CN110982722A - Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin - Google Patents

Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin Download PDF

Info

Publication number
CN110982722A
CN110982722A CN201911346558.4A CN201911346558A CN110982722A CN 110982722 A CN110982722 A CN 110982722A CN 201911346558 A CN201911346558 A CN 201911346558A CN 110982722 A CN110982722 A CN 110982722A
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
balsamic alcohol
balsamic
synthase
mdosc1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911346558.4A
Other languages
Chinese (zh)
Inventor
王颖
余源
常鹏程
刘皓然
李春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201911346558.4A priority Critical patent/CN110982722A/en
Publication of CN110982722A publication Critical patent/CN110982722A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01088Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/0102Diacylglycerol O-acyltransferase (2.3.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)
    • C12Y504/9904Alpha-amyrin synthase (5.4.99.40)

Abstract

The invention provides a method for constructing Saccharomyces cerevisiae (Saccharomyces cerevisiae) for efficiently synthesizing α -balsamic alcohol, belonging to the field of bioengineering.A series of mutants are obtained by carrying out semi-rational design on α -balsamic alcohol synthase derived from apples (Malus domestica) through saturated mutation and iterative mutation of key amino acid residue sites, wherein the mutants comprise MdOSC1 mutants with the highest catalytic activity, and then key genes in a α -balsamic alcohol synthesis way are overexpressed, and diacylglycerol acyltransferase (DGA1) is overexpressed, so that the storage capacity of α -balsamic alcohol in Saccharomyces cerevisiae cells is improved.

Description

Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin
Technical Field
The invention belongs to the field of bioengineering, and particularly relates to a construction method and application of saccharomyces cerevisiae for efficiently synthesizing α -amyrin.
Background
α -citronellol is an important ursane-type pentacyclic triterpenoid, has various common biological activities including anti-tumor, anti-inflammatory, anti-oxidation, immune enhancement and liver protection, and has the strongest antiproliferative activity, α -citronellol is widely distributed in leaves, fruits and rhizomes of plants as a plant secondary metabolite, but the accumulation amount is small, the traditional chemical synthesis and plant source extraction efficiency is low, the yield is limited, the period is long, and the pollution is serious.
The traditional metabolic engineering strategy is used for improving the yield, and the measures of over-expression of key genes of a target product synthesis pathway, down-regulation and balance of a competitive pathway, utilization of pathway intermediates and the like are widely applied, and in addition, the storage capacity of the saccharomyces cerevisiae for hydrophobic compounds can be improved, so that the accumulation of α -balsam stem (3s) -2, 3-oxidized squalene can be increased, and the yield of α -balsam stem is expected to be improved.
More importantly, the catalytic activity of α -balsamic alcohol synthase greatly affected α -balsamic alcohol production, so I performed (semi-) rational design and engineering of α -balsamic alcohol synthase to increase catalytic activity and specificity of the enzyme, the semi-rational design approach we adopted created a small and precise library of mutations relative to directed evolution based on crystal structure and computational models, using residues around the active site and substrate binding site as optimal candidates for mutagenesis, modified to produce α -balsamic alcohol synthase with increased catalytic activity or specificity, microbial production of plant natural product α -balsamic alcohol was achieved by introducing α -balsamic alcohol synthase into Saccharomyces cerevisiae, combining protein engineering with metabolic engineering to further optimize the Saccharomyces cerevisiae cell factory, increasing α -balsamic alcohol production, which all provided valuable reference for efficient production of plant natural products using Saccharomyces cerevisiae.
Disclosure of Invention
The invention aims to provide a construction method of saccharomyces cerevisiae for efficiently synthesizing α -balsamic alcohol, which comprises the construction of a α -balsamic alcohol synthase mutant with high activity.
Semi-rational design of enzymes, according to claims 1,2 and 3, comprising semi-rational design of apple-derived α -balsamic alcohol synthase MdOSC1(Malus domimestica, GenBank accession No. ACM89977.1), homogeneous modeling with the crystal structure of human lanosterol synthase (PDB:1W6K) as template by means of the on-line tool Swiss-Model, and simultaneous use of the on-line tool Pub chem
(https:// pubchem. ncbi. nlm. nih. gov /) 3D structure of the substrate (3S) -2, 3-oxidosqualene was predicted and molecular docking was performed using Autodock1.5.6 software.
The construction of α -balsamic alcohol synthase mutants, as shown in claims 1,2 and 4, involves selecting the sequence closest to the substrate binding domain (353DQIHYEDENSRYITIGCVEKPLMML377), the sequence near the catalytic domain (249LPFHPSKMFCYCRLTYLPMS268) and the N-terminal part sequence (2WKIKFGEGANDPMLFSTNNFHGRQ25) as mutation sites and subjecting them to alanine scanning mutation after molecular docking of α -balsamic alcohol synthase MdOSC1 with the substrate (3S) -2, 3-oxidosqualene, and selecting the nonpolar amino acid residues P250 and P373 near the active center and the polar amino acid residue N11 outside the active center for saturation mutation among the amino acid residues whose catalytic activity is markedly enhanced after mutation.
The process of claim 1,2 or 5, wherein the obtaining of a series of mutants from α -balsamic alcohol synthase mutants with high activity comprises selecting single-point mutants N11I, P250N and P373A with high catalytic activity as candidate mutation sites of iterative mutants, combining them, constructing α -balsamic alcohol synthase iterative mutants using α -balsamic alcohol synthase plasmid containing single-point mutations as template to generate double mutants and triple mutants, and finally obtaining α -balsamic alcohol synthase mutant MdOSC1-1 with highest catalytic activity, introducing original strain Insc1 of Saccharomyces cerevisiae to obtain strain aAM8, and increasing aAM8 by 1310% compared with MdOSC1 of strain introduced MdOSC1 gene in terms of production of α -balsamic alcohol in Saccharomyces cerevisiae.
The construction of high copy plasmids overexpressing α -key enzymes of the balsamic alcohol synthesis pathway, as shown in claims 6 and 7, the α -balsamic alcohol synthase mutant MdOSC1-1 expression cassette was constructed on pYYG vector.
The method for constructing α -overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the synthetic pathway of citronellol as shown in the claims 6 and 7 comprises constructing PTEF1-HIS3-TADH1 gene expression cassette, transforming and integrating the gene expression cassette into rDNA locus of Saccharomyces cerevisiae XII chromosome, and introducing truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase expression cassette P into the rDNA locusTDH3-tHMG1-THMG1And PTEF1-HIS3-TADH1
As shown in claim 9, the construction of recombinant strain integrating Saccharomyces cerevisiae endogenous diacylglycerol acyltransferase (DGA1) at high copy site of genome is carried out by introducing Saccharomyces cerevisiae INVSC1(MATa/MAT α his3 delta 1leu2 trp1-289ura3-52) as host strain on delta site by homologous recombination technique to improve the storage capacity of Saccharomyces cerevisiae for hydrophobic oil and fat substances, wherein the constructed expression cassette is "P1ADH1-DGA1-TDGA1”。
The method of claims 8 and 10, wherein the constructed recombinant strain comprises 6,7 and 9 integrated to obtain the engineered saccharomyces cerevisiae aamm 15 with enhanced expression of MVA pathway and enhanced product storage capacity, and experiments prove that the yield of α -balsamic alcohol high-yield engineered bacterium aAM15 and α -balsamic alcohol obtained by the homologous recombination method reaches 213.79mg/L, which is 93.6 times higher than that of the strain without protein engineering and metabolic engineering modification.
The saccharomyces cerevisiae engineering bacteria have the following advantages:
1. the expression of α -balsamic alcohol synthase in the invention is induced by galactose, thus realizing the production of α -balsamic alcohol in a specific stage, reducing the damage of α -balsamic alcohol to the cells of Saccharomyces cerevisiae (Saccharomyces cerevisiae), and improving the yield.
2. The invention utilizes Saccharomyces cerevisiae as a chassis host, and α -balsamic alcohol synthase is transformed through semi-rational design to obtain the mutant MdOSC1-1 with greatly improved catalytic activity, which can be applied to the high-efficiency synthesis of other downstream metabolites (such as ursolic acid and the like).
3. According to the invention, the Saccharomyces cerevisiae engineering bacteria directly synthesize a large amount of α -balsam alcohol by using glucose and galactose, so that the high-efficiency synthesis of the plant secondary metabolite in the Saccharomyces cerevisiae is realized, the problems of low early-stage chemical synthesis and separation extraction yield are solved, and the industrial production of α -balsam alcohol is promoted.
Drawings
FIG. 1 shows the strategy for constructing a Saccharomyces cerevisiae cell factory for efficient synthesis of α -amycolate.
FIG. 2 is a Pymol software analysis of the α -balsamic alcohol synthase MdOSC1 and (3S) -2, 3-oxidosqualene docking model.
FIG. 3 shows the yield of all α -balsamic alcohol synthase MdOSC1 mutants constructed during the patent design.
FIG. 4 shows the results of gas mass spectrometry detection and yield of α -balsam alcohol produced by the engineered strain of Saccharomyces cerevisiae in the patent construction.
Detailed Description
The present invention will be further described with reference to the following examples. It should be understood that the following examples are illustrative only and are not intended to limit the scope of the present invention. The experimental procedures used in the following examples are all conventional procedures unless otherwise specified. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The sequences of the PCR primers (Table 1) used in the following examples:
TABLE 1 PCR primer sequences
Figure BDA0002333524810000031
Example 1 MdOSC1 mutant screening
For molecular docking of wild-type α -balsamic alcohol synthase MdOSC1 from apple, the study used the X-ray crystal structure of human lanosterol synthase (PDB:1W6K) reported in the PDB database (http:// www.wwpdb.org) as a homologous protein template to MODEL the 3D structure of MdOSC1 by the online tool SWISS-MODEL (http:// www.swissmodel.expasy.org). Simultaneous with the online tool Pubchem (htps:// pubchem.ncbi.nlm.nih.gov /) to predict the 3D structure of the substrate (3S) -2, 3-oxidosqualene, the structure files for MdOSC1 and (3S) -2, 3-oxidosene, respectively, were downloaded, and the molecular docking simulation was performed using AutoDock1.5.6, introducing MdOSC1 and (3S) -2, 3-oxidosene, respectively, where the structure files for MdOSC1 and (3S) -2, 3-oxidosene (3-oxidosene, 5459811, were performed as substrates:
Edit>Charges>Add Kollman Charges
Edit>Hydrogens>Add(Hydrogens)>Polar Only>OK
WithBondOrder
Yes
Grid>Macromolecule>choose>pdb name>Select Molecule
if the file is opened smoothly, the molecular file to be docked (receiver) is saved in the pdbqt format
Grid>Grid box>Spacing(angstrom)=1
Number of points in x-dimension
Number of points in y-dimension
Number of points in z-dimension
With the region between the substrate binding domain and the catalytic domain of MdOSC1 as the molecular docking center, a molecular docking region with a Grid box parameter of 80X 80(x center, y center and z center) is set to enable the lattice center to be at the protein molecular center, the terminal is opened, the destination folder is entered (entry method: cd/next level directory), the default installation path is used as an example, the previously saved α -balsamic alcohol synthase MdOSC1 and the (3S) -2, 3-oxidosqualene profile, pdbqt and the Grid box parameter txt internal information is used as a reference, the command C: \\\ Program Files:. pdbqt-pdt-center _ x-center _ y-title _ search _ visual _ visual _ Vina _ Vina _.
The created substrate docking model was further analyzed by PyMOL software to examine and identify key amino acid residues around the binding pocket (484DCTAE488) and catalytic site (256MFCYCR261) of MdOSC1, select the sequence near the substrate binding domain (353DQIHYEDENSRYITIGCVEKPLMML377), the sequence near the catalytic domain (249LPFHPSKMFCYCRLTYLPMS268), and the N-terminal portion sequence (2WKIKFGEGANDPMLFSTNNFHGRQ25) as mutation sites, use alanine scanning mutation to mutate the candidate amino acid residue sites to alanine, convert saccharomyces cerevisiae, GC-MS detects the yield of α -balsamic alcohol, select the mutant with significantly changed yield among MdOSC1 mutants, further combine the single-point mutants with higher catalytic activity to generate double mutants and triple mutants using MdOSC1 as a template, convert saccharomyces cerevisiae, GC-MS detects the yield of α -balsamic alcohol, and screen iterative mutants that can further improve the catalytic activity of MdOSC1.
Example 2 construction of mutant MdOSC1-1 high expression plasmid
The pYYG vector is a truncated vector based on the pESC plasmid, the plasmid is minimized by removing non-essential sequences in the plasmid, the pESC-Trp-MdOSC1-1 plasmid is used as a template, BamHI and XhoI enzyme cutting sites are respectively introduced into an upstream primer and a downstream primer, the MdOSC1-1 gene is amplified by PCR, a PCR reaction system is shown in Table 2, and PCR reaction conditions are specifically set according to the actual conditions such as the primer composition, the size of an amplified fragment and the like.
TABLE 2 PCR reaction System
Figure BDA0002333524810000041
And (3) PCR reaction conditions: from the second step to the 4 th step, 30 cycles were repeated.
Figure BDA0002333524810000042
Construction of pYYG-Trp-MdOSC1-1 plasmid:
the PCR product of MdOSC1-1 and the pYYG-Trp vector were digested with BamHI and XhoI restriction enzymes, and the desired fragment was inserted into the corresponding site of the pYYG-Trp vector, and the digestion system is shown in Table 3. After the reaction, electrophoresis was performed using 1% agarose gel, and the target fragment was recovered by a DNA gel recovery kit.
TABLE 3 plasmid digestion reaction
Figure BDA0002333524810000043
Reaction conditions are as follows: reacting at 37 ℃ for 2-6 hours.
The desired fragment MdOSC1-1 was ligated to the pYYG-Trp vector fragment using T4 DNA ligase from Thermo, and ligation transformation was performed according to the following system (Table 4).
TABLE 4 plasmid digestion reactions
Figure BDA0002333524810000051
Note that: the components must be added sequentially, and the molar ratio of the insert to the carrier is 2-10: 1. Mixing the components evenly, and carrying out water bath at 16 ℃ for 2 h. After the reaction was complete, the ligation product (10. mu.l) was transformed into E.coli competent cells. Positive clones were screened by colony PCR and correct clones were verified by sequencing. The successfully constructed plasmid was used as a backbone for the construction of the point mutant plasmid.
Example 3 Co-expression of Key genes and diacylglycerol acyltransferase (DGA1) Gene in the MVA pathway
Assembling metabolic pathway key gene expression cassette P by the same method as constructing plasmid gene expression cassetteTDH3-tHMG1-THMG1Meanwhile, pESC-His plasmid is taken as a template, and a His screening gene expression cassette P is amplified by PCRTEF1-HIS3-TADH1. The rDNA site homology arms were amplified by PCR using yeast genomic DNA as a template. Primers used to construct the genome assembly strain AM1 are shown in table 5, with the overlap indicated by underlining.
TABLE 5 Gene expression cassettes ERG20, ERG9, ERG1 genome Whole primers
Figure BDA0002333524810000052
Figure BDA0002333524810000061
Assembly of Gene expression cassette P Using PCRDGA1-DGA1-TDGA1Meanwhile, using pESC-Leu plasmid as template, PCR amplifying Leu screening gene expression box PTEF1-HIS3-TADH1. The rDNA site homology arms were amplified by PCR using yeast genomic DNA as a template. The primers used are shown in Table 6, the primers are underlined to indicate the overlap.
TABLE 6 Gene expression cassette tHMG1, DGA1 genome Whole primer
Figure BDA0002333524810000062
Figure BDA0002333524810000071
And (3) converting Leu and DGA1 expression cassettes obtained by PCR amplification into AM1 Saccharomyces cerevisiae competent cells, screening by using an SD-His-Leu solid culture medium, and verifying the positive engineering bacteria AM2 by colony PCR.
Example 4 construction of engineered Saccharomyces cerevisiae efficiently synthesizing α -citronellol and detection of products
Combining the MdOSC1 mutant with the highest catalytic activity constructed in example 2 with the Saccharomyces cerevisiae Chassis host bacteria constructed in example 3 to obtain α -amycolatol high-yielding engineering bacteria aAM15, inoculating a single colony thereof into a liquid culture medium, performing shake culture at 30 ℃ for 24 hours, inoculating the single colony to a new liquid culture medium in an amount of 5% by volume, performing shake culture at 30 ℃ for 48 hours, adding galactose to 2g/L, performing continuous culture for 5 days, centrifuging for 5 minutes after fermentation, collecting thalli, suspending in 10 ml of 20% (w/v) potassium hydroxide, boiling at 100 ℃ for 10 minutes to lyse the cells, extracting N-hexane, transferring the organic phase, and performing rotary evaporation to dryness, alkylating the crude sample at 80 ℃ with N-methyl-N (trimethylsilyl) trifluoroacetamide and pyridine, performing gas chromatography-mass spectrometry using Shimadzu GCMS-QP PLUS (Shimadzu), performing qualitative and quantitative analysis using DB-5mS column (Agilen), performing qualitative and quantitative analysis at an initial temperature of 80 ℃, maintaining the initial temperature at 40 min to 280 min, maintaining the temperature at a temperature of 300 ℃/1 ℃/min, and performing temperature distribution detection at a temperature distribution mode of 10 ℃/1 μ L.
Sequence listing
<110> Beijing university of science and technology
<120> construction method of saccharomyces cerevisiae for efficiently synthesizing α -balsam stem
<130>1
<160>19
<170>SIPOSequenceListing 1.0
<210>1
<211>2119
<212>DNA
<213> apple (Malus domestica)
<400>1
atgtggaaga tcaagtttgg agagggtgca aatgacccta tgttgttcag cacaaacaac 60
ttccatggaa ggcagacatg ggagttcgac ccagatgcag gtaccgagga ggagcgagca 120
gaagttgaag ctgctcgtga gcatttctac caaaatcgct tcaaggtcca gcctagcagc 180
gacctcctat ggcgttttca gatactaaga gagaaaaact ttaaacaaga aattcctcca 240
gtaagagttg gggagggtga ggacattaca tatgatcagg ccacagctgc attcaggagg 300
gctgctacct tctggaatgc cttgcaatca ccccatggac attggcctgc tgaaaatgct 360
ggcccaaact tttacttccc tcccttggtc atggctgcat acattccagg atatctcaat 420
gttattttct ccgctgagca caagaaggaa atcttgcgtt acacatacaa ccatcaaaat 480
gaagatggtg gctggggact gcacatagcg gggcctagta tgatgtttac tacatgccta 540
aactactgta tgatgcgtat tctcggagat ggccccgatg gtggtcgtga caatgcctgt 600
gcaagggcac gaaagtggat tcttgaccgt ggtggtgcgt actattctgc atcatggggc 660
aaaacttgga tggcgattct tggtgtgtat gactgggaag gcagcaaccc aatgccccca 720
gaattctgga ctgggtcgac tctgcttcct tttcatccat caaaaatgtt ctgctactgt 780
aggttgactt acctacctat gtcttacttt tatgccacaa gatttgttgg cccaatcact 840
ccacttgttg aggaattgag acaagaaatt tactgtgaat cttacaacga aattaactgg 900
cctaaagtgc gccattggtg tgcaacagaa gataactact atccccatgg tcgtgtacaa 960
cgttttatgt gggacggttt ttacaatatc gtcgagcctc tcctaaaacg ctggcctttc 1020
aagaagatca gagacaatgc aattcaattc acaattgacc aaattcatta tgaagatgag 1080
aacagtcgtt acattacaat cggatgcgtg gaaaagccat tgatgatgct tgcttgctgg 1140
gccgaggatc ctagtggaga agctttcaag aagcatcttc ctagagttac cgattatatc 1200
tggctcggag aggatggaat caagatgcaa agttttggaa gccagtcatg ggattgtgct 1260
cttgtgattc aagctttgct tgctgggaat cttaatgctg aaatgggacc cacccttaag 1320
aaagcacacg aattcctcaa gatatctcag gtgaggatta atacatccgg tgactaccta 1380
tctcatttcc gtcacatttc aaagggcgca tggacattct ctgaccgtga tcatggatgg 1440
caagtgtcag attgcactgc agaagcactg aggtgttgct gcatttttgc aaatatgtcc 1500
ccagaagttg ttggtgagcc aatggaagct gagtgtatgt atgatgctgt caatgtcatc 1560
atgtctcttc aaagtccaaa tggtggtgta tcagcctggg agccaacagg agcaccaaaa 1620
tggttggagt ggctcaaccc tgtggagttt cttgaggacc ttgtcattga gtacgagtac 1680
atcgagtgca cttcatcttc gatccaggcc ttaacattgt ttaggaagtt gtaccctggc 1740
catagaagga aggagatcaa caatttcatc acaagggctg cagactacat tgaagacata 1800
cagtaccctg atggctcatg gtatggaaac tggggaatct gcttcgtgta tggtacatgg 1860
ttcgcaatca aagggctgga ggctgccggc aggacataca acaactgtga ggcagtgcgc 1920
aaaggtgtcg actttttgct caaaacacaa agggcagatg gtggctgggg agagcactac 1980
acctcatgca caaacaagaa atatacagct caagacagta caaatttagt ccaaactgca 2040
ctcggattaa tgggtctgat tcacggtcga caggctgaga gagatccaac tcctattcac 2100
cgggctgctg cggtgttaa 2119
<210>2
<211>1491
<212>DNA
<213> Candida albicans (Candida albicans)
<400>2
atgagttcag ttaagtatga tgctattatt attggtgcag gggttattgg tcccaccatt 60
gcaactgctt ttgccagaca agggagaaag gttttgattg tggaaagaga ctggtccaag 120
ccagatagaa ttgttggaga gttgatgcaa ccggctggta tcaaggcatt aagagagttg 180
gggatgatca aagctattaa taatattagg gctgttgatt gtactgggtactatatcaaa 240
tattatgacg agaccattac tatcccttat ccattgaaaa aagatgcctg tatcactaat 300
ccagtgaagc cagttcctga tgccgttgat ggtgtaaatg ataaattgga tagtgattcc 360
acattgaatg ttgatgactg ggattttgat gaaagagtac gtggggctgc atttcaccat 420
ggggatttcc ttatgaattt aagacaaatt tgtcgtgatg aaccaaatgt taccgcagtt 480
gaagcaacag taacaaagat tttgcgtgat cctctggatc ctaacacagt tattggtgtg 540
caaacaaaac aacccagtgg cactgttgat taccatgcaa agttgacaat cagttgtgat 600
ggtatttact ccaaattcag aaaggaatta agtcctacta atgttccaac cattggctct 660
tactttattg ggttgtattt gaagaatgct gaattaccag ctaagggcaa aggtcatgtg 720
ttattgggag gacatgcacc agcattgata tattcagtgt ccccaactga aacacgtgta 780
ttgtgtgttt atgtttcatc aaaacctcct tctgctgcta acgatgcagt ttacaagtat 840
ttgagagata acattttgcc agcaattcct aaagagactg ttcctgcttt taaggaagcc 900
cttgaagaaa gaaagtttag aatcatgcca aaccagtatc tttctgctat gaaacaaggt 960
agtgaaaacc ataaagggtt tatattgtta ggtgattctt taaatatgag acatccatta 1020
actgggggtg gtatgacagt tggtttaaat gatagtgtgt tattagcaaa attgttgcat 1080
ccaaaatttg ttgaagattt tgatgatcac caattgattg ctaaaagatt aaagacattc 1140
cacagaaaaa gaaagaattt ggacgctgtt atcaacacat tatctatttc attatattca 1200
ttatttgccg ctgataagaa acctttaaga atattaagaa atggttgttt taaatatttc 1260
caaagaggtg gagaatgtgt taacgggcca attggattat tgagtggcat gttaccattc 1320
ccaatgttgt tattcaacca ttttttcagt gttgccttct attcggtcta tttgaatttt 1380
atagaaagag gacttttggg attcccattg gcattatttg aggcatttga agtgttgttc 1440
actgcaattg taatctttac tccatattta tggaacgaga ttgtaagata g 1491
<210>3
<211>1335
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>3
atgggaaagc tattacaatt ggcattgcat ccggtcgaga tgaaggcagc tttgaagctg 60
aagttttgca gaacaccgct attctccatc tatgatcagt ccacgtctcc atatctcttg 120
cactgtttcg aactgttgaa cttgacctcc agatcgtttg ctgctgtgat cagagagctg 180
catccagaat tgagaaactg tgttactctc ttttatttga ttttaagggc tttggatacc 240
atcgaagacg atatgtccat cgaacacgat ttgaaaattg acttgttgcg tcacttccac 300
gagaaattgt tgttaactaa atggagtttc gacggaaatg cccccgatgt gaaggacaga 360
gccgttttga cagatttcga atcgattctt attgaattcc acaaattgaa accagaatat 420
caagaagtca tcaaggagat caccgagaaa atgggtaatg gtatggccga ctacatctta 480
gatgaaaatt acaacttgaa tgggttgcaa accgtccacg actacgacgt gtactgtcac 540
tacgtagctg gtttggtcgg tgatggtttg acccgtttga ttgtcattgc caagtttgcc 600
aacgaatctt tgtattctaa tgagcaattg tatgaaagca tgggtctttt cctacaaaaa 660
accaacatca tcagagatta caatgaagat ttggtcgatg gtagatcctt ctggcccaag 720
gaaatctggt cacaatacgc tcctcagttg aaggacttca tgaaacctga aaacgaacaa 780
ctggggttgg actgtataaa ccacctcgtc ttaaacgcat tgagtcatgt tatcgatgtg 840
ttgacttatt tggccggtat ccacgagcaa tccactttcc aattttgtgc cattccccaa 900
gttatggcca ttgcaacctt ggctttggta ttcaacaacc gtgaagtgct acatggcaat 960
gtaaagattc gtaagggtac tacctgctat ttaattttga aatcaaggac tttgcgtggc 1020
tgtgtcgaga tttttgacta ttacttacgt gatatcaaat ctaaattggc tgtgcaagat 1080
ccaaatttct taaaattgaa cattcaaatc tccaagatcg aacagtttat ggaagaaatg 1140
taccaggata aattacctcc taacgtgaag ccaaatgaaa ctccaatttt cttgaaagtt 1200
aaagaaagat ccagatacga tgatgaattg gttccaaccc aacaagaaga agagtacaag 1260
ttcaatatgg ttttatctat catcttgtcc gttcttcttg ggttttatta tatatacact 1320
ttacacagag cgtga 1335
<210>4
<211>1059
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>4
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttacttctt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatcaa tgacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaatag 1059
<210>5
<211>1578
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>5
atggaccaat tggtgaaaac tgaagtcacc aagaagtctt ttactgctcc tgtacaaaag 60
gcttctacac cagttttaac caataaaaca gtcatttctg gatcgaaagt caaaagttta 120
tcatctgcgc aatcgagctc atcaggacct tcatcatcta gtgaggaaga tgattcccgc 180
gatattgaaa gcttggataa gaaaatacgt cctttagaag aattagaagc attattaagt 240
agtggaaata caaaacaatt gaagaacaaa gaggtcgctg ccttggttat tcacggtaag 300
ttacctttgt acgctttgga gaaaaaatta ggtgatacta cgagagcggt tgcggtacgt 360
aggaaggctc tttcaatttt ggcagaagct cctgtattag catctgatcg tttaccatat 420
aaaaattatg actacgaccg cgtatttggc gcttgttgtg aaaatgttat aggttacatg 480
cctttgcccg ttggtgttat aggccccttg gttatcgatg gtacatctta tcatatacca 540
atggcaacta cagagggttg tttggtagct tctgccatgc gtggctgtaa ggcaatcaat 600
gctggcggtg gtgcaacaac tgttttaact aaggatggta tgacaagagg cccagtagtc 660
cgtttcccaa ctttgaaaag atctggtgcc tgtaagatat ggttagactc agaagaggga 720
caaaacgcaa ttaaaaaagc ttttaactct acatcaagat ttgcacgtct gcaacatatt 780
caaacttgtc tagcaggaga tttactcttc atgagattta gaacaactac tggtgacgca 840
atgggtatga atatgatttc taaaggtgtc gaatactcat taaagcaaat ggtagaagag 900
tatggctggg aagatatgga ggttgtctcc gtttctggta actactgtac cgacaaaaaa 960
ccagctgcca tcaactggat cgaaggtcgt ggtaagagtg tcgtcgcaga agctactatt 1020
cctggtgatg ttgtcagaaa agtgttaaaa agtgatgttt ccgcattggt tgagttgaac 1080
attgctaaga atttggttgg atctgcaatg gctgggtctg ttggtggatt taacgcacat 1140
gcagctaatt tagtgacagc tgttttcttg gcattaggac aagatcctgc acaaaatgtt 1200
gaaagttcca actgtataac attgatgaaa gaagtggacg gtgatttgag aatttccgta 1260
tccatgccat ccatcgaagt aggtaccatc ggtggtggta ctgttctaga accacaaggt 1320
gccatgttgg acttattagg tgtaagaggc ccgcatgcta ccgctcctgg taccaacgca 1380
cgtcaattag caagaatagt tgcctgtgcc gtcttggcag gtgaattatc cttatgtgct 1440
gccctagcag ccggccattt ggttcaaagt catatgaccc acaacaggaa acctgctgaa 1500
ccaacaaaac ctaacaattt ggacgccact gatataaatc gtttgaaaga tgggtccgtc 1560
acctgcatta aatcctaa 1578
<210>6
<211>1257
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>6
atgtcaggaa cattcaatga tataagaaga aggaagaagg aagaaggaag ccctacagcc 60
ggtattaccg aaaggcatga gaataagtct ttgtcaagca tcgataaaag agaacagact 120
ctcaaaccac aactagagtc atgctgtcca ttggcgaccc cttttgaaag aaggttacaa 180
actctggctg tagcatggca cacttcttca tttgtactct tctccatatt tacgttattt 240
gcaatctcga caccagcact gtgggttctt gctattccat atatgattta tttttttttc 300
gataggtctc ctgcaactgg cgaagtggta aatcgatact ctcttcgatt tcgttcattg 360
cccatttgga agtggtattg tgattatttc cctataagtt tgattaaaac tgtcaattta 420
aaaccaactt ttacgctttc aaaaaataag agagttaacg aaaaaaatta caagattaga 480
ttgtggccaa ctaagtattc cattaatctc aaaagcaact ctactattga ctatcgcaac 540
caggaatgta cagggccaac gtacttattt ggttaccatccacacggcat aggagcactt 600
ggtgcgtttg gagcgtttgc aacagaaggt tgtaactatt ccaagatttt cccaggtatt 660
cctatttctc tgatgacact ggtcacacaa tttcatatcc cattgtatag agactactta 720
ttggcgttag gtatttcttc agtatctcgg aaaaacgctt taaggactct aagcaaaaat 780
cagtcgatct gcattgttgt tggtggcgct agggaatctt tattaagttc aacaaatggt 840
acacaactga ttttaaacaa aagaaagggt tttattaaac tggccattca aacggggaat 900
attaacctag tgcctgtgtt tgcatttgga gaggtggact gttataatgt tctgagcaca 960
aaaaaagatt cagtcctggg taaaatgcaa ctatggttca aagaaaactt tggttttacc 1020
attcccattt tctacgcaag aggattattc aattacgatt tcggtttgtt gccatttaga 1080
gcgcctatca atgttgttgt tggaaggcct atatacgttg aaaagaaaat aacaaatccg 1140
ccagatgatg ttgttaatca tttccatgat ttgtatattg cggagttgaa aagactatat 1200
tacgaaaata gagaaaaata tggggtaccg gatgcagaat tgaagatagt tgggtaa 1257
<210>7
<211>460
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>7
ctttttaagc tggcatccag aaaaaaaaag aatcccagca ccaaaatatt gttttcttca 60
ccaaccatca gttcataggt ccattctctt agcgcaacta cagagaacag gggcacaaac 120
aggcaaaaaa cgggcacaac ctcaatggag tgatgcaacc tgcctggagt aaatgatgac 180
acaaggcaat tgacccacgc atgtatctat ctcattttct tacaccttct attaccttct 240
gctctctctg atttggaaaa agctgaaaaa aaaggttgaa accagttccc tgaaattatt 300
cccctacttg actaataagt atataaagac ggtaggtatt gattgtaatt ctgtaaatct 360
atttcttaaa cttcttaaat tctactttta tagttagtct tttttttagt tttaaaacac 420
caagaactta gtttcgaata aacacacata aacaaacaaa 460
<210>8
<211>460
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>8
attcaaattg ttctagtgac ccaccaaagc tgtatcatgc catgttcaga gacgactaca 60
ccaagaagtt aagtctaaaa tcagcaatat accgtcctat gttagcggtt tttagtgccc 120
tgcaaaaaag tcaacgatga cctgaataat ttgcagatta aacctaacaa ttcagaaccc 180
tatattttat ttaatcatga tcaacggatt ggccgtttct tttttctctt ttttttcatc 240
cgctcgatgg atgatgagta aaacaagaaa aacgcagttg gcgactgcta tcagatatga 300
aagcagtttg attgaacaaa gtcggttttt tttaaataga attacaaaaa aggcgtgctt 360
ccaacatctt cttatttaag acaagacgac gtcaactacc ggattaagga acttgactct 420
ttctttcaag aagcaattaa ctacatcaac tagaaccata 460
<210>9
<211>460
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>9
agccatagtg atgtctaagt aacctttatg gtatatttct taatgtggaa agatactagc60
gcgcgcaccc acacacaagc ttcgtctttt cttgaagaaa agaggaagct cgctaaatgg 120
gattccactt tccgttccct gccagctgat ggaaaaaggt tagtggaacg atgaagaata 180
aaaagagaga tccactgagg tgaaatttca gctgacagcg agtttcatga tcgtgatgaa 240
caatggtaac gagttgtggc tgttgccagg gagggtggtt ctcaactttt aatgtatggc 300
caaatcgcta cttgggtttg ttatataaca aagaagaaat aatgaactga ttctcttcct 360
ccttcttgtc ctttcttaat tctgttgtaa ttaccttcct ttgtaatttt ttttgtaatt 420
attcttctta ataatccaaa caaacacaca tattacaata 460
<210>10
<211>460
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>10
ctcttcagca tactcaggat catccttttt gacaagagat cccctgctgt tgtctccatt 60
tggtacgcct ggggaactag aattgctgcc gttttgaccc attctcatcc tcaggaaatt 120
tcttctcatt ctgtctcttt taatgaaggg agaggcattc gtcggacctc ccccgtttct 180
actgcctggt ggattgcgtc tggacatcct tgcgcttact cgaataggcc tccctagcta 240
ttcttcaacc tttcgaacca tccatacttc ttactatcat aatttttatt ttatcatgga 300
ggcgagaagg tccttattcg agcatcacta agaacggaac tcgaacattt acaaagtaga 360
aaaattttat gaaaattaat tgttctttct tcagaataca aattagtcat tgtcaaaaag 420
agattagcat ccataaccgc atactctaat tgacgataac 460
<210>11
<211>460
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>11
ttcactaccc tttttccatt tgccatctat tgaagtaata ataggcgcat gcaacttctt 60
ttcttttttt ttcttttctc tctcccccgt tgttgtctca ccatatccgc aatgacaaaa 120
aaatgatgga agacactaaa ggaaaaaatt aacgacaaag acagcaccaa cagatgtcgt 180
tgttccagag ctgatgaggg gtatctcgaa gcacacgaaa ctttttcctt ccttcattca 240
cgcacactac tctctaatga gcaacggtat acggccttcc ttccagttac ttgaatttga 300
aataaaaaaa agtttgctgt cttgctatca agtataaata gacctgcaat tattaatctt 360
ttgtttcctc gtcattgttc tcgttccctt tcttccttgt ttctttttct gcacaatatt 420
tcaagctata ccaagcatac aatcaactat ctcatataca 460
<210>12
<211>451
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>12
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60
cctcgtcttc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga 120
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac 180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga 240
ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat 300
taacagatat ataaatgcaa aaactgcata accactttaa ctaatacttt caacattttc 360
ggtttgtatt acttcttatt caaatgtaat aaaagtatca acaaaaaatt gttaatatac 420
ctctatactt taacgtcaag gagaaaaaac c 451
<210>13
<211>460
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>13
gaatccttac atcacaccca atcccccaca agtgatcccc cacacaccat agcttcaaaa 60
tgtttctact ccttttttac tcttccagat tttctcggac tccgcgcatc gccgtaccac 120
ttcaaaacac ccaagcacag catactaaat ttcccctctt tcttcctcta gggtgtcgtt 180
aattacccgt actaaaggtt tggaaaagaa aaaagagacc gcctcgtttc tttttcttcg 240
tcgaaaaagg caataaaaat ttttatcacg tttctttttc ttgaaaattt ttttttttga 300
tttttttctc tttcgatgac ctcccattga tatttaagtt aataaacggt cttcaatttc 360
tcaagtttca gtttcatttt tcttgttcta ttacaacttt ttttacttct tgctcattag 420
aaagaaagca tagcaatcta atctaagttt taattacaaa 460
<210>14
<211>258
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>14
agtgaattta ctttaaatct tgcatttaaa taaattttct ttttatagct ttatgactta 60
gtttcaattt atatactatt ttaatgacat tttcgattca ttgattgaaa gctttgtgtt 120
ttttcttgat gcgctattgc attgttcttg tctttttcgc cacatgtaat atctgtagta 180
gatacctgat acattgtgga tgctgagtga aattttagtt aataatggag gcgctcttaa 240
taattttggg gatattgg 258
<210>15
<211>363
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>15
gaagttaaaa taaaacgaaa aataatgcat aggagttctt tttgtttatt ttgctcttaa 60
taaaaaagtg tcattgtata attagtctta gtttaattat ttatgttttt acaaggacaa 120
aagatttgct gttaaaaaga gttttaaata cccttttttc ttacatatgt atatatacag 180
gtttatgcta ataatattgt atagtttatc atgataatcg cctttcaatt tttcttgtct 240
tctatcaacc atttccaaat catatctctg ttctgcttgt tcttaatatc attctccatg 300
ttaaatttct tcacctttga aaaaccttta ttaatcttat tattcgacag gttagcctta 360
tta 363
<210>16
<211>336
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>16
gtctgaagaa tgaatgattt gatgatttct ttttccctcc atttttctta ctgaatatat 60
caatgatata gacttgtata gtttattatt tcaaattaag tagctatata tagtcaagat 120
aacgtttgtt tgacacgatt acattattcg tcgacatctt ttttcagcct gtcgtggtag 180
caatttgagg agtattatta attgaatagg ttcattttgc gctcgcataa acagttttcg 240
tcagggacag tatgttggaa tgagtggtaa ttaatggtga catgacatgt tatagcaata 300
accttgatgt ttacatcgta gtttaatgta cacccc 336
<210>17
<211>365
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>17
gcatagctta atccgttttc acgattcata atataataaa taagaaaaga tatatcatat 60
aaacgttata aaattaataa ccgggtaagt gtagaaaagt gatgcgacgg tttattttct 120
cttcctcttg cgattgaatt taacttgcag atagtgacca taaggcaact acccagtggc 180
aaacagtttt gataacgccc agtacatcaa cgagcgagta taaagacttt ggtacatttt 240
aaaaaggaaa catatattgt tttcattgct agaccctttt agtctcacct caataaaact 300
gctttattcc tcattgggct ttttattctt taattttgca tacttatagc gtgaaactgg 360
gcatt 365
<210>18
<211>363
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>18
taatgaattc attggaaaac acaaaatatg ttagaataaa taaggatttt ttagtgtttg 60
ggctgtatat cttaagtaag agtattaact tacaggaata ctggagttct cgttgaatat 120
tagtgattgt tttacgtaaa tttcatttat ttaaagcttt tacattagaa gttgtttgaa 180
tgtaagttta ggaaagcact acatagctta ccaggcaaag cgtaactgag aggcagtaaa 240
taccggtggt ttccatatga gtctattagg gtctattgtc cttctctttt tggctttaag 300
tcgattgtac ctatctaaaa tatcttcatt caggaaaata atatgctgac ccttgtaata 360
tcg 363
<210>19
<211>190
<212>DNA
<213> Saccharomyces cerevisiae S288C
<400>19
aagatccgct ctaaccgaaa aggaaggagt tagacaacct gaagtctagg tccctattta 60
tttttttata gttatgttag tattaagaac gttatttata tttcaaattt ttcttttttt 120
tctgtacaga cgcgtgtacg catgtaacat tatactgaaa accttgcttg agaaggtttt 180
gggacgctcg 190

Claims (10)

1. A construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin.
2. The method of claim 1, wherein the method comprises, but is not limited to, semi-rational design of enzyme, increasing α -balsamic alcohol synthase enzyme activity, enhancing α -balsamic alcohol precursor metabolic pathway, increasing α -balsamic alcohol storage capacity in Saccharomyces cerevisiae, and the like.
3. As shown in claims 1-2, the semi-rational design of the enzyme includes designing mutation sites by means of an on-line tool Swiss-Model, homology modeling, molecular docking, etc. using the crystal structure of human lanosterol synthase (PDB:1W6K) as a template.
4. The method of increasing the enzyme activity of α -balsamic alcohol synthase, as described in claims 1-3, includes, but is not limited to, the construction of a mutant of high activity α -balsamic alcohol synthase.
5. The method of constructing high activity α -balsamic alcohol synthase mutants, as claimed in claims 1-4, comprises obtaining a series of mutants comprising:
the protein derived from α -balsamic alcohol synthase MdOSC1 with high activity is obtained by substituting and/or deleting and/or adding one or more amino acids in the amino acid sequence (353DQIHYEDENSRYITIGCVEKPLMML377) of the substrate binding domain shown in GenBank with the number of ACM 89977.1;
the protein derived from α -turpentine synthase MdOSC1 with high activity is obtained by substituting and/or deleting and/or adding one or more amino acids in a catalytic domain amino acid sequence (249LPFHPSKMFCYCRLTYLPMS268) shown in GenBank with the number of ACM 89977.1;
the protein derived from α -balsamic alcohol synthase MdOSC1 with high activity is obtained by substituting and/or deleting and/or adding one or more amino acids in an N-terminal part amino acid sequence (2WKIKFGEGANDPMLFSTNNFHGRQ25) shown in the GenBank number ACM 89977.1.
6. A high copy number plasmid obtained by overexpressing α a key enzyme in the balsamic alcohol synthesis pathway as shown in claims 1-5.
7. Key enzymes that are overexpressed, as shown in claims 1-6, include, but are not limited to, the high activity α -balsamic alcohol synthase mutant shown in claim 5.
8. A recombinant strain constructed by any one of the methods of claims 1 to 7, comprising a α -balsamic alcohol-producing strain, which overexpresses the α -balsamic alcohol synthase mutant with high activity shown in claim 5 and 3-hydroxy-3-methylglutaryl-CoA reductase.
9. A recombinant strain constructed using the method of any one of claims 1-7 comprising integration of a Saccharomyces cerevisiae endogenous diacylglycerol acyltransferase (DGA1) at a high copy site in the genome.
10. A saccharomyces cerevisiae cell factory for efficient production of α -balsamic alcohol, constructed using the method of any one of claims 1-7, comprising integration of saccharomyces cerevisiae endogenous diacylglycerol acyltransferase (DGA1), assembled at a high copy site in the genome, and overexpression of a α -balsamic alcohol synthase mutant with high activity as set forth in claim 5, and 3-hydroxy-3-methylglutaryl-coa reductase.
CN201911346558.4A 2019-12-24 2019-12-24 Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin Pending CN110982722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911346558.4A CN110982722A (en) 2019-12-24 2019-12-24 Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911346558.4A CN110982722A (en) 2019-12-24 2019-12-24 Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin

Publications (1)

Publication Number Publication Date
CN110982722A true CN110982722A (en) 2020-04-10

Family

ID=70074767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911346558.4A Pending CN110982722A (en) 2019-12-24 2019-12-24 Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin

Country Status (1)

Country Link
CN (1) CN110982722A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235047A (en) * 2020-02-12 2020-06-05 天津大学 Recombinant yarrowia lipolytica for heterogeneously synthesizing α -coumarol and ursolic acid and construction method
CN114250219A (en) * 2022-01-06 2022-03-29 天津科技大学 Balsamiferol synthase mutant and application thereof
CN114561312A (en) * 2022-04-24 2022-05-31 北京理工大学 Recombinant yeast for synthesizing ursolic acid and construction method thereof
CN115261243A (en) * 2021-04-30 2022-11-01 中国科学院天津工业生物技术研究所 Recombinant saccharomyces cerevisiae as well as construction method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235047A (en) * 2020-02-12 2020-06-05 天津大学 Recombinant yarrowia lipolytica for heterogeneously synthesizing α -coumarol and ursolic acid and construction method
CN115261243A (en) * 2021-04-30 2022-11-01 中国科学院天津工业生物技术研究所 Recombinant saccharomyces cerevisiae as well as construction method and application thereof
CN115261243B (en) * 2021-04-30 2024-02-06 中国科学院天津工业生物技术研究所 Recombinant saccharomyces cerevisiae as well as construction method and application thereof
CN114250219A (en) * 2022-01-06 2022-03-29 天津科技大学 Balsamiferol synthase mutant and application thereof
CN114250219B (en) * 2022-01-06 2023-02-03 天津科技大学 Balsamiferol synthase mutant and application thereof
CN114561312A (en) * 2022-04-24 2022-05-31 北京理工大学 Recombinant yeast for synthesizing ursolic acid and construction method thereof
CN114561312B (en) * 2022-04-24 2022-08-09 北京理工大学 Recombinant yeast for synthesizing ursolic acid and construction method thereof

Similar Documents

Publication Publication Date Title
CN110982722A (en) Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin
Runquist et al. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
US11952580B2 (en) Heterologous production of psilocybin
CN108949601B (en) Recombinant saccharomyces cerevisiae for producing dammarenediol and protopanoxadiol by using xylose and construction method
JP2010525816A (en) Direct conversion of carbon dioxide to hydrocarbons using metabolically modified photosynthetic microorganisms
CN110423732B (en) Enzyme expressed in saccharomyces cerevisiae, genetic engineering bacteria for high yield of alpha-and gamma-tocotrienols and construction method thereof
CN105647943B (en) Saussurea involucrate cell squalene synthase gene SiSQS and coded product and application thereof
Cao et al. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone
CN110325640A (en) Plum surprise yeast kind for compound biosynthesis
CN111893049A (en) Schizochytrium limacinum genetic engineering strain for over-expressing squalene synthetase gene and construction method and application thereof
CN114058525A (en) High-yield squalene genetic engineering bacterium and construction method and application thereof
CN113832044B (en) Recombinant yarrowia lipolytica, construction method and application thereof
CN114107152B (en) Construction method and application of high-yield 3-fucosyllactose microorganism
CN113265340B (en) Squalene-producing schizochytrium limacinum genetic engineering strain and construction method and application thereof
Lin et al. Development of an Agrobacterium-mediated transformation method and evaluation of two exogenous constitutive promoters in oleaginous yeast Lipomyces starkeyi
CN111484961A (en) Gene engineering bacterium for producing 5 α -androstanedione and application thereof
CN104561082B (en) One plant of yeast Candida jeffriesii that can utilize xylose expression system
US20170240869A1 (en) Clostridium acetobutylicum strains unable to produce hydrogen and useful for the continuous production of chemicals and fuels
CN113249240B (en) Saccharomyces cerevisiae for high yield of hydroxytyrosol and construction method thereof
CN112812981B (en) Saccharomyces cerevisiae genetically engineered bacterium for synthesizing lycopene as well as construction method and application thereof
CN113956990A (en) Recombinant saccharomyces cerevisiae for producing dihydronilotinib as well as preparation method and application thereof
CN114517164A (en) Application of fatty acid elongase gene in synthesis of nervonic acid by yeast
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN111073821A (en) Construction method of monascus ruber strain capable of producing lovastatin with high yield and producing no citrinin
NL2024578B1 (en) Recombinant fungal cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination