司电力科学研究院 一种cmb并联补偿电容整定方法及系统
CN116125120B (zh) * 2023-04-04 2023-08-15 国网江西省电力有限公司电力科学研究院 一种cmb并联补偿电容整定方法及系统

Also Published As

Publication number Publication date
CN110988432B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN102628884B (zh) 闭环光纤电流互感器
CN211905488U (zh) 闭环解调全光纤电流互感器
CN110988432B (zh) 全光纤电流互感器开环解调及半波电压跟踪方法
CN105974172A (zh) 一种基于保偏光纤温度传感器的全光纤电流互感器
CN109709372A (zh) 一种地铁/煤矿杂散电流光纤传感器闭环控制装置及方法
CN113945744B (zh) 一种全光纤直流电流互感器温度补偿系统及方法
CN106443126B (zh) 一种测量电光晶体半波电压的方法与装置
CN114577245B (zh) 一种同时测量电流和振动的光纤传感系统
CN106546793A (zh) 三相一体化全光纤电流互感器
CN112034229A (zh) 一种全光纤电压互感器
CN110927431A (zh) 闭环解调全光纤电流互感器及其大电流波形跳变问题解决方法
CN113203889B (zh) 一种基于磁致伸缩效应的高压线路电流光学测量装置
CN108254616A (zh) 一种具有温度补偿的螺线管式光学小电流传感器
CN102928647B (zh) 光学式电压传感系统及相应迭代解调方法
CN207992311U (zh) 一种具有温度补偿的螺线管式光学小电流传感器
CN109212458A (zh) 一种基于非互易相移器材的Sagnac干涉型大电流光纤电流互感器测量方法
CN106940395B (zh) 一种光学电流互感器
CN107422166B (zh) 一种光纤电流互感器用抑制光功率波动调制解调方法
CN115308665A (zh) 基于光学电流互感器闭环算法的调制器半波电压跟踪方法
CN101661054B (zh) 一种用于直流高压输电的光纤直流电流比较仪
CN102929323A (zh) 全光纤电流传感器及电流闭环反馈校正方法
CN205786792U (zh) 一种基于保偏光纤温度传感器的全光纤电流互感器
CN114325030B (zh) 一种基于光学电流互感器的双方波调制开环解调方法
CN111562422A (zh) 无源电子式电流互感器
CN113063983B (zh) 一种基于磁致伸缩效应的三相高压线路电流光学测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant